



## Supplement of

## Influence of the vapor wall loss on the degradation rate constants in chamber experiments of levoglucosan and other biomass burning markers

Amelie Bertrand et al.

Correspondence to: Nicolas Marchand (nicolas.marchand@univ-amu.fr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.



**Figure S1.** Example of the monomodal distribution of the aerosol (number concentration (top) and mass concentration (bottom) (Experiment 1).



**Figure S2:** Exponential fit of the decay of BC applied in order to retrieve a constant particle wall loss rate.



**Figure S3.** Wall loss correction of the normalized levoglucosan signal (modeled from experimental data set) using a constant rate  $(0.0047 \text{ min}^{-1})$  and time dependent rate (averaged from all the experiments and based on the fitting of the logarithmic form of the decay on a 30 minutes time interval).



**Figure S4:** Calculate condensation sink  $k_{sink}$  (s<sup>-1</sup>) with an accommodation coefficient  $\alpha$  of 0.1.



**Figure S5**: Influence of the factors on the model in the case of levoglucosan – mean effect plots for RMSE.



**Figure S6**: Comparison of our results for the saturation vapor concentration  $C^*$  and vapor wall loss rate  $k_{wall/g}$  to those by Ye et al. (2015).



**Figure S7**: Observed and modeled evolution during aging of the particulate-phase concentration corrected for wall loss (and normalized to the initial concentration) of several BBOA markers. The colored markers are the TAG-AMS measurements, the solid black line represents the best fit, and the grey area is all the individual solutions with a RMSE < 15 %. Only one replicate is shown for each compounds (exp. 5 for 3-guaiacyl propanol, exp.6 for acetosyringone and mannosan, and exp.2 for conyferyl aldehyde.)