

Supplement of

Modeling intercontinental transport of ozone in North America with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII) Phase 3

Uarporn Nopmongcol et al.

Correspondence to: Uarporn Nopmongcol (unopmongcol@ramboll.com)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

	W	RF			CAMx				
Layer	Pressure mb)	Height (m)	Depth (m)	Layer	Pressure (mb)	Height (m)	Depth (m)		
35	50	19260.0	3397						
24	07.5	159(2.2	2222	20	07.5	15973	2222	O3C ,	
34	97.5	15863.2	2200	26 25	97.5	15863	2233	U3F	
33 22	145	13630.3	1/01	25	145	13630	1/01		
32	192.5	11929.7	1389	24	192.5	11930	1389	O3B .	
31	240	10541.2	1181	23	240	10541	1181	O3E	
30	287.5	9360.1	1032	22	287.5	9360	1032		
29	335	8327.8	920	21	335	8328	920		
28	382.5	7407.9	832	20	382.5	7408	1592		
27	430	6576.3	760						
26	477.5	5816.1	701	19	477.5	5816	1353		
25	525	5114.9	652						
24	572.5	4463.3	609	18	572.5	4463	1182		
23	620	3854.1	573						
22	667.5	3281.6	540	17	667.5	3282	952		
21	715	2741.1	412						
20	753	2220 4	200	16	753	2220	507	03A,	
20 10	791 5	2021.4	290	10	155	2329	50/	050	
19	/81.5	2031.4	289	15	010	1740	252		
10	810	1/42.2	100	15	810	1/42	5/5		
1/	829	1353.9	185	14	040	12(0	2(0		
10	040	1309.1	162	14	040	1309	300		
15	807	1187.5	178	12	997	1000	175		
14	880	1009.2	1/5	13	880	1009	1/5		
13	905	834.0	8/	12	905	834	8/ 171		
12	914.5	747.5	80	11	914.5	/4/	1/1		
11	924	001./	83 94	10	022.5	577	94		
10	955.5	570.0 402.3	04	10	955.5	577	04 94		
9	943	492.5	04 92	9	943	492	04 92		
0 7	952.5	408.0	03 03	0 7	952.5	409	03 92		
	902	525.0 243.2	04 82	1	902	320 243	02 82		
0	9/1.5	243.2	04 41	0 5	9/1.5	243 162	02 41		
5	981 095 75	101.5	41	5	981 005 75	102	41		
4	985./5	120.9	40	4	985./5	121	40		
3	990.5 005 25	ðu.4 40.1	40	3	990.3 005-35	ðU 40	40		
2	995.25	40.1	20	1	993.23 007.625	40	20		
1	997.625	20.1	20	1	yy7.625	20	20		
0	1000	0.0		U	1000	0	0		

Table S1. Definition of WRF 35 vertical levels and mapping to the 26 vertical layers used in CAMx. Heights (m) are geopotential heights above ground level. RTCMC aggregates O_3 boundary contributions from layers 1 to 16 (O3A; O3D), 17-23 (O3B; O3E), and 24-26 (O3C; O3F)

Table S2. RTCMC input file for an active (A) and inert (D) tracer groups. Here tracer group A tracks boundary contributions from the lowest 16 layers. HOXA and O1DA are additional species added to track chemical destruction of O3A. An inert tracer O3D needs to be listed in the input file even though it does not undergo any chemical reaction. Other active (B,C) and inert (E,F) tracer groups have similar expressions.

#Equation	; Rate	constants	from	CB05
-----------	--------	-----------	------	------

001 [O3A] -> [O1DA]	; 0 0.000E+00 0.0000E+00
002 [O1DA] -> [O3A]	; 5 1.260E-09 1.0200E+02
003 [O1DA] ->	;15 1.320E-08 0.0000E+00
004 [O3A] + [OH] -> [HOXA]	; 2 1.020E-10 -9.4000E+02
005 [O3A] + [HO2] -> [HOXA]	; 2 6.000E-13 -4.9000E+02
006 [HOXA] + [NO] -> [O3A]	; 2 2.100E-10 2.5000E+02
007 [HOXA] + [HO2] ->	;19 1.380E-11 6.00E+02 1.020E-31 1.00E+03
008 [HOXA] + [HO2] ->	; 20 1.932E-32 2.80E+03 1.428E-52 3.20E+03
009 [HOXA] + [MEO2] ->	; 2 2.460E-11 7.50E+02
010 [HOXA] + [XO2] ->	; 2 4.500E-11 7.0000E+02
011 [HOXA] + [XO2N] ->	; 2 4.500E-11 7.0000E+02
012 [HOXA] + [C2O3] -> (0.2) [O3A]	; 2 2.58E-11 1.0400E+03
013 [HOXA] + [CXO3] -> (0.2) [O3A]	; 2 2.58E-11 1.0400E+03
014 [O3A] + [ISOP] ->	; 2 4.716E-13 -1.9120E+03
015 [O3A] + [TERP] ->	; 2 7.2E-14 -8.2100E+02
046 [O3D] ->	; 1 0.0

Table S3. Model performance statistics for MDA8 O₃ for CAMx basecase (no cutoff).

Major City	AQS ID	#Obs	Model Mean (ppb)	NMB (%)	NME (%)	FB (%)	FE (%)	r	RMSE
Atlanta, GA	131210055	242	52.7	4.2	17.6	4.7	18.3	0.71	11.15
Birmingham, AL	10732006	232	51.7	5.2	18.1	6.4	18.9	0.63	11.27
Boise, ID	160010017	166	48.1	-6.0	11.6	-5.7	11.9	0.60	7.50
Boston, MA	440090007	208	50.3	7.8	15.1	8.3	15.3	0.76	8.86
Chicago, IL	550590019	220	47.3	-2.8	13.1	-2.5	13.5	0.78	8.41
Cincinnati, OH	390610006	212	52.9	1.0	13.1	1.2	14.1	0.77	9.34
Columbus, OH	390490029	211	51.3	-1.7	12.5	-1.5	13.7	0.76	8.47
Dallas, TX	484392003	354	42.8	-3.0	17.0	-3.9	18.7	0.80	9.24
Denver, CO	80350004	344	48.7	-0.4	14.3	0.7	15.1	0.68	9.47
Detroit, MI	261630019	167	47.1	-5.4	14.3	-4.5	15.2	0.76	8.93
Houston, TX	480391004	353	45.2	7.9	21.1	10.4	21.4	0.68	12.17
Kansas City, KS	290490001	214	51.3	4.3	13.7	5.0	13.7	0.74	8.51
Los Angeles, CA Minneapolis,	60710005	358	56.6	-3.3	12.5	-3.5	12.9	0.88	9.65
MN	270031002	339	35.2	-8.3	20.6	-11	23.7	0.67	9.75
New York, NY	340290006	257	51.6	6.5	15.2	7.9	16.3	0.82	9.65
Philadelphia, PA	421010024	362	43.4	-2.5	14.4	-2.7	16	0.88	8.16
Phoenix, AZ	40131004	363	43.9	-11.9	15.2	-12.6	16.7	0.84	9.97
Pittsburgh, PA	420031005	356	46.3	8.8	16.2	9.0	16.8	0.85	9.15
Sacramento, CA	60670012	338	46.0	-0.6	13.1	2.8	15.2	0.88	8.16
Salt Lake, UT	490110004	152	52.3	3.0	12.7	3.5	12.6	0.56	8.46

St. Louis, MO	291831002	214	53.4	2.7	12.9	3.5	12.8	0.80	8.40
Baltimore, MD	240251001	189	57.9	1.8	12.9	3.5	14.3	0.86	9.37

Table S4. Model performance statistics for MDA8 O3 with 40 ppb cutoff for CAMx basecase										
Major City	AQS ID	#Obs	Model Mean (ppb)	NMB (%)	NME (%)	FB (%)	FE (%)	r	RMSE	
Atlanta, GA	131210055	184	56.8	0.44	15.4	-0.8	15.8	0.60	11.08	
Birmingham, AL	10732006	172	55.0	0.05	14.77	-0.4	15.1	0.48	10.67	
Boise, ID	160010017	147	49.02	-7.53	11.54	-7.7	11.9	0.48	7.69	
Boston, MA	440090007	148	53.7	3.48	12.57	2.8	12.5	0.70	8.39	
Chicago, IL	550590019	159	51.0	-5.68	13.16	-6.6	13.9	0.71	9.21	
Cincinnati, OH	390610006	174	56.1	-1.31	11.38	-2.2	11.9	0.74	8.50	
Columbus, OH	390490029	179	53.6	-3.75	11.03	-4.6	11.8	0.75	7.94	
Dallas, TX	484392003	197	50.6	-5.85	14.95	-7.7	16.3	0.73	9.93	
Denver, CO	80350004	264	51.7	-4.35	11.76	-4.7	11.9	0.62	8.47	
Detroit, MI	261630019	131	50.2	-7.85	13.07	-8.2	13.6	0.69	8.88	
Houston, TX	480391004	183	51.3	-4.03	13.51	-3.9	13.3	0.66	10.09	
Kansas City, KS	290490001	164	54.3	1.56	12.26	1.7	12.1	0.65	8.38	
Los Angeles, CA Minneapolis,	60710005	300	60.5	-3.92	12.37	-4.7	12.8	0.86	10.22	
MN	270031002	143	43.0	-11.48	17.8	-13.9	20.1	0.36	11.01	
New York, NY	340290006	176	57.0	1.11	11.16	0.5	11.3	0.77	8.48	
Philadelphia, PA	421010024	202	53.5	-4.83	12.17	-6.2	13.3	0.81	8.75	
Phoenix, AZ	40131004	263	49.5	-13.06	15.29	-14.9	17	0.68	11.17	
Pittsburgh, PA	420031005	189	56.3	4.6	11.93	3.8	11.9	0.78	8.39	
Sacramento, CA	60670012	208	53.6	-4.24	11.33	-3.9	11.6	0.81	8.38	
Salt Lake, UT	490110004	134	53.0	0.69	11.2	1	11.1	0.55	7.57	
St. Louis, MO	291831002	176	56.0	0.64	11.98	0.8	11.9	0.74	8.43	
Baltimore, MD	240251001	156	61.7	-1.25	10.68	-1.6	11	0.83	8.53	

Figure S1. Circles represent 22 cities analysed in this study covering a wide variety of climatic and geographic environments. We chose their representative AQS monitoring site based on the monitoring site with highest H4MDA8 in the metropolitan statistical area.

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S2a. Spatial map of CAMx correlation coefficient for MDA8 O3 with 40 ppb cutoff in spring

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S2b. Spatial map of CAMx NMB for MDA8 O3 with 40 ppb cutoff in spring

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S3a. Spatial map of CAMx correlation coefficnet for MDA8 O_3 with 40 ppb cutoff in summer

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S3b. Spatial map of CAMx NMB for MDA8 O₃ with 40 ppb cutoff in summer

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S3c. Spatial map of CAMx NME for MDA8 O3 with 40 ppb cutoff in summer

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S4a. Spatial map of CAMx correlation coefficient for MDA8 O3 with 40 ppb cutoff in fall

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S4b. Spatial map of CAMx NMB for MDA8 O3 with 40 ppb cutoff in fall

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S5a. Spatial map of CAMx correlation coefficient for MDA8 O3 with 40 ppb cutoff in winter

CIRCLE=AQS_O3_DAILY; TRIANGLE=CASTNET_DAILY;

Figure S5c. Spatial map of CAMx NME for MDA8 O₃ with 40 ppb cutoff in winter

Figure S6. Vertical distribution of O3 at Trinidad Head (March-August 2010) up to 16 km

Figure S7. Same as Figure S5 but up to 10 km.

Figure S8. Quantile-quantile(Q-Q) plots of MDA8 O3 at major US cities. Q-Q plots represent the sorted values of observed and modeled concentrations and are useful for model evaluation providing extra details such as overestimation and/or underestimation of high and low concentrations. A Q-Q plot of perfect model performance would show data pairs along the 1:1 line.

Figure S9. The difference in seasonal average daily maximum 8-hour O_3 contribution from BCs inert and active O_3 tracers, i.e., inert minus active, at layers below 750 mb.

Figure S10. The difference in seasonal average daily maximum 8-hour O_3 contribution from BCs inert and active O_3 tracers, i.e., inert minus active, at layers between 240-750 mb.

Figure S11. The difference in seasonal average daily maximum 8-hour O_3 contribution from BCs inert and active O_3 tracers, i.e., inert minus active, at layers above 240 mb.