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Abstract. Although aggressive emission control strategies
have been implemented recently in the Beijing–Tianjin–
Hebei area (BTH), China, pervasive and persistent haze still
frequently engulfs the region during wintertime. Afforesta-
tion in BTH, primarily concentrated in the Taihang and Yan
Mountains, has constituted one of the controversial factors
exacerbating the haze pollution due to its slowdown of the
surface wind speed. We report here an increasing trend of
forest cover in BTH during 2001–2013 based on long-term
satellite measurements and the impact of the afforestation on
the fine-particle (PM2.5) level. Simulations using the Weather
Research and Forecast model with chemistry reveal that af-
forestation in BTH since 2001 has generally been deterio-
rating the haze pollution in BTH to some degree, enhancing
PM2.5 concentrations by up to 6 % on average. Complete af-
forestation or deforestation in the Taihang and Yan Moun-
tains would increase or decrease the PM2.5 level within 15 %
in BTH. Our model results also suggest that implementing
a large ventilation corridor system would not be effective or
beneficial to mitigate the haze pollution in Beijing.

1 Introduction

Heavy haze with extremely high levels of fine particles
(PM2.5), caused by rapid growth of industrialization, urban-
ization, and transportation, frequently covers northern China
during wintertime, particularly in the Beijing–Tianjin–Hebei

area (BTH). The haze pollution in BTH remarkably impairs
visibility and potentially causes severe health defects (Lim et
al., 2013; Wang and Hao, 2012). The Chinese State Coun-
cil issued the “Air Pollution Prevention and Control Action
Plan” (APPCAP) in September 2013 with the aim of improv-
ing China’s air quality within 5 years and reducing PM2.5
by up to 25 % by 2017 relative to 2012 levels. Although
aggressive emission control strategies have been undertaken
since the initiation and implementation of the Action Plan,
widespread and persistent haze still often engulfs BTH.

Aside from emissions, meteorological conditions play
a key role in the haze pollution, affecting the formation,
transformation, diffusion, transport, and removal of PM2.5
in the atmosphere (Bei et al., 2012, 2017). Multifarious
measurements have provided cumulative evidence that the
widespread slowdown of surface wind speeds has occurred
globally and in China since the 1980s (Chen et al., 2013;
McVicar et al., 2012), which facilitates the pollutant accu-
mulation to deteriorate air quality (Zhao et al., 2013; Sun
et al., 2016). An increase in the surface roughness induced
by increased vegetative biomass has been proposed to be re-
sponsible for the surface-level stilling to some degree (Wu
et al., 2016b; Vautard et al., 2010). Consequently, there has
been ongoing debate in China on whether the afforestation
program contributes enough to mitigate the haze formation
in BTH (China Forestry Network, 2016a, 2017).

Deforestation and its potential to severe droughts and mas-
sive floods has raised serious concerns in China since the
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1970s, fostering the largest afforestation project in the world
(Liu et al., 2008). Six key afforestation programs have been
implemented since 2001, and “the Green Great Wall” of
China has been established in northern China (Duan et al.,
2011). A remarkable forest growth has been reported in the
northwest of BTH from 2000 to 2010 (Li et al., 2016), which
has the potential to increase the surface roughness and de-
crease the surface wind speed (Wu et al., 2016a; Bichet et al.,
2012), and could potentially aggravate the haze pollution. In
addition, previous studies have shown that the afforestation is
beneficial for the atmosphere to remove O3, NOx , SO2, and
PM2.5 through the dry deposition process (Zhang et al., 2015,
2017; Huang et al., 2016). Hence, a large artificial ventila-
tion corridor system has been proposed, highly anticipated to
ventilate Beijing (China Forestry Network, 2014, 2016b, c).

In the present study, we report an analysis of long-term
satellite measurements of the land cover change in BTH and
quantitatively evaluate the impacts of the afforestation on the
haze pollution in BTH using the WRF-CHEM model. We
have further evaluated the effect of the proposed large artifi-
cial ventilation corridor system on the haze mitigation in Bei-
jing. The model configuration and methodology are provided
in Sect. 2. Data analysis and model results are presented in
Sect. 3, and conclusions are given in Sect. 4.

2 Data, model, and methodology

2.1 MODIS data

The data utilized in the study are the annual land cover prod-
uct, MCD12Q1, derived from the Terra and Aqua Moder-
ate Resolution Imaging Spectroradiometer (MODIS) obser-
vations since 2001 (Friedl et al., 2002). The product has
been widely used in studies of atmospheric science, hydrol-
ogy, ecology, and land change science (Gerten et al., 2004;
Guenther et al., 2006; Reichstein et al., 2007; Turner et al.,
2007). Wu et al. (2008) have compared four global land cover
datasets across China, concluding that the MODIS land cover
product is the most representative over China with the mini-
mal bias from the China’s National Land Cover Dataset. The
MCD12Q1 (Version 5.1) IGBP (International Geosphere-
Biosphere Programme) scheme with a spatial resolution of
500 m is utilized to explore the variability of the land cover
fraction (LCF) from 2001 to 2013 in BTH and assimilated
into the WRF-CHEM model. The high-resolution land cover
product is generated using a supervised classification algo-
rithm in conjunction with a revised database of high-quality
land cover training sites (Friedl et al., 2002). The accuracy of
the IGBP layer of MCD12Q1 is estimated to be 72.3–77.4 %
globally, with a 95 % confidence interval (Friedl et al., 2002,
2010). Great efforts have been made to evaluate the accura-
cies of the global land cover datasets over China. The over-
all accuracy of MCD12Q1 in China is estimated to be 55.9–
68.9 % (Bai et al., 2015; Yang et al., 2017), which could be

Figure 1. (a) The model domain, region of interest (ROI), and
monitoring sites. (b) The topography and monitoring sites in Jan-
uary 2014. The circles represent the centers of cities with ambient
monitoring sites, and the size of circles denotes the number of moni-
toring sites in the cities. The boundary of BTH region is highlighted
with bright lines. The Yan (Yanshan Mt.) and Taihang Mountains
are also displayed.

increased to about 70 % when ignoring the differences of five
forests.

2.2 WRF-CHEM model and configurations

We use a specific version of the WRF-CHEM model (Grell
et al., 2005) to investigate the impacts of the afforestation on
the haze pollution in BTH. The model includes a new flexible
gas phase chemical module and the CMAQ/Models3 aerosol
module developed by US EPA (Binkowski and Roselle,
2003). The wet deposition of chemical species follows the
CMAQ method. The dry deposition parameterization follows
Wesely (1989), and the dry deposition velocity of aerosols
and trace gases is calculated as a function of the local me-
teorology and land use. The photolysis rates are calculated
by an FTUV (fast radiation transfer model) (Li et al., 2005).
The inorganic aerosols are predicted using ISORROPIA Ver-
sion 1.7 (http://nenes.eas.gatech.edu/ISORROPIA/, last ac-
cess: 30 June 2018) (Nenes et al., 1998). The secondary or-
ganic aerosol (SOA) is predicted using a non-traditional SOA
module, including the VBS (volatility basis set) modeling ap-
proach and SOA contributions from glyoxal and methylgly-
oxal. Detailed information about the WRF-CHEM model can
be found in previous studies (Li et al., 2010, 2011a, b, 2012).
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Table 1. WRF-CHEM model configurations.

Simulation regions Beijing–Tianjin–Hebei–Shandong

Simulation period 1 December 2013–31 January 2014
Domain size 200× 200
Domain center 38◦ N, 116◦ E
Horizontal resolution 6 km× 6 km
Vertical resolution 35 vertical levels with a stretched vertical grid with spacing ranging

from 30 m near the surface, to 500 m at 2.5 km and 1 km above 14 km
Microphysics scheme WSM 6-class graupel scheme (Hong and Lim, 2006)
Boundary layer scheme MYJ TKE scheme (Janjić, 2002)
Surface layer scheme MYJ surface scheme (Janjić, 2002)
Land-surface scheme Unified Noah land-surface model (Chen and Dudhia, 2001)
Longwave radiation scheme Goddard longwave scheme (Chou and Suarez, 2001)
Shortwave radiation scheme Goddard shortwave scheme (Chou and Suarez, 1999)
Meteorological boundary and initial conditions NCEP 1◦× 1◦ reanalysis data
Chemical initial and boundary conditions MOZART 6 h output (Horowitz et al., 2003)
Anthropogenic emission inventory SAPRC-99 chemical mechanism emissions (Zhang et al., 2009)
Biogenic emission inventory MEGAN model developed by Guenther et al. (2006)
Model spin-up time 28 h

High PM2.5 pollution episodes from 1 December 2013 to
31 January 2014 in the North China Plain (NCP) have been
simulated using the WRF-CHEM model. The model simu-
lation domain is shown in Fig. 1, and detailed model con-
figurations can be found in Table 1. The chemical initial
and boundary conditions are interpolated from the 6 h out-
put of MOZART-4 (Emmons et al., 2010; Horowitz et al.,
2003). MOZART-4 is driven by meteorology fields from the
NASA GMAO GEOS-5 model, using anthropogenic emis-
sions based on the Streets et al. (2006) inventory and fire
emissions from FINN-v1 (Wiedinmyer et al., 2011). The
model has been evaluated comprehensively with several sets
of observations, reproducing the tropospheric chemical com-
position well (Emmons et al., 2010). The model results have
been successfully and widely used as the initial and lateral
boundary conditions for chemical transport models. The an-
thropogenic emission inventory used in the present study is
developed by Zhang et al. (2009), with the base year of 2013,
including contributions from agriculture, industry, power,
residential, and transportation sources. Figure S1 shows the
emission distribution of OC (organic carbon), VOCs (volatile
organic compounds), NOx , and SO2 in the simulation do-
main. The high emissions of OC, VOCs, NOx , and SO2 are
generally concentrated in the plain region of BTH and Shan-
dong province, the downwind area of afforestation.

The hourly near-surface CO, SO2, NO2, O3, and PM2.5
mass concentrations released by China’s Ministry of Envi-
ronmental Protection are used to validate the model simu-
lations and are accessible from the following website: http:
//www.aqistudy.cn/ (last access: 30 June 2018).

We use the normalized mean bias (NMB), the index of
agreement (IOA), and the correlation coefficient (R) to as-
sess the WRF-CHEM model performance in simulating air

pollutants against measurements.
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∑N
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where Pi and Oi are the calculated and observed air pollutant
concentrations, respectively. N is the total number of the pre-
dictions used for comparisons, and P and O represent the av-
erage of predictions and observations, respectively. The IOA
ranges from 0 to 1, with 1 showing perfect agreement of the
prediction with the observation. The R ranges from −1 to 1,
with 1 implicating perfect spatial consistency of observations
and predictions.

2.3 MCD12Q1 data assimilation to the WRF-CHEM
model

The IGBP layer in MCD12Q1 is suitable for the WRF-
CHEM IGBP land cover scheme, which consists of 11 nat-
ural vegetation classes, 3 developed and mosaicked land
classes, and 3 non-vegetated land classes. Table S1 dis-
plays the comparison of land cover classification between
the WRF-CHEM model and MCD12Q1. We use the gridded
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LCF of each category to assimilate the MCD12Q1 satellite
data to the WRF-CHEM model.

LCFi,j,k =
Areai,j,k

Areai,j

, (4)

where i and j are grid cell indices of the WRF-CHEM model
domain, Areai,j,k stands for the total area of each land cover
category k within grid cell (i,j), and Areai,j is the area of
grid cell (i,j). The LCFi,j,k ranges from 0 to 1.

To evaluate the afforestation impacts on the haze pollu-
tion in BTH, we have used and modified the coupled uni-
fied Noah land-surface model (LSM), which was developed
based on Oregon State University LSM (Chen and Dud-
hia, 2001). Noah is able to reasonably reproduce the ob-
served diurnal variation of sensible heat fluxes and surface
skin temperature. Also, it is capable of capturing the diur-
nal and seasonal evolution in evaporation and soil moisture
(Chen et al., 1996). Despite some remaining issues, Noah
has been chosen for further refinement and implementation
in NCEP regional and global coupled weather and climate
models because of its relative simplicity and adequate perfor-
mance (Mitchell, 2005, update 2017). The surface roughness
length (SFz0) in Noah is calculated based on the dominant
land cover category (https://ral.ucar.edu/solutions/products/
unified-noah-lsm/, last access: 30 June 2018).

SFz0= (5)
SFz0min GT ≤Gmin
(1−Gf)×SFz0min, Gmin ≤GT ≤Gmax
+Gf×SFz0max

SFz0max, GT�Gmax,

where SFz0min and SFz0max are the minimum and maximum
SFz0 for each category. Gf is the area fractional coverage of
green vegetation, and GT, Gmin, and Gmax are the thresh-
old, minimal, and maximal value of Gf, respectively. GT,
SFz0min, and SFz0max are listed in Table S2.

In order to more precisely simulate surface stress within
the sub-grid scale in heterogeneous terrain, the effective
roughness length has been extensively studied, especially in
the 1990s. Claussen (1990) has defined the effective rough-
ness length as a value of the area average of the rough-
ness length in heterogeneous terrain. The effective rough-
ness length relies upon the blending height (Wieringa, 1986;
Mason, 1988; Wood and Mason, 1991; Philip, 1996; Mahrt,
1996), at which the flow is approximately in equilibrium with
underlying surface conditions and independent of horizontal
position (Ma and Daggupaty, 1998). We have modified the
Noah SFz0 calculation using the spatial average of the vege-
tation roughness length.

SFz0=
∑

k

LCFk ×SFz0k (6)

SFz0k denotes the gridded area fraction of land cover cate-
gory k and is alculated by Eq. (5).

Figure 2. Land cover change from 2001 to 2013. Spatial distribu-
tions of (a) forests, (b) shrublands, (c) croplands, and (d) grass-
lands.

Table 2. Land cover change over Beijing and BTH from 2001 to
2013.

Land cover Land cover Beijing BTH
categories description

1–5 Forests 14.9 % 7.2 %
6–7 Shrublands −12.6 % −3.9 %
12/14 Croplands −0.1 % 1.9 %
8–10 Grasslands −2.0 % −5.1 %
Others – −0.2 % −0.1 %

3 Results and discussions

3.1 Land cover change in BTH

The land cover in BTH and Beijing exhibits appreciable vari-
ation from 2001 to 2013 (Fig. 2 and Table 2). In BTH, forests
and croplands have increased by 7.2 % and 1.9 %, while
shrublands and grasslands/savannas have decreased by 3.9 %
and 5.1 %, respectively. In Beijing, forests have increased
by 14.9 %, while shrublands have decreased by 12.6 %. Ap-
parently, the forest LCF has increased substantially in west-
ern and northern BTH, concentrated in the Taihang and Yan
Mountains, with an increase up to 50 %. This result is con-
sistent with the previous study of Li et al. (2016), which
has reported a remarkable forest growth in the northwest of
NCP from 2000 to 2010. As such, a “Green Great Wall” has
been established (Fig. 2a), which has reportedly protected
the southeastern BTH from the dust pollution (Liu et al.,
2008; Duan et al., 2011; Parungo et al., 2013). The land cover
change, particularly the evident forest growth, is primarily at-
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tributed to China’s national afforestation programs aiming to
increase the forest coverage and to conserve soil and water,
including the Grain for Green Project, the Three-North Shel-
ter Forest System Project (Phase IV), and the Natural Forest
Conservation Program (Yin et al., 2010; Cao et al., 2011).

3.2 Model performance

We have first assimilated into the WRF-CHEM model the
MCD12Q1 product of 2013 and performed the numerical
simulation of haze pollution episodes from 1 December 2013
to 31 January 2014. To enable discussion, we have defined
the simulation with the 2013 land cover as the reference case
(hereafter referred to as REF case), and results from the ref-
erence simulation are compared to observations in BTH.

Considering the key role of meteorological fields in de-
termining the formation, transformation, diffusion, transport,
and removal of the air pollutants (Bei et al., 2017), Fig. S2
presents the comparison of the simulated wind speed and di-
rection, and planetary boundary layer height with the reanal-
ysis data from ECMWF (European Centre for Medium-range
Weather Forecasts) at monitoring sites. The predicted tempo-
ral variations of the three meteorological parameters are gen-
erally in agreement with the reanalysis data, with the IOAs
exceeding 0.80 and the absolute NMB less than 25 %.

Figure 3 presents the calculated and observed temporal
profiles of near-surface air pollutant concentrations averaged
at monitoring sites in BTH during the simulation period, in-
cluding PM2.5, O3, NO2, SO2, and CO. The WRF-CHEM
model generally reproduces the haze pollution episodes well.
For example, all the haze events during the period are cap-
tured successfully (Fig. 3a), with an IOA of 0.90 and a NMB
of 2.1 % for PM2.5 mass concentrations. The model reason-
ably yields O3 variations compared to observations, with an
IOA of 0.80, but underestimates O3 concentrations, with a
NMB of −15.9 % (Fig. 3b). In winter, the insolation is weak
in the north of China, unfavorable for the O3 photochemical
production, so the O3 level is substantially influenced by the
boundary conditions (Li et al., 2017; Wu et al., 2017). Hence,
one of possible reasons for the O3 underestimation might be
from the uncertainty in the O3 boundary conditions. The sim-
ulated temporal variations of NO2 mass concentrations are
well consistent with the observation, and the IOA and NMB
are 0.91 and 0.6 %, respectively. The SO2 and CO tempo-
ral variations are also reasonably replicated against observa-
tions, with IOAs of 0.82 and 0.84, respectively.

Figure 4 shows the spatial comparison of calculated and
observed PM2.5 concentrations. Generally, the average pre-
dicted PM2.5 spatial patterns agree well with the observa-
tions at the monitoring sites in BTH during the whole pe-
riod (Fig. 4b) and each month (Fig. 4c and d), with R val-
ues exceeding 0.85, indicating good agreement of simula-
tions with observations. The observed PM2.5 concentrations
frequently exceed 150 µg m−3 in BTH, showing the frequent
occurrence of heavy haze pollution events. The model gen-

Figure 3. Comparisons of observed (black dots) and simulated
(solid red lines) diurnal profiles of near-surface hourly mass con-
centrations of (a) PM2.5, (b) O3, (c) NO2, (d) SO2, and (d) CO av-
eraged at monitoring sites in BTH from 1 December 2013 to 31 Jan-
uary 2014.

erally yields the observed high PM2.5 concentrations in BTH
and their surrounding areas, although the model underesti-
mation or overestimation still exists. Additionally, compared
to observations, the model also performs well in simulating
the spatial pattern of haze episodes with various timescales
ranging from 8 to 16 days (Fig. S3).

The good agreements of the simulated mass concentra-
tions of air pollutants with observations at monitoring sites
in BTH show that the emission inventory used in the present
study and simulated wind fields are generally reasonable,
providing a reliable base for the further assessment. It is
worth noting that, although the predicted meteorological pa-
rameters are generally consistent with the reanalysis data
from ECMWF at monitoring sites, other factors still affect
the meteorological field simulations and cause biases to com-
pensate some of the deficiencies of the WRF-CHEM model,
such as overestimation of surface wind speeds.

3.3 Effect of afforestation on haze pollution in BTH

Change in the land cover alters the surface roughness height
(SFz0) that plays an important role in determining the surface
level wind speed and energy exchange between the atmo-
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Figure 4. Pattern comparisons of calculated and observed near-
surface PM2.5 mass concentrations. (a) Spatial correlation between
calculated and observed PM2.5 concentrations during each month
and the whole simulation period. Horizontal distribution of calcu-
lated (color contour) and observed (colored circles) average PM2.5
concentrations during (b) the whole simulation period, (c) Decem-
ber 2013, and (d) January 2014, along with the simulated wind
fields (black arrows).

sphere and the land surface. Numerous studies have demon-
strated that increasing SFz0 tends to decelerate the surface
wind (Wu et al., 2016a, b), obstructing the dispersion of air
pollutants (Sun et al., 2016; Zhao et al., 2013; Tie et al.,
2015). In order to evaluate the impact of the afforestation-
induced SFz0 change and resultant dynamical change (e.g.,
wind field) on the haze formation, a sensitivity experiment
is designed, in which the MCD12Q1 product of 2001 is as-
similated into the WRF-CHEM model to represent the land
cover situations before the afforestation (hereafter referred to
as SEN-AFF case).

Figure 5a and b display the SFz0 change and its correlation
with forest LCF change from 2001 to 2013, respectively. The
land cover change considerably alters the SFz0, particularly
in the afforestation area, with a SFz0 increase ranging from
0.1 to 0.3 m. Apparently, the SFz0 exhibits a distinct increas-
ing trend in western and northern BTH, concentrated in the
Taihang and Yan Mountains, which is well consistent with
the increase of the forest LCF. The SFz0 change is highly
correlated with the forest LCF change, with a correlation co-
efficient of 0.91. Generally, the SFz0 is mainly dependent
upon the LCF (Eq. 6) and sensitive to the forest change (Ta-
ble S2). Therefore, afforestation constitutes the most impor-
tant factor for the increase in the SFz0 in BTH.

It is worth noting that Jiménez and Dudhia (2012) have
point out that there still exist large uncertainties in parame-

Figure 5. (a) SFz0 change from 2001 to 2013, and (b) its correla-
tion with the forest LCF change; horizontal distribution of (c) abso-
lute and (d) relative near-surface PM2.5 mass concentration changes
caused by the afforestation. The wind field changes are shown in
black arrows in (c) and (d).

terizing the air land interaction over complex terrain. Besides
the vegetation effect on the roughness length, drag of subgrid
features of topography needs to be considered. The parame-
terization of orographic flow over complex terrain is a chal-
lenging problem at the mesoscale numerical simulation. In
early versions of the WRF model, a large bias in predicting
surface winds over complex terrain has occurred due to the
drag exerted by unresolved topography (Cheng and Steen-
burgh, 2005). Great efforts have been made to improve the
simulation of orographic flow over complex terrain. The new
parameterization scheme introduced in the WRF model since
version 3.4.1 has corrected this high wind speed bias over
plains and valleys (Mughal et al., 2017), and it has also cor-
rected the low wind speed bias found over the mountains and
hills (Jiménez and Dudhia, 2012).

Figure 5c and d illustrate the influence of the afforesta-
tion on the surface PM2.5 and wind field averaged during the
simulation period (defined as (REF−SEN-AFF)). The pre-
vailing westerly or northerly wind is decelerated in the west-
ern and northwestern BTH due to the increased SFz0 caused
by the afforestation, with the wind speed decrease ranging
from 0.3 to 1.5 m s−1. The afforestation tends to deteriorate
the haze pollution in BTH, particularly in the downwind area
of the afforestation, with the period average PM2.5 enhance-
ment reaching about 6–15 µg m−3, or 3–6 %. The PM2.5 en-
hancement in Beijing is the most evident, corresponding to
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Figure 6. Horizontal distribution of (a) the average near-surface
PM2.5 mass concentration and (b) its change due to the afforesta-
tion during an intensified northerly/northwesterly event from 00:00
to 10:00 Beijing time on 18 January 2014. The wind field and its
change are shown in black arrows.

the rapid growth of forests in the west and in the north of
Beijing. Furthermore, during each episode, the afforestation
generally tends to deteriorate the haze pollution in BTH, en-
hancing the PM2.5 concentration by about up to 3–6 %, par-
ticularly in the downwind area of the afforestation (Fig. S4).
On average, the difference of the simulated air pollutants and
meteorological parameters between the REF and SEN-AFF
case is not significant (Fig. 5c and d).

The occurrence of heavy haze pollution in BTH is gen-
erally associated with the weakening of northerly or north-
westerly winds, which facilitates the accumulation of air pol-
lutants in BTH. The afforestation in the western and north-
western BTH increases SFz0, further decelerating northerly
or northwesterly winds and deteriorating the haze pollu-
tion. However, the afforestation only plays a marginal role
in worsening the haze pollution and does not constitute the
main cause of the heavy haze formation.

Apparently, during the haze development, when the
northerly or northwesterly wind is weak or becomes calm,
the SFz0 increase due to the afforestation contributes negli-
gibly to the haze deterioration in BTH. However, once the
northerly or northwesterly wind commences to strengthen
but is not strong enough to evacuate the air pollutants in
BTH, the SFz0 increase would play an appreciable role in
sustaining high PM2.5 levels in the downwind area of the af-
forestation. Figure 6 presents the PM2.5 contribution of the
afforestation during the occurrence of a northerly gust on
18 January 2014. The intensified northerly wind cleanses the
northern BTH, but the haze pollution is still very severe in
the southern BTH. The afforestation considerably elevates
the PM2.5 concentration in southeastern BTH, particularly in
Beijing and Tianjin, with the PM2.5 contribution exceeding
up to 15 % (Fig. 6b).

It is worth noting that the aerosol species (organic aerosol,
sulfate, nitrate, ammonium, and elemental carbon) exhibit
the same variation trend as the PM2.5 due to the afforestation

Figure 7. Impacts of complete deforestation/afforestation over Tai-
hang and Yanshan Mountains on (a)–(c) SFz0 and (b)–(d) average
near-surface PM2.5 mass concentrations from 1 December 2013 to
31 January 2014, along with the wind field change (black arrows).

(Fig. S5). Apparently, the organic aerosol is the major con-
tributor to the PM2.5 variation due to the afforestation, fol-
lowed by the sulfate and ammonium aerosol. The afforesta-
tion also increases emissions of the biogenic SOA (BSOA)
precursors, such as isoprene and monoterpenes. However,
due to the very low emissions of BSOA precursors during
wintertime (Guenther et al., 2006, 2012), the BSOA con-
tribution to PM2.5 concentrations is insignificant, less than
3 µg m−3 on average during the whole episodes (Fig. S6a).
The average BSOA enhancement due to the afforestation is
less than 0.5 % (Fig. S6b). Furthermore, in general, the af-
forestation has little effect on the boundary layer height, up-
ward sensible heat flux (associated with turbulent mixing),
and moisture (related to clouds) in BTH (Fig. S7).

To assess the upper limit of impacts of the afforestation on
the PM2.5 level in BTH, two additional experiments are con-
ducted and compared to the REF case. The two experiments
are one with complete deforestation and the other with com-
plete afforestation in the Taihang and Yan Mountains (Fig. 7a
and c). In the complete deforestation sensitivity case, the
barren surface with SFz0 of 0.01 m is used to replace other
land cover categories. In the complete afforestation case, the
deciduous broadleaf forest category with SFz0 of 0.5 m is
used to replace other land cover categories. As shown in
Fig. 7, complete deforestation considerably decreases the
PM2.5 level in BTH, with the period average PM2.5 reduc-
tion ranging from 5 to 18 µg m−3 generally, and in particular
the PM2.5 concentration in Beijing is reduced by more than
10 µg m−3, due to the intensified northerly or northwesterly
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wind caused by the decrease of SFz0 in the Taihang and Yan
Mountains. Complete afforestation deteriorates the haze pol-
lution in BTH, and the haze pollution remains in the Taihang
and Yan Mountains due to the weakened northerly or north-
westerly wind. Additionally, the enhancement of PM2.5 con-
centrations in the foothills of the Taihang and Yan Mountains
is obvious, varying from 10 to 25 µg m−3 (Fig. 7d).

Interestingly, the afforestation deteriorates most of the
haze pollution in Beijing (see Fig. 5). So it is anticipated that
the proposed large ventilation corridor system could alleviate
the haze pollution in Beijing (China Forestry Network, 2014,
2016b, c). Originally, the ventilation corridor system was de-
vised to relieve the urban heat island effect and improve the
thermal environmental conditions in urbanized regions. With
the frequent occurrence of heavy haze in Beijing, the debat-
able system is expected to blow away the haze and bring blue
skies to Beijing. In order to examine the effects of the wind
corridor system, a sensitivity experiment is conducted based
on the base case, in which three artificial ventilation corri-
dors are designed in the northwest, north, and northeast of
Beijing, with a width of 6 km (Fig. 8a). For all the grid cells
within the corridors, the barren surface with SFz0 of 0.01 m
is used to replace other land cover categories. In contrast to
the expectation, our sensitivity results show that the PM2.5
reduction due to the designed ventilation corridor system is
less than 1 % in Beijing (Fig. 8b). Note that the width of the
ventilation corridor in the sensitivity study is 12 times the
proposed one. Hence, the proposed large ventilation corridor
system is not effective or beneficial to mitigate the haze pol-
lution in Beijing.

4 Summary and conclusions

The annual land cover product, MCD12Q1, derived from the
MODIS observations since 2001 has been used to analyze the
land cover change in BTH. A considerable increasing trend
of forests in the western and northwestern BTH has been
identified, which is caused by China’s national afforestation
programs. Forests in BTH and Beijing have increased by
7.2 % and 14.9 %, respectively, from 2001 to 2013. The fast
forest expansion has increased the surface roughness height,
particularly in Beijing and its surrounding areas.

The MCD12Q1 product of 2013 has been assimilated into
the WRF-CHEM model to represent the current land cover
condition. Persistent haze pollution episodes in BTH from
1 December 2013 to January 2014 are simulated using the
WRF-CHEM model. Generally, the WRF-CHEM model re-
produces the temporal variations and spatial distributions of
air pollutants reasonably well compared to observations at
monitoring sites in BTH.

Sensitivity studies have demonstrated that the increase of
the surface roughness height decreases the northwesterly or
northerly wind speed in the western and northwestern BTH
by about 0.3–1.5 m s−1. The haze pollution is deteriorated

Figure 8. Impacts of an artificial large ventilation corridor system
on (a) SFz0 and (b) average near-surface PM2.5 mass concentra-
tions from 1 December 2013 to 31 January 2014, along with the
wind field (black arrows).

in BTH to some degree, and PM2.5 concentrations are gen-
erally enhanced by less than 6 % due to the afforestation.
The heavy haze formation in BTH is generally associated
with meteorological conditions when the northerly or north-
westerly wind is weak. Once the northerly or northwesterly
wind is strengthened during the haze development in BTH,
afforestation plays a considerable role in maintaining high
PM2.5 concentrations in the downwind of the afforestation
area. Complete afforestation or deforestation in the Taihang
and Yan Mountains would increase or decrease the PM2.5
level within 15 % in BTH.

Additionally, our model results do not support that the pro-
posed large ventilation corridor system is beneficial to alle-
viate the haze pollution in Beijing. Under the unfavorable
synoptic situations, emissions mitigation is the sole optimum
approach to mitigate the haze pollution in BTH.

It is worth noting that, in the present study, contributions
of the surface roughness change induced by afforestation to
the haze pollution are primarily evaluated using the WRF-
CHEM model, but many other factors which directly or in-
directly influence air quality are also modified by the land
cover change, including surface moisture, terrestrial erosion,
pollutants’ dry deposition, planetary boundary layer thermal
stability, etc. For example, changes in surface moisture and
surface erosion impact the emissions of natural particles;
changes in dry deposition directly influence the air quality
in situ and indirectly the air quality downwind with occur-
rence of recirculation. Therefore, when changes in all those
factors caused by land cover change are accounted for, the
role of afforestation in air quality in situ might be uncertain.
In the online WRF-CHEM model, besides the surface rough-
ness, the impacts of afforestation on the heat flux, surface
moisture, surface erosion, and dry deposition of air pollutants
have also been considered. Considering that afforestation in
BTH is mainly distributed in the mountain region, the sur-
face roughness increases induced by afforestation obviously
decrease surface wind speeds, facilitating accumulation of air
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pollutants in the downwind region and further deteriorating
the haze pollution.
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Janjić, Z. I.: Nonsingular implementation of the Mellor–Yamada
level 2.5 scheme in the NCEP Meso model, NCEP office note,
437, 61 pp., 2002.

Li, G., Zhang, R., Fan, J., and Tie, X.: Impacts of black carbon
aerosol on photolysis and ozone, J. Geophys. Res., 110, D23206,
https://doi.org/10.1029/2005JD005898, 2005.

Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S.,
Stevens, P., and Molina, L. T.: Impacts of HONO sources
on the photochemistry in Mexico City during the MCMA-
2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551–6567,
https://doi.org/10.5194/acp-10-6551-2010, 2010.

Li, G., Bei, N., Tie, X., and Molina, L. T.: Aerosol ef-
fects on the photochemistry in Mexico City during MCMA-
2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 5169–
5182, https://doi.org/10.5194/acp-11-5169-2011, 2011a.

Li, G., Zavala, M., Lei, W., Tsimpidi, A. P., Karydis, V.
A., Pandis, S. N., Canagaratna, M. R., and Molina, L.
T.: Simulations of organic aerosol concentrations in Mex-
ico City using the WRF-CHEM model during the MCMA-
2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 3789–
3809, https://doi.org/10.5194/acp-11-3789-2011, 2011b.

Li, G., Lei, W., Bei, N., and Molina, L. T.: Contribution of
garbage burning to chloride and PM2.5 in Mexico City, At-
mos. Chem. Phys., 12, 8751–8761, https://doi.org/10.5194/acp-
12-8751-2012, 2012.

Li, G., Bei, N., Cao, J., Wu, J., Long, X., Feng, T., Dai, W., Liu,
S., Zhang, Q., and Tie, X.: Widespread and persistent ozone pol-
lution in eastern China during the non-winter season of 2015:
observations and source attributions, Atmos. Chem. Phys., 17,
2759–2774, https://doi.org/10.5194/acp-17-2759-2017, 2017.

Li, X., Wang, H., Zhou, S., Sun, B., and Gao, Z.: Did ecological en-
gineering projects have a significant effect on large-scale vegeta-
tion restoration in Beijing-Tianjin Sand Source Region, China?
A remote sensing approach, Chinese Geogr. Sci., 26, 216–228,
2016.

Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-
Rohani, H., AlMazroa, M. A., Amann, M., Anderson, H. R., and
Andrews, K. G.: A comparative risk assessment of burden of
disease and injury attributable to 67 risk factors and risk factor
clusters in 21 regions, 1990–2010: a systematic analysis for the
Global Burden of Disease Study 2010, The lancet, 380, 2224–
2260, 2013.

Liu, J. G., Li, S. X., Ouyang, Z. Y., Tam, C., and Chen, X. D.: Eco-
logical and socioeconomic effects of China’s policies for ecosys-
tem services, P. Natl. Acad. Sci. USA, 105, 9477–9482, 2008.

Ma, J. and Daggupaty S. M.: Stability Dependence of Height Scales
and Effective Roughness Lengths of Momentum and Heat Trans-
fer Over Roughness Changes, Bound.-Lay. Meteorol., 88, 145–
160, 1998.

Mahrt, L.: The bulk aerodynamic formulation over heterogeneous
surfaces, Bound.-Lay. Meteorol., 78, 87–119, 1996.

Mason, P. J.: The formation of area-averaged roughness lengths, Q.
J. Roy. Meteor. Soc., 114, 399-420, 1988.

McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van
Niel, T. G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Ma-
howald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman,

Atmos. Chem. Phys., 18, 10869–10879, 2018 www.atmos-chem-phys.net/18/10869/2018/

https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.5194/acp-6-3181-2006
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1029/2002jd002853
https://doi.org/10.1021/acs.est.6b04835
https://doi.org/10.1029/2005JD005898
https://doi.org/10.5194/acp-10-6551-2010
https://doi.org/10.5194/acp-11-5169-2011
https://doi.org/10.5194/acp-11-3789-2011
https://doi.org/10.5194/acp-12-8751-2012
https://doi.org/10.5194/acp-12-8751-2012
https://doi.org/10.5194/acp-17-2759-2017


X. Long et al.: Effect of afforestation on haze pollution in BTH 10879

S., and Dinpashoh, Y.: Global review and synthesis of trends in
observed terrestrial near-surface wind speeds: Implications for
evaporation, J. Hydrol., 416, 182–205, 2012.

Ministry of Environmental Protection, China (China MEP): Air
Quality Observation Real-time Release Platform of MEP Data
Center, available at: http://106.37.208.233:20035/ (last access:
30 June 2018), 2013a.

Ministry of Environmental Protection, China (China MEP): On-
line Monitoring and Analysis Platform of China Air Quality,
available at: http://www.aqistudy.cn/ (last access: 30 June 2018),
2013b.

Mitchell, K.: The Community Noah Land-Surface Model (LSM),
User’s Guide, Public Release Version 2.7.1, available at:
https://ral.ucar.edu/sites/default/files/public/product-tool/
unified-noah-lsm/Noah_LSM_USERGUIDE_2.7.1.pdf (last
access: 30 June 2018), 2005 (updated 2017).

Mughal, M. O., Lynch, M., Yu, F., Mcgann, B., Sutton, J., and Sut-
ton, J.: Wind modelling, validation and sensitivity study using
Weather Research and Forecasting model in complex terrain, En-
viron. Modell. Softw., 90, 107–125, 2017.

Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new ther-
modynamic equilibrium model for multiphase multicomponent
inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998.

Parungo, F., Li, Z., Li, X., Yang, D., and Harris, J.: Gobi dust storms
and The Great Green Wall, Geophy. Res. Lett., 21, 999–1002,
2013.

Philip, J. R.: Two-dimensional checkerboards and blending heights,
Bound. Lay. Meteorol., 80, 1–18, 1996.

Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S.,
Viovy, N., Cramer, W., Granier, A., Ogee, J., and Allard, V.: Re-
duction of ecosystem productivity and respiration during the Eu-
ropean summer 2003 climate anomaly: a joint flux tower, remote
sensing and modelling analysis, Glob. Change Biol., 13, 634–
651, 2007.

Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng,
H., Ji, D., Li, J., and Tang, X.: Rapid formation and evolution of
an extreme haze episode in Northern China during winter 2015,
Sci. Rep.-UK, 6, 27151, https://doi.org/10.1038/srep27151,
2016.

Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y.,
Tang, Y., and Carmichael, G. R.: Revisiting China’s CO emis-
sions after the Transport and Chemical Evolution over the Pacific
(TRACE-P) mission: Synthesis of inventories, atmospheric mod-
eling, and observations, J. Geophys. Res.-Atmos., 111, D14306,
https://doi.org/10.1029/2006JD007118, 2006.

Tie, X., Zhang, Q., He, H., Cao, J., Han, S., Gao, Y., Li, X., and
Jia, X. C.: A budget analysis of the formation of haze in Beijing,
Atmos. Environ., 100, 25–36, 2015.

Turner, B. L., Lambin, E. F., and Reenberg, A.: The emergence of
land change science for global environmental change and sus-
tainability, P. Natl. Acad. Sci. USA, 104, 20666–20671, 2007.

Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N., and Ciais, P.:
Northern Hemisphere atmospheric stilling partly attributed to an
increase in surface roughness, Nat. Geosci., 3, 756–761, 2010.

Wang, S. and Hao, J.: Air quality management in China: Issues,
challenges, and options, J. Environ. Sci., 24, 2–13, 2012.

Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ.,
23, 1293–1304, 1989.

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-
Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory
from NCAR (FINN): a high resolution global model to estimate
the emissions from open burning, Geosci. Model Dev., 4, 625–
641, https://doi.org/10.5194/gmd-4-625-2011, 2011.

Wieringa, J.: Roughness-dependent geographical interpolation of
surface wind speed averages, Q. J. Roy. Meteorol. Soc., 112,
867–889, 1986.

Wood, N. and Mason, P.: The influence of static stability on the
effective roughness lengths for momentum and heat transfer, Q.
J. Roy. Meteorol. Soc., 117, 1025–1056, 1991.

Wu, J., Zha, J., and Zhao, D.: Evaluating the effects of land use and
cover change on the decrease of surface wind speed over China
in recent 30 years using a statistical downscaling method, Clim.
Dynam., 1–19, 2016a.

Wu, J., Zha, J., and Zhao, D.: Estimating the impact of the changes
in land use and cover on the surface wind speed over the East
China Plain during the period 1980–2011, Clim. Dynam., 46,
847–863, 2016b.

Wu, J., Li, G., Cao, J., Bei, N., Wang, Y., Feng, T., Huang, R.,
Liu, S., Zhang, Q., and Tie, X.: Contributions of trans-boundary
transport to summertime air quality in Beijing, China, Atmos.
Chem. Phys., 17, 2035–2051, https://doi.org/10.5194/acp-17-
2035-2017, 2017.

Wu, W., Shibasaki, R., Ongaro, L., Ongaro, L., Zhou, Q., and Tang,
H.: Validation and comparison of 1 km global land cover prod-
ucts in China, Int. J. Remote Sens., 29, 3769–3785, 2008.

Yang, Y., Xiao, P., Feng, X., and Li, H.: Accuracy assessment
of seven global land cover datasets over China, ISPRS J. Pho-
togramm., 125, 156–173, 2017.

Yin, R. S., Yin, G. P., and Yin, R.: China’s primary programs of
terrestrial ecosystem restoration: initiation, implementation, and
challenges, Environ. Manage., 45, 429–441, 2010.

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H.,
Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen,
D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emis-
sions in 2006 for the NASA INTEX-B mission, Atmos. Chem.
Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009,
2009.

Zhang, X., Huang, T., Zhang, L., Gao, H., Shen, Y., and Ma, J.:
Trends of deposition fluxes and loadings of sulfur dioxide and
nitrogen oxides in the artificial Three Northern Regions Shel-
ter Forest across northern China, Environ. Pollut., 207, 238–247,
2015.

Zhang, X., Du, J., Huang, T., Zhang, L., Gao, H., Zhao, Y., and Ma,
J.: Atmospheric removal of PM2.5 by man-made Three Northern
Regions Shelter Forest in Northern China estimated using satel-
lite retrieved PM2.5 concentration, Sci. Total Environ., 593–594,
713, 2017.

Zhao, X. J., Zhao, P. S., Xu, J., Meng„ W., Pu, W. W., Dong,
F., He, D., and Shi, Q. F.: Analysis of a winter regional haze
event and its formation mechanism in the North China Plain, At-
mos. Chem. Phys., 13, 5685–5696, https://doi.org/10.5194/acp-
13-5685-2013, 2013.

www.atmos-chem-phys.net/18/10869/2018/ Atmos. Chem. Phys., 18, 10869–10879, 2018

http://106.37.208.233:20035/
http://www.aqistudy.cn/
https://ral.ucar.edu/sites/default/files/public/product-tool/unified-noah-lsm/Noah_LSM_USERGUIDE_2.7.1.pdf
https://ral.ucar.edu/sites/default/files/public/product-tool/unified-noah-lsm/Noah_LSM_USERGUIDE_2.7.1.pdf
https://doi.org/10.1038/srep27151
https://doi.org/10.1029/2006JD007118
https://doi.org/10.5194/gmd-4-625-2011
https://doi.org/10.5194/acp-17-2035-2017
https://doi.org/10.5194/acp-17-2035-2017
https://doi.org/10.5194/acp-9-5131-2009
https://doi.org/10.5194/acp-13-5685-2013
https://doi.org/10.5194/acp-13-5685-2013

	Abstract
	Introduction
	Data, model, and methodology
	MODIS data
	WRF-CHEM model and configurations
	MCD12Q1 data assimilation to the WRF-CHEM model

	Results and discussions
	Land cover change in BTH
	Model performance
	Effect of afforestation on haze pollution in BTH

	Summary and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

