

Supplement of

Simulation of atmospheric organic aerosol using its volatility–oxygen-content distribution during the PEGASOS 2012 campaign

Eleni Karnezi et al.

Correspondence to: Spyros Pandis (spyros@chemeng.upatras.gr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Equations for metrics

Fractional Error =
$$\frac{2}{n} \sum_{i=1}^{n} \frac{|P_i - M_i|}{(P_i + M_i)}$$

Fractional Bias =
$$\frac{2}{n} \sum_{i=1}^{n} \frac{(P_i - M_i)}{(P_i + M_i)}$$

Absolute Error =
$$\frac{1}{n} \sum_{i=1}^{n} |P_i - M_i|$$

Absolute Bias =
$$\frac{1}{n} \sum_{i=1}^{n} (P_i - M_i)$$

Root Mean Square Error =
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n} (P_i - M_i)^2}$$

where P_i represents the model prediction value, M_i is the corresponding measured value from the ground or above the site with the Zeppelin measurements and n is the total number of data points.

Table S1. Performance of simulations with various vaporization enthalpies for the 1-bin

 parameterization during PEGASOS campaign for O:C measurements at the ground.

Simulation	Measured Average	Predicted Average	Fractional Error	Fractional Bias	Absolute Error	Absolute Bias
1-bin with ∆H _{vap} = 30 kJ mol ⁻¹	0.58	0.64	0.14	0.10	0.09	0.06
1-bin with $\Delta H_{vap} = 75$ kJ mol ⁻¹		0.62	0.12	0.07	0.07	0.04
1-bin with ΔH _{vap} =150 kJ mol ⁻¹		0.59	0.11	0.02	0.06	0.007

Figure S1. The path that the Zeppelin followed during one representative day (July 4, 2012), over the Po Valley in Italy.

Figure S2. Average O:C-volatility distribution of OA mass concentration on San Pietro Capofiume using (a) the simple scheme (1-bin), (b) the two-bin shift simple scheme (2-bin) and (c) the detailed functionalization scheme (DET).

Figure S3. Predicted contribution of (a) ASOA-v, (b) bSOA, (c) SOA from oxidation of intermediate volatility organic compounds (SOA-iv), (d) FPOA, (e) SOA from oxidation of evaporated POA, and (f) OA from long range transport for the seven best performed aging parameterizations: simple functionalization (1-bin), simple functionalization with bSOA aging and b=0.15 (1-bin/bSOA/b=0.15), 2-bin functionalization (2-bin), 2-bin functionalization and b=0.1 (2-bin/b=0.1), 2-bin functionalization with bSOA aging and b=0.4 (2-bin/bSOA/b=0.4), (e) detailed functionalization scheme with b=0.3 (DET/b=0.3) and detailed functionalization with bSOA aging and b=0.7 (DET/bSOA/b=0.7).

Figure S4. Average diurnal profile at the ground for POA concentration using various parameterizations (with the colored lines) and average diurnal HOA concentration from the PMF-AMS measurements with the red symbols.

Figure S5. Estimation of optimum branching ratio (fragmentation probability) for fragmentation for the: (a) simple functionalization (1-bin), (b) simple functionalization with bSOA aging (1-bin/bSOA), (c) 2-bin functionalization (2-bin), (d) 2-bin functionalization with bSOA aging (2-bin/bSOA), (e) detailed functionalization scheme (DET) and (f) detailed functionalization with bSOA aging (DET/bSOA). The red line shows the minimum absolute error. Note that for the first case of 1-bin parameterization the optimum is at b=0.

Figure S6. Averaged vertical profiles for (a) O:C ratio and (b) OA mass concentration using various parameterizations.