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Abstract. The discontinuous spatio-temporal sampling of
observations has an impact when using them to construct cli-
matologies or evaluate models. Here we provide estimates of
this so-called representation error for a range of timescales
and length scales (semi-annually down to sub-daily, 300 to
50 km) and show that even after substantial averaging of data
significant representation errors may remain, larger than typ-
ical measurement errors. Our study considers a variety of
observations: ground-site or in situ remote sensing (PM2.5,
black carbon mass or number concentrations), satellite re-
mote sensing with imagers or lidar (extinction). We show that
observational coverage (a measure of how dense the spatio-
temporal sampling of the observations is) is not an effec-
tive metric to limit representation errors. Different strategies
to construct monthly gridded satellite L3 data are assessed
and temporal averaging of spatially aggregated observations
(super-observations) is found to be the best, although it still
allows for significant representation errors. However, tempo-
ral collocation of data (possible when observations are com-
pared to model data or other observations), combined with
temporal averaging, can be very effective at reducing repre-
sentation errors. We also show that ground-based and wide-
swath imager satellite remote sensing data give rise to sim-
ilar representation errors, although their observational sam-
pling is different. Finally, emission sources and orography
can lead to representation errors that are very hard to reduce,
even with substantial temporal averaging.

1 Introduction

The intermittent temporal sampling and limited field of view
of observations reduce the representativeness of these ob-
servations for the actual weather or climate system they are
intended to explore (Nappo et al., 1982). Yet relatively lit-
tle work has been done on estimating these sampling im-
pacts and how to mitigate them. At the root of this issue
lies the spatio-temporal variability of the natural system, but
the large variety in sampling strategies of observing systems
adds significantly to the complexity of the problem. A rep-
resentation error can be used to describe the ability of mea-
surements to represent a larger area over an arbitrary (but
specified) length of time. If the observations are used to eval-
uate models, these represented areas would coincide with the
model’s grid boxes.

Hakuba et al. (2014a, b) studied the spatial representative-
ness of ground sites for solar surface radiation measurements
and Bulgin et al. (2016) parametrised the spatial sampling
uncertainty in gridded SST (sea surface temperature) mea-
surements (cloud-masked) from satellites. Climate statistics
were shown to differ between point data and gridded data in
theoretical studies by Cavanaugh and Shen (2015) and Di-
rector and Bornn (2015). Sampling issues in trace gas mea-
surements from either satellites or ground networks have
been studied by Sofieva et al. (2014), Coldewey-Egbers et al.
(2015), Lin et al. (2015) and Boersma et al. (2016). Recently,
Diedrich et al. (2016) studied the impact of cloud-masking in
water vapour measurements from satellite and found a 25 %
lower monthly global mean water-vapour path.
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In this paper, we will focus on aerosol but our results can
be expected to have wider implications. Since the landmark
study by Anderson et al. (2003), we know aerosol varies over
hours and tens of kilometres; see also Kovacs (2006), San-
tese et al. (2007), Shinozuka and Redemann (2011), Schut-
gens et al. (2013) and Weigum et al. (2016). Aerosol studies
are likely to show a very clear impact from spatio-temporal
sampling.

Kaufman et al. (2000), Smirnov (2002) and Remer et al.
(2006) attempted to assess the impact of diurnal cycles on
the representativeness of satellite observations for daily av-
erages. Similarly, Sayer et al. (2010) and Geogdzhayev et al.
(2014) estimated the impact of satellite sampling on monthly
and yearly regional averages. These studies showed that sig-
nificant differences might result from temporal sampling
alone. Levy et al. (2009) studied different algorithms to cre-
ate monthly MODIS (Moderate Resolution Imaging Spectro-
radiometer) gridded data (so-called L3) and showed that
large differences might result. A major issue for Levy et al.
(2009) was the absence of an objective truth.

The term representation error (or representativity or repre-
sentativeness error) is often used in data assimilation where a
growing body of research exists, e.g. Desroziers et al. (2005),
Waller et al. (2014, 2016), Hodyss and Nichols (2015) and
van Leeuwen (2015). In data assimilation the representation
error concerns very short timescales: observations are com-
pared against model data at specific times. In this paper we
are also interested in representation errors after averaging
over months or even years. Conceptually, representation er-
rors in data assimilation have evolved to include model errors
due to poorly represented sub-grid processes. In this paper,
we are only concerned with the spatio-temporal representa-
tiveness of observations.

In two recent studies, we explored temporal and spatial
sampling issues using aerosol models as a truth. In Schut-
gens et al. (2016a) (henceforth S16a) spatial sampling issues
(when evaluating global models with grid boxes of a few
hundred kilometres) were explored on timescales of hours
to a month using high-resolution model data. S16a is a study
of representation errors for continuously measuring (in situ)
ground sites or incidental flight campaigns. It shows that dif-
ferent observations can lead to very different representation
errors. It includes sensitivity studies for various strategies in
comparing a global model to the observations. In Schutgens
et al. (2016b) (henceforth S16b) temporal sampling issues
are explored on timescales of days to a year using global
model data and real remote sensing datasets. S16b compares
representation errors to actual model errors and finds them to
be of similar magnitude. It shows that models compare bet-
ter with real observations after temporal collocation. Also,
it finds that the representation errors for visual remote sens-
ing data depend on longitude when using daily model data.
Both intensive (e.g. single scattering albedo) and extensive
(e.g. aerosol optical depth) observables suffer from represen-
tativeness issues.

In S16a, we assumed that observations were made contin-
uously in time, while in S16b we assumed that those global
model data and observations had the same spatial extent (the
model’s grid box). Both assumptions are idealistic and lim-
ited our analysis. In the current paper, we will study the com-
bined impact of spatio-temporal sampling on representation
errors for a wide variety of observing systems (ground-site
in situ, ground-site passive, satellite passive and active re-
mote sensing) on a range of timescales from hourly to semi-
annually. This allows us to study, for example, sampling is-
sues in satellite L3 data or the magnitude of remaining repre-
sentation errors after temporal collocation. It also allows us
to elucidate the interplay of spatial and temporal sampling in
creating representation errors.

Section 2 describes the high-resolution model data and
how they were used to create simulated observations. Sec-
tion 3 explains how representation errors are calculated
from these data. Results for semi-annual averages (Sect. 4),
monthly averages (Sect. 5), daily averages (Sect. 6) and sub-
daily data (Sect. 7) follow. The impact of precipitation on
sampling issues is discussed in Sect. 8. An overview of the
lessons learned for different observing systems is given in
Sect. 9, and the paper concludes with a summary (Sect. 10)

Note that Sect. 3.2 contains some general guidelines to in-
terpreting many of the figures and statistics that appear in this
paper.

2 The regional models and simulated observables

The same simulations as in S16a are used in the current
study, and for details we refer the reader to that paper.
Briefly, the models WRF-Chem (Grell et al., 2005; Fast et al.,
2006), EMEP/MSC-W (Simpson et al., 2012) and NICAM-
SPRINTARS (see Goto et al., 2015, and references therein)
were used to simulate common observables (aerosol optical
thickness, extinction, PM2.5, black carbon (BC) mass con-
centration, number densities and cloud condensation nuclei)
on a 10 km grid with hourly resolution (snapshots, only pre-
cipitation data are accumulated). All models nudged wind
speeds to reanalysis meteorology and used emissions with
diurnal profiles where relevant. Figure 1 shows the simula-
tion regions, and Table 1 summarises the most important in-
formation on these simulations.

As precipitation is potentially a major cause of spatio-
temporal variability in aerosol, we evaluated the models
against GPCP (Global Precipitation Climatology Project,
Adler et al., 2003; Huffman et al., 2009) 1◦ daily combina-
tion v1.2 data (Huffman et al., 2001; see also http://precip.
gsfc.nasa.gov/gpcp_daily_comb.html). Histograms of daily
precipitation in the models compare quite well to these ob-
servations; see Fig. 2). At higher daily precipitation, there
is quite a bit of statistical noise due to the low number of
cases, as can be seen by comparing the observation over the
“W-Europe” and “Europe” regions. The most notable differ-
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Table 1. Simulations analysed in this study.

Region Size (km2) Period Model Scheme Comments

W-Europe 1280× 1280 May 2008 WRF-Chem MADE 2-moments modal
Oklahoma 1190× 1190 March 2007 WRF-Chem MADE 2-moments modal
Congo 2090× 2090 March 2007 WRF-Chem MADE 2-moments modal
Ocean 1270× 1270 March 2007 WRF-Chem GOCART mass bulk
Europe 4000× 3100 January–June 2008 EMEP mass bulk
Japan 1500× 1250 August 2007 NICAM SPRINTARS mass bulk

 

Europe

EMEP

W Europe
MADEOklahoma

MADE

Congo

MADE

Ocean

GOCART

Japan

SPRINTARS

Figure 1. Three models were used in this study to simulate a variety
of aerosol fields. The regional names used to identify these simula-
tions are given in large font, while the models are denoted in small
font. MADE and GOCART refer to the WRF-Chem version used.

ences from the observations are found for “Congo”, where
the model tends to overestimate precipitation, as well as
“Ocean” and “Japan”, where the models tend to underesti-
mate low-precipitation cases.

The simulated fields examined in this paper are, for ob-
vious reasons, all observables; see Table 2. All of the mod-
els provided AOT (aerosol optical thickness), AE (Ångström
exponent), SSA (single scattering albedo), extinction and
(dry) PM2.5, although WRF-Chem calculates AOT and ex-
tinction for 600 nm and EMEP and NICAM-SPRINTARS
for 550 nm. WRF-Chem MADE provided CCN (Cloud Con-
densation Nuclei) at varying degrees of super-saturation S.
Converting WRF-Chem output into observables of black car-
bon concentration or number densities (N10 and N50, num-
ber densities for particles with diameters exceeding 10 and
50 nm, respectively) required some further assumptions that
are detailed in S16a.

The spatio-temporal sampling of real observations is deter-
mined by their operational parameters and by adverse condi-
tions. For simplicity’s sake, we created a number of idealised
scenarios for different observing systems. Additional model
information such as local times, cloud fraction and precipi-

tation were used to create spatio-temporal samplings for the
observations.

Ground-site in situ measurements are assumed to occur at
all times, irrespective of conditions but constrained by oper-
ational parameters, e.g. IMPROVE (Interagency Monitoring
of Protected Visual Environments) measures only a full day
every 3 days. Note that this is a best-case scenario and most
ground sites will suffer downtime due to maintenance or mal-
function. In particular we assume that these measurements
will occur irrespective of precipitation since this usually does
not prevent measurements. Obviously, in situ ground sites
only observe a small part (here 10 by 10 km) of the atmo-
sphere near the surface.

Ground-site remote sensing observations of AOT will oc-
cur during the daylight portion of each day (here 10 h strad-
dling local noon), provided there are no clouds. These ground
sites will observe only a small portion (10 × 10 km) of an at-
mospheric column. Again, downtime due to maintenance or
malfunction is not considered.

Passive satellite measurements (imager data) on polar-
orbiting satellites are assumed to occur once a day at lo-
cal noon, provided there are no clouds. Imagers will have
swaths wide enough to allow aggregation of individual mea-
surements over the represented area. Due to its orbital param-
eters and swath width, these satellites will have repeat cycles
of 1, 2, 4 or 8 days. Imagers on geostationary satellites allow
measurements during the daylight portion of each day (10 h
straddling local noon).

Satellite lidar (light detection and ranging) measurements
observe a narrow north–south transect (see also S16a) within
the represented area once a day at local noon with a repeat
cycle of 12 days. CALIOP (Cloud-Aerosol lidar with Or-
thogonal Polarization) has a repeat cycle of 16 days, but al-
lowing the lidar swath to revisit different parts of the same
210× 210 km2 area brings the typical cycle down to about
12 days. As we do not consider measurement errors, it mat-
ters little if the lidar measurement is made during the day or
night. Downtime due to malfunction is not considered.

3 Simulating observational data and the truth

This section briefly describes the main methodology used in
this paper. The high-resolution regional model data v can be
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Figure 2. Comparison of observed (GPCP) and modelled daily 1◦× 1◦ precipitation for specific months. The blue line represents the model
data (see Table 1), the red line the observations for individual years (2000–2010).

Table 2. Simulated observables.

AOT AE SSA extinction PM2.5 BC conc. N10, N50 CCN

WRF-Chem MADE X X X X X X X X
WRF-Chem GOCART X X X X X
EMEP X X X X X X
NICAM-SPRINTARS X X X X X X

thought of as 3-dimensional data cube vxyt (either a column
or layer property) where x = 1. . .nx and y = 1. . .ny are in-
dices to the horizontal coordinates, and t = 1. . .nt is an in-
dex to the time coordinate. As the model data has been trans-
formed to a regular grid, equations can conveniently be writ-
ten down with references to indices only. Using this data cube
vxyz, we will generate both a truth (an average over a wider
area that is to be represented) and a sampled but otherwise
noiseless (i.e. without measurement error) observation.

At a single time, the truth for a represented area can be
written as

Txyt =
1

(2Lx + 1)
(
2Ly + 1

) +Lx∑
i=−Lx

+Ly∑
j=−Ly

vx+i;y+j ;t , (1)

where Lx and Ly define the half-lengths of the represented
area. A time average of this is given by

T xyt =
1

2Lt + 1

+Lt∑
k=−Lt

Tx;y;t+k, (2)

where (2Lt + 1) defines the averaging period. Note that a
capital variable name denotes a spatial average and an over-
bar a temporal average.

In a very similar way, a spatio-temporal average of the ob-
servations may be written as
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Oxyt =

 +lt∑
k=−lt

+lx∑
i=−lx

+ly∑
j=−ly

fx+i;y+j ;t+k

−1

(3)

×

+lt∑
k=−lt

+lx∑
i=−lx

+ly∑
j=−ly

fx+i;y+j ;t+k vx+i;y+j ;t+k,

where lx, ly and lt serve a similar purpose to Lx,Ly and Lt .
The observational sampling fxyt is defined as follows:

fxyt =

{
0 if no observation present at x,y, t

1 if observation present at x,y, t.
(4)

Note that this is a very general formulation that can be used
to simulate both individual ground sites and satellite mea-
surements.

The relative spatio-temporal representation error in an ob-
servation for arbitrary timescales and length scales is now
given by

εxyt =
(
Oxyt − T xyt

)
/T xyt . (5)

When observations are used to evaluate models, it is pos-
sible to temporally collocate model data with observations.
We simulate this by constructing T xyt from a sub-sampled
number of Txyt and the resulting error will be called “repre-
sentation error with collocation”.

Note that it is possible to aggregate observations spatially
before temporally averaging them:

Oxyt =

 +lx∑
i=−lx

+ly∑
j=−ly

fx+i;y+j ;t

−1

(6)

×

+lx∑
i=−lx

+ly∑
j=−ly

fx+i;y+j ;t vx+i;y+j ;t .

This is sometimes called super-obbing and the resulting data
super-observations. Temporal averages can then be generated
from

Oxyt =

(
+lt∑
k=−lt

Gxy;t+k

)−1
+lt∑
k=−lt

Gxy;t+kOxy;t+k , (7)

where Gxyt defines a sampling, much like fxyt . While fxyt
will depend on retrieval conditions (e.g. cloudy or not),Gxyt
is an arbitrary choice (whether to accept a given Oxyt as
a valid super-observation). The resulting Oxyt in Eq. (7) is
similar to many L3 products for satellite imagers.

Actually, the two expressions for Oxyt may be related to
alternative averages that were proposed by Levy et al. (2009)
for satellite L3 products. Their “Pixel Weighting” procedure
corresponds to Eq. (3), while procedures “Equal Day Weight-
ing” and “Threshold Equal Day Weighting” correspond to

Eq. (7). The difference between the latter two is in the con-
struction ofGxyt (requiring a minimum number of pixels for
a valid super-observation or not).

To conclude, we introduce three metrics of the abundance
of measurements that go intoO, as this will affect how well it
compares to the truth. The spatial coverage of a single super-
observation is

c
spat
xyt =

1
(2lx + 1)×

(
2ly + 1

) (8)

×

+lx∑
i=−lx

+ly∑
j=−ly

fx+i;y+j ;t .

The temporal coverage of a time-averaged super-observation
is defined differently because many observations are not
made continuously but are nevertheless made regularly in
time (e.g. satellite overpass times):

c
temp
xyt =

+lt∑
k=−lt

Gxy,t+k/

+lt∑
k=−lt

G∗xy,t+k, (9)

whereG∗ is a sampling entirely defined by the observational
cycle of the observing system. This includes orbital and day-
light constraints but not cloudiness. Note that in real life,
these coverages are known and can be used to select observa-
tions, e.g. only aggregated satellite data with a required mini-
mum spatial coverage will be used to compare against model
results, or only ground sites with a required minimum tem-
poral coverage will be used to construct monthly averages.
(Henceforth we will refer to required coverage and drop the
word “minimum”).

Each data cube vxyt will allow us to generate nT cases
of the truth T xyt , because the simulated regions are much
larger than the represented areas. The number nO of possible
Oxyt cases will be fewer, depending on both fxyt and Gxyt .
This leads to the definition of a case coverage nO/nT . Ideally
the case coverage is 100 %, which is possible even if fxyt
and Gxyt are not always 1 and indicates there are sufficient
observations to construct valid Oxyt anywhere and anytime.

As explained in S16a, the first 2 days of the high-
resolution simulations and the outer part of the spatial do-
main were excluded from analysis to prevent boundary ef-
fects impacting our results.

3.1 Some terminology

Representation error will refer to the representativeness of an
observation (possibly aggregated over an area and averaged
over a time period) in describing the natural system. If ob-
servations are used to evaluate temporally collocated model
data, we will refer to a representation error with collocation.
We will consider two collocation methodologies: to the hour
or to the day. In the first case, hourly model data is tempo-
rally collocated to the hour of the observation. In the second
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case, daily model data is collocated to the day of the obser-
vation (and the observation itself is a daily average, to the
extent that is possible).

3.2 Common characteristics of the figures in this paper

This paper contains many figures of representation error dis-
tributions. Instead of repeating the same information in each
caption, some aspects of those figures are explained here. We
use the so-called parametric seven-number summary of the
2, 9, 25, 75, 91 and 98 % quantiles q of the errors because,
for a normal distribution, these quantiles will be equally
spaced. Any skewness or extended wings in a distribution
will be readily visible. In addition to quantiles, we will pro-
vide RMSD (root mean square difference) and RMSE (root
mean square error, essentially RMSD after removing any
bias).

3.3 Figures with grey shading

In Fig. 5 different shades of grey are used to denote these
inter-quantile ranges: light grey for q98− q2, medium grey
for the q91− q9 and dark grey for q75− q25. The solid blue
line represents the median error.

3.4 Figures with box whiskers

In Fig. 6, box-whisker plots are shown of the error distri-
butions for each of the regions. Different widths of the bars
are used to denote different inter-quantile ranges: narrow for
q98− q2, medium for q91− q9 and wide for q75− q25. The
black rectangle represents the median error and the black cir-
cle the mean error. On top of each bar, the RMSD is shown.
The colours of the bars refer to different experiments and are
explained in the caption of each separate figure. If a required
spatial or temporal coverage was used, this will be shown in
the lower left and right corners of the figure. Case coverages
per region are shown just above the region names.

In Fig. 9 error distributions for two different experiments
are shown side by side (much like a violin plot), for each
region and usually as a function of an independent parameter
(e.g. represented area size in this example). The values above
each box whisker is the ratio of the right error distribution’s
RMSD to that of the left one.

3.5 Figures with line graphs

A very different figure is Fig. 8 where error statistics are sum-
marised as a function of required spatial or temporal cov-
erage. The coloured lines represent RMSE (solid) and bias
(dashed) using the left-hand axis. The colours are identical to
the ones used in the box-whisker plots to help identify dif-
ferent experiments. The black lines use the right-hand axis
and denote the case coverage (solid), and achieved spatial
(dashed) and temporal (dotted) coverage. The latter have of
course been averaged over all relevant cases.

(a)

(b)

Figure 3. Relative representation errors in AOT and surface BC
concentrations in 6-month averages. The black dots show the
locations of major ACTRIS measurement sites. Results for a
10× 10 km2 observation against a 210× 210 km2 area.

4 Representativeness of semi-annual data

Only the EMEP simulation, Table 1, allows us to explore
sampling issues in semi-annual data, assuming ground sites
representing an area of 210× 210 km2. Figure 3 shows rela-
tive representation errors in AOT and surface BC mass con-
centrations. The surface BC measurements are continuous
through the 6 months while the AOT measurements are only
made during day-time and cloud-free conditions; see Sect. 2.

Representation errors in surface BC measurements are
clearly related to emissions sources (notice major cities such
as Paris and Madrid) and orography (notice the Alps, the
Apennines and the Carpathian mountains). However, rep-
resentation errors in AOT are dominated by temporal sam-
pling and show a clear region-wide bias, as observable AOT
tends to be lower than average AOT (mostly due to increased

Atmos. Chem. Phys., 17, 9761–9780, 2017 www.atmos-chem-phys.net/17/9761/2017/
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Figure 4. Relative representation errors in AOT in 6-month aver-
ages. The represented area data were temporally collocated to the
hour with the observations. The black dots show the locations of
major ACTRIS measurement sites. Results for a 10× 10 km2 ob-
servation against a 210× 210 km2 area.
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Figure 5. Relative spatial representation errors in AOT and sur-
face BC mass concentrations as a function of averaging period. Both
AOT and BC measurements were assumed to be continuous in time.
Results for a 10×10 km2 observation against a 210×210 km2 area.
Further explanation in Sect. 3.2.

humidity in cloudy columns). In both cases, representation
errors can be several tens of percent. If the AOT measure-
ments are used for model evaluation, temporal collocation
of model data to the observations (as advocated in S16b) is
possible, and the errors are reduced significantly. In particu-
lar, the region-wide bias is much reduced and the remaining
error pattern is more similar to that for BC; see Fig. 4.

Table 3 shows representation errors for several ACTRIS
(Aerosol, Clouds & Trace gases Research Infra-Structure)
sites within the Europe domain, not just for long-term av-
erages but daily RMSD as well. Representation errors driven
by spatial sampling often benefit from temporal averaging,
unlike errors due to temporal sampling. Collocation removes
the difference in temporal sampling and allows remaining
representation errors to be reduced through temporal aver-
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Figure 6. Analysis of monthly representation errors for remote
sensing ground sites: purely spatial sampling (grey), spatial sam-
pling and the observational cycle (green), spatial sampling and
cloudiness (orange), and finally full spatio-temporal sampling
(brown). Further explanation in Sect. 3.2.
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Figure 7. Monthly representation errors after collocation for remote
sensing ground sites: purely spatial sampling (grey), no collocation
(brown), area data collocated to the day of observations (bright or-
ange) and area data collocated to the hour (red). The grey and brown
error estimates are similar to Fig. 6, except for a required temporal
coverage of 25 %. Further explanation in Sect. 3.2.

aging. Note that sources and orography can create conditions
where temporal averaging is not very beneficial.

The impact of averaging period on spatial representation
(AOT is now assumed to be measured continuously) can be
seen in Fig. 5. This suggests that averaging over less than
10 h or more than 1000 h (6 weeks) has little impact on spa-
tial representation errors.

Note that in S16a we showed that the EMEP simulation
yielded smaller spatial representation errors than the WRF-
Chem simulation (although they agreed in magnitude and
spatial patterns).
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Table 3. Semi-annual relative representation errors for ACTRIS sites.

Harwell Hohenpeißenberg Hyytiälä Monte Cimone Preila Puy de Dome

longitude −1.32 11.01 24.29 10.68 21.04 2.97
latitude 51.57 47.80 61.85 44.17 55.21 45.77
altitude (m) 60 985 181 2165 6 1465

daily surf. BC (%) 23.2 20.1 13.1 54.1 24.2 52.1
Jan–Jun surf. BC (%) −1.4 −9.9 −0.3 −53.7 −4.5 30.8

daily AOT (%) 23.2 27.7 28.7 38.0 29.1 27.6
6-month AOT (%) −27.9 −23.7 −38.0 −29.9 −34.8 −11.2

With collocation
daily AOT (%) 12.2 21.2 12.8 33.1 17.0 18.3
6-month AOT (%) −1.7 −8.9 −1.9 −25.4 −3.5 −6.2
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Figure 8. Monthly mean (dashed) and RMS (solid) of representa-
tion errors for remote sensing ground sites as a function of required
temporal coverage: no collocation (brown), area data collocated to
the day of observations (bright orange) and area data collocated to
the hour (red). Further explanation in Sect. 3.2.

5 Representativeness of monthly data

The following analysis was made for a represented area of
210× 210 km2, with exceptions noted. All data were aver-
aged over a month.
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Figure 9. Monthly representation errors for remote sensing ground
sites at different area sizes: no collocation (different shades of
brown) and model data collocated to the hour (different shades of
red). Further explanation in Sect. 3.2.

5.1 Remote sensing ground site

We start with the case of a remote sensing ground site; see
Sect. 2. Figure 6 shows representation errors for different re-
gions as box-whisker plots. The figure shows that temporal
sampling significantly increases representation errors. Over
Ocean and Japan, that even leads to region-wide biases. Tem-
poral sampling is dominated by cloudiness, and cloudy AOT
(included in the area data) is larger than clear-sky AOT for
these regions.

When evaluating models, Fig. 7 shows that temporal collo-
cation of area data with the observations can substantially re-
duce representation errors. Here we limited ourselves to loca-
tions with at least 25 % temporal coverage. Note that tempo-
ral coverage is at 100 % if each day during the month yields
10 h of observations. Obviously, representation errors after
collocation can never be smaller than purely spatial repre-
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(a) (b) (c) (d)

Figure 10. Relative monthly representation errors in AOT for a remote sensing ground site over Oklahoma. From left to right, the following
scenarios are considered: (a) only spatial sampling contributes to the representation error; (b) both temporal and spatial sampling contribute;
(c) both temporal and spatial sampling contribute but data are collocated to the day; (d) both temporal and spatial sampling contribute but
data are collocated to the hour. Results for a 10× 10 km2 observation against a 210× 210 km2 area. See also Fig. 7.

sentation errors. Interestingly, collocation to the day is much
less beneficial than collocation to the hour, even after aver-
aging over a month.

Figure 8 shows error estimates as a function of required
temporal coverage for two regions that are typical. As a rule,
with increasing temporal coverage the case coverage will go
down. This means that the number of ground sites supply-
ing sufficient observations goes down. Representation errors
may go down (Japan) but it is also possible they remain con-
stant (“Oklahoma”). For all regions, collocation to the hour
allows smaller representation errors at lower temporal cover-
age and higher case coverage than no collocation.

Representation errors are remarkably insensitive to the
size of the represented area, unless area data can be tempo-
rally collocated; see Fig. 9. This is unsurprising as we earlier
pointed out that temporal sampling dominates the represen-
tation error.

Figure 10 shows maps of the monthly representation er-
rors. It shows that without collocation, or with collocation
to the day, representation errors may strongly correlate over
a large part of the region. Although Fig. 7 suggested that
representation errors without collocation were unbiased for
Oklahoma, this is only because those errors are positive in
lower half of the region and negative in the upper part. With
collocation to the hour not only are the representation er-
rors smaller but they correlate over smaller distances. Hence
collocation to the hour makes it more likely that subsequent
spatial averaging (e.g. over multiple ground sites) will further
reduce representation errors.

5.2 Passive remote sensing measurements from
polar-orbiting measurements

Next we turn to polar-orbiting satellite measurements with
repeat cycles of 1 or 8 days; see Sect. 2. For now, we will
assume that individual pixel measurements are averaged to-
gether (i.e. no super-obbing); see Eq. (3). Figure 11 shows

representation errors for different regions as box-whisker
plots. Due to the aggregation of measurements, purely spatial
representation errors are zero. But the spatio-temporal errors
are substantial. Depending on the repeat cycle, either cloudi-
ness or the observational cycle is more important to these er-
rors, although it is cloudiness that leads to region-wide biases
in the errors (see Ocean and Japan). Note also the very simi-
lar spatio-temporal representation errors, despite very differ-
ent spatio-temporal sampling, for a ground site (Fig. 6) or a
satellite with a repeat cycle of 1 day.

The strong impact of cloudiness on temporal sampling and
hence representation errors, shown both here and in the pre-
vious sub-section, suggests that area data calculated for clear
skies only would yield smaller representation errors. This in-
deed reduces the region-wide biases over Ocean and Japan
for a 1-day repeat cycle, but the representation RMSEs are
much the same. We will continue to calculate area data as a
total sky average.

Figure 12 shows the impact of temporal collocation.
Again, collocating area data to the hour yields smaller repre-
sentation errors than collocating to the day. For longer repeat
cycles, monthly representation errors after collocating will
be larger because there are fewer data to average out spatial
representation errors. Spatial and temporal coverage require-
ments were set at 25 %, meaning that at each of at least 25 %
of the overpasses at least 25 % of the represented area was
observed.

Alternative methods exist to construct monthly ob-
servations, for example by temporally averaging super-
observations; see Eq. (7). This has a small but beneficial im-
pact on representation errors. Figure 13 shows representation
errors when using super-observations, either straight as in
Eq. (7) or log-transformed before temporal averaging. Nei-
ther method is capable of achieving the small representation
errors obtained after temporal collocation.

Adjusting required temporal coverage has a similar impact
to that for ground sites; see Fig. 14. Case coverage (percent-
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(a)

(b)

Figure 11. Analysis of monthly representation errors for an imager
on a polar-orbiting satellite: purely spatial sampling (grey; this er-
ror is zero by construction), spatial sampling and the observational
cycle (green), spatial sampling and cloudiness (orange), and finally
full spatio-temporal sampling (brown). Panel (a) is for an imager
with a repeat cycle of 1 day, (b) for a repeat cycle of 8 days. Further
explanation in Sect. 3.2.

age of the region observed by the satellite) goes down as tem-
poral coverage increases. But there is no unequivocal impact
on representation errors: they may remain similar (e.g. Okla-
homa) or decrease (e.g. Japan). However, increasing required
spatial coverage has a detrimental effect on representation
errors. The reason is that increasing spatial coverage is ac-
companied by reduced temporal coverage, which makes the
observations less representative for the full month. The ob-
vious exception is representation errors with collocation (to
the hour) that decrease with increasing spatial coverage. We
conclude that coverage is generally not a good measure for
representation errors, but spatial coverage provides a good
control on representation errors with collocation to the hour.

Currently satellite super-observation products (L3) for
AOT are usually produced at 1◦× 1◦ (110× 110 km2 at the
equator). Using such a product to represent the natural sys-
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(a)

(b)

Figure 12. Monthly representation errors for an imager on a polar-
orbiting satellite after collocation: purely spatial sampling (grey;
zero by construction), no collocation (brown), model data collo-
cated to the day of observations (bright orange) and finally model
data collocated to the hour (red). The grey and brown error esti-
mates are similar to Fig. 11, except for a required coverage of 25 %.
Panel (a) is for an imager with a repeat cycle of 1 day, (b) for a
repeat cycle of 8 days. Further explanation in Sect. 3.2.

tem on different spatial scales yields similar representation
errors (as temporal sampling issues dominate); see Fig. 15.
But when using it to evaluate collocated model data, repre-
sentation errors can be expected to be smallest for 1◦× 1◦

model grid boxes. Note that larger grid boxes may be filled
in multiple super-observations, and so reduce representation
errors with collocation.

Finally, we return to the work by Levy et al. (2009), as
several of their strategies for calculating monthly L3 data are
easily evaluated in the context of our work (Sect. 3). The
aforementioned Fig. 13 shows that Pixel Weighting (brown)
generally allows larger representation errors than Equal Day
Weighting (dark blue). Threshold Equal Day Weighting is
studied in Fig. 14 (dark blue line as function of spatial cov-
erage) and also shown to allow larger errors than Equal

Atmos. Chem. Phys., 17, 9761–9780, 2017 www.atmos-chem-phys.net/17/9761/2017/
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Figure 13. Monthly representation errors for an imager on a polar-
orbiting satellite due to different data treatments: no collocation
(brown), no collocation but using super-observations (dark blue),
no collocation but area data and super-observations log-transformed
(light blue), and area data collocated to the hour (red). The brown
and red error estimates are identical to Fig. 12a. Results for a repeat
cycle of 1 day. Further explanation in Sect. 3.2.

Day Weighting (which is identical to Threshold Equal Day
Weighting with cspat > 0). Thus we conclude that Equal Day
Weighting is, from a spatio-temporal sampling perspective,
the best choice. This will nevertheless allow monthly repre-
sentation RMSD of 10 to 40 %.

5.3 Passive remote sensing measurements from
geostationary satellites

Geostationary satellites with passive remote sensing instru-
mentation allow for spatial aggregation of observations and
multiple measurements per day. Consequently, sampling is-
sues are entirely dominated by cloudiness. Figure 16 shows
that even for an imager in geostationary orbit, monthly rep-
resentation errors are quite substantial. Actually, they are not
that different from an imager on a polar-orbiting satellite
(Fig. 12) with a 1-day repeat cycle or a ground site (Fig. 7).
The reason is of course that cloudiness is the main reason for
representativeness issues (in monthly averages, for platforms
with high repeat frequencies). Note that representation errors
after collocation are substantially lower for the geostationary
imager than for a ground site but are again similar to those
for polar-orbiting imager.

5.4 Lidar measurements from polar-orbiting satellites

An idealised polar-orbiting lidar (see Sect. 2) allows for lim-
ited aggregation (along its track) but will have a long repeat
cycle (here: 12 days). Figure 17 shows the resulting repre-
sentation errors with and without collocation. These errors
are large, even with collocation, and may preclude the use of
satellite lidar data on monthly and 100 km scales. However,

further averaging of temporally collocated data over larger
regions (say Europe or the Atlantic dust outflow region) is
likely to reduce representation errors as they are often not
strongly correlated over distances exceeding the size of the
represented area (e.g. see Fig. 3 or Fig. 10).

5.5 In situ ground sites

The IMPROVE network operates on a regular schedule of
measuring 1 day out of 3. Figure 18 shows that this has a
relatively mild impact on representation errors. Still, errors
may increase twofold and collocation will usually bring rep-
resentation errors down to the level of purely spatial errors.
Due to the observing cycle, it does not matter whether this is
collocation to the hour or day. Similar results can be shown
for BC concentration or number density measurements.

6 Representativeness of daily remote sensing data

The following analysis was made for a represented area of
210× 210 km2, with exceptions noted. All data were aver-
aged over a day.

6.1 Remote sensing data

Figure 19 shows daily representation errors for either ground
sites or imagers on polar-orbiting satellites with a repeat-
cycle of 1 day. Spatial representation errors are quite large
for ground sites but they are zero for the satellite. Yet spatio-
temporal representation errors (without collocation) are very
similar (although a bit smaller for the imager). Collocation
to the hour reduces representation errors, but more so for
the aggregated satellite observations. Actually, collocation
for ground sites still allows for significant spatial sampling
issues in daily data.

Typical impacts of observational coverage are shown in
Fig. 20. For the ground sites more stringent conditions on
temporal coverage of the observations are relatively ineffec-
tive, irrespective of whether collocation is used or not: the
spatial sampling issue always remains. In model evaluations,
collocation to the hour will allow representation errors in
satellite data to be arbitrarily reduced by specifying a spa-
tial coverage requirement. Note, however, that case coverage
drops steadily as required spatial coverage is increased.

The imager on a geo-stationary satellite again shows simi-
lar representation errors to the other observing systems, with
the exception of W-Europe where an RMSD of 20 % was
found, a significant improvement over ground sites (37 %)
and polar-orbiting satellites (29 %).

6.2 In situ ground sites

In situ ground sites that observe continuously during the day
will have identical daily representation errors, with or with-
out collocation. Here we find daily representation RMSD for
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Figure 14. Monthly mean (dashed) and RMS (solid) of representation errors for an imager on a polar-orbiting satellite as a function of
required spatial or temporal coverage of the observations. Results are shown for no collocation (brown), no collocation but using super-
observations (dark blue), collocation to the day (orange) and finally model data collocated to the hour (red). Results for a repeat cycle of
1 day. Further explanation in Sect. 3.2.
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Figure 15. Monthly representation errors for an imager on a polar-
orbiting satellite at different area sizes but with the observations
aggregated over 110× 110 km2: no collocation (different shades of
brown) and model data collocated to the hour (different shades of
red). Results for a repeat cycle of 1 day. Further explanation in
Sect. 3.2.
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Figure 16. Monthly representation errors for an imager on a geosta-
tionary satellite after collocation: purely spatial sampling (grey), no
collocation (brown), area data collocated to the day of observations
(bright orange) and area data collocated to the hour (red). Further
explanation in Sect. 3.2.
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Figure 17. Monthly representation errors for a lidar on a polar-
orbiting satellite after collocation: purely spatial sampling (grey),
no collocation (brown), area data collocated to the day of obser-
vations (bright orange) and area data collocated to the hour (red).
Further explanation in Sect. 3.2.
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Figure 18. Monthly representation errors for an in situ ground
site after collocation: purely spatial sampling (grey), no collocation
(brown), area data collocated to the day of observations (bright or-
ange) and area data collocated to the hour (red). Further explanation
in Sect. 3.2.

PM2.5 to range from 7 % (Ocean) to 100 % (Congo), with
most values between 10 and 30 %, and for surface BC con-
centrations the range is 40–100 %.

7 Improving representativeness for data on
less-than-daily timescales

So far we have tacitly assumed that daily averages over a
larger area are best represented by daily observations. Here
we will determine the optimal averaging timescales for ob-
servations (from ground sites) when the represented area
consists of hourly or daily data. In particular, slightly longer

averaging timescales for the observations allow a larger part
of the atmosphere to be advected over the measurement
site, possibly resulting in smaller representation errors. Re-
mote sensing observations will be treated as uninterrupted
by clouds or night-time, to allow easier comparison to in situ
measurements.

When considering represented areas on daily timescales,
the optimal period for averaging observations (at which the
representation RMSD is minimal) is usually slightly more
than a day; see Fig. 21 and Table 4. However, using 24 h av-
erages of the observations does not result in significant in-
creases in representation error and justifies the analysis in
Sect. 6.

Figure 22 shows hourly representation errors as a function
of averaging period of surface PM2.5 observations. It is ob-
vious that hourly observations do not guarantee the smallest
representation error. Averaging the observations over several
hours results in substantially better representation. There is
quite a bit of variety in the optimal averaging period but it
turns out that 6 h is a good recommendation, for this as well
as for other observables; see Table 5. This optimal period is
the result of a golden middle way: for both short and long
periods, large representation errors due to spatial or temporal
sampling issues may be expected. In between there is a fairly
large range of periods (including 6 h) for which the represen-
tation error is close to minimal.

In a few cases optimal averaging periods can be linked
to the time needed for aerosol to drift a distance similar to
the extent of the represented area (so-called transit time); see
Fig. 23. But this was possible only for a few observables and
seldom for surface measurements (N10 at 2 km is the best ex-
ample we found). We surmise that turbulent flow and evolv-
ing aerosol make the link between transit times and optimal
averaging periods rather tenuous.

At smaller representative areas of 110×110 km2, an aver-
aging period of 4 h is recommended.

8 Impact of precipitation on representation errors for
in situ measurements

Due to its importance in removing aerosol from the atmo-
sphere, precipitation is expected to be a leading cause of
spatio-temporal variability in aerosol. In this section we ex-
plore if it is feasible to control representation errors by se-
lecting observations for dry days only.

Precipitation is measured either locally by directly mea-
suring the rain flux (e.g. rain buckets), or regionally through
remote sensing measurements (e.g. scanning rain radar). This
suggests two potential predictors for the impact of precipita-
tion on representation errors: (1) a local precipitation mea-
surement sited near the in situ aerosol measurement can be
used to identify cases of strong precipitation; (2) regional
measurements can be used to identify cases where precip-
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Figure 19. Daily representation errors after collocation: purely spatial sampling (grey), no collocation (brown), and model data collocated to
the hour (red). Panel (a) is for a ground site, (b) for a satellite with a 1 day repeat cycle. Further explanation in Sect. 3.2.

Table 4. Optimal averaging periods for ground-site measurements used to represent a 210×210 km2 area (daily). The font types indicate an
increase of representation RMSD representation of less than 5 % (italic font), less than 10 % (bold font) or less than 20 % (underlined) when
using the recommended period of 24 h instead.

W-Europe Oklahoma Congo Ocean Europe Japan

AOT 30 26 26 24 28 28
AE 32 26 28 24 28 30
SSA 32 26 28 30 30
PM2.5 28 26 26 24 28 30
surface extinction 28 26 26 24 28 30
extinction (h= 2 km) 30 26 26 24 28 28
surface BC conc. 30 26 26 28 32
BC conc. (h= 2 km) 28 26 26 30
surface N10 48 26 24
N10 (h= 2 km) 30 26 26
surface N50 34 26 26
N50 (h= 2 km) 28 26 26

itation over the ground site and the wider represented area
differ greatly.

Figure 24 shows a rather typical example of how daily rep-
resentation errors for in situ measurements correlate with lo-
cal precipitation. It is obvious that the impact is not overly
large considering the already sizeable representation errors at
low precipitation. Most observables and regions show even
less dependence on precipitation. Over the Congo region,
higher local precipitation actually leads to smaller represen-
tation errors. The second predictor, the relative difference
in precipitation over the wider area and at the ground site,
shows even less conclusive results.

Figure 25 examines how monthly representation errors
change due to the discarding of observations with poten-
tially high daily representation errors (based on the afore-
mentioned predictors). This has only a marginal impact, and
quite often that impact is to increase monthly representation
errors, albeit only slightly. This happens because the tem-
poral averaging over fewer data leads to larger representa-

tion errors, similar to what we saw for remote sensing ob-
servations. These results do not depend on the chosen ob-
servable, region or (arbitrarily chosen) threshold for the pre-
dictor. Only surface aerosol extinction over Japan showed a
small but beneficial impact on representation errors, due to
filtering out high precipitation events. Note that the area data
were collocated to the hour with available observations be-
fore monthly averaging, to provide a best-case scenario.

In conclusion, our analyses suggest that no systematic ben-
eficial impact due to the discarding of cases of high precipita-
tion or strong spatial gradients in precipitation can be found.
This holds also at smaller sizes of the represented area (down
to 50× 50 km2). Studying videos of the evolving aerosol in
our simulations offers an explanation: precipitation is seldom
limited to the ground site, and the represented area will be
affected as well; also, precipitation does not necessarily cor-
relate with loss of aerosol, as converging air motions near
updrafts or the sulfate production in associated cloud fields
may actually increase aerosol. Finally, the spatio-temporal

Atmos. Chem. Phys., 17, 9761–9780, 2017 www.atmos-chem-phys.net/17/9761/2017/
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Figure 20. Daily representation errors for remote sensing instruments as a function of required coverage. Results shown for no collocation
(brown) and area data collocated to the hour (red). Panel (a) is for a ground site, (b) for an imager on a polar-orbiting satellite with a 1-day
repeat cycle. Further explanation in Sect. 3.2.

Table 5. Optimal averaging periods for ground-site measurements used to represent a 210× 210 km2 area (hourly). The font types indicate
an increase of representation RMSD representation by less than 5 % (italic font), less than 10 % (bold font) or less than 20 % (underlined)
when using the recommended period of 6 h instead.

W-Europe Oklahoma Congo Ocean Europe Japan

AOT 10 6 8 6 10 10
AE 10 6 8 6 10 14
SSA 10 8 8 8 14
PM2.5 6 6 6 4 10 12
surface extinction 4 4 6 4 8 10
extinction (h= 2 km) 8 4 6 4 8 10
surface BC conc. 10 4 6 10 14
BC conc. (h= 2 km) 6 8 8 12
surface N10 8 2 2
N10 (h= 2 km) 10 6 6
surface N50 8 6 6
N50 (h= 2 km) 8 4 8

distribution of emission sources combined with turbulent or
shearing wind fields are strong drivers of spatial variability
by themselves.

9 Lessons learned

While representation errors can be significant, they behave
differently depending on whether spatial or temporal sam-
pling dominates the error. In the case of spatial sampling,
representation errors can often be reduced through spatio-
temporal averaging (see also S16a). In the case of tempo-
ral sampling, representation errors are unlikely to be reduced
through such averaging (see also S16b). If observations are
used for model evaluation, it is possible to temporally collo-
cate the model data with the observations; subsequent tem-
poral averaging then reduces representation errors.

Typical representation RMSD errors and other numerical
results quoted below refer to a represented area of 210×

210 km2. For other area sizes, see S16a or this paper. For
model evaluation, we used a required spatial and/or temporal
coverage of 25 % and collocation to the hour.

To have observations optimally represent a larger area,
they will need to be averaged over time. While monthly area
data is best represented by monthly observations, hourly area
data is better represented by observations averaged over 6 h.

9.1 In situ ground sites

If such sites allow for continuous operation the measure-
ments from these sites only suffer representation errors due
to spatial sampling. Temporal averaging may reduce such er-
rors, but emissions sources and orography may cause a con-
stant component in representation error that can not be elim-
inated. We found errors of up to 40 % in 6-month averages
of surface BC mass concentrations; see Sect. 4. We suggest
vetting such observations for location.

www.atmos-chem-phys.net/17/9761/2017/ Atmos. Chem. Phys., 17, 9761–9780, 2017



9776 N. Schutgens et al.: Observational representativity

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5
PM2.5 (W Europe)

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5

0 20 40 60 80
Observation T [h]

     

1.0

0.5

0.0

0.5

1.0

1.5

R
e

la
tiv

e
 r

e
p

re
se

n
ta

tio
n

 e
rr

o
r 

(d
a

ily
)

 

 

 

 

 

 

50 %: 2.36
82 %: 2.32
96 %: 2.23

Optimal period: 28 h

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5
PM2.5 (Europe)

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5

0 20 40 60 80
Observation T [h]

     

1.0

0.5

0.0

0.5

1.0

1.5

R
e

la
tiv

e
 r

e
p

re
se

n
ta

tio
n

 e
rr

o
r 

(d
a

ily
)

 

 

 

 

 

 

50 %: 2.50
82 %: 2.33
96 %: 2.03

Optimal period: 28 h

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5
PM2.5 (Oklahoma)

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5

0 20 40 60 80
Observation T [h]

     

1.0

0.5

0.0

0.5

1.0

1.5

R
e

la
tiv

e
 r

e
p

re
se

n
ta

tio
n

 e
rr

o
r 

(d
a

ily
)

 

 

 

 

 

 

50 %: 2.72
82 %: 2.57
96 %: 2.40

Optimal period: 26 h

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5
PM2.5 (Congo)

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5

0 20 40 60 80
Observation T [h]

     

1.0

0.5

0.0

0.5

1.0

1.5

R
e

la
tiv

e
 r

e
p

re
se

n
ta

tio
n

 e
rr

o
r 

(d
a

ily
)

 

 

 

 

 

 

50 %: 1.77
82 %: 1.56
96 %: 1.24

Optimal period: 26 h

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5
PM2.5 (Ocean)

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

1.5

0 20 40 60 80
Observation T [h]

     

1.0

0.5

0.0

0.5

1.0

1.5

R
e

la
tiv

e
 r

e
p

re
se

n
ta

tio
n

 e
rr

o
r 

(d
a

ily
)

 

 

 

 

 

 

50 %: 10.41
82 %: 9.29
96 %: 5.39

Optimal period: 24 h

0 20 40 60 80
1.0

0.5

0.0

0.5

PM2.5 (Japan)

0 20 40 60 80
1.0

0.5

0.0

0.5

0 20 40 60 80
Observation T [h]

     

1.0

0.5

0.0

0.5

R
e

la
tiv

e
 r

e
p

re
se

n
ta

tio
n

 e
rr

o
r 

(d
a

ily
)

 

 

 

 

50 %: 2.61
82 %: 2.48
96 %: 2.43

Optimal period: 30 h

Figure 21. Daily representation errors as a function of averaging
period 1T used for surface PM2.5 observations. In the top-left cor-
ner of each panel, the ratios of q98–q2, q91–q9 and q75–q25 for
1T = 0 to optimal 1T are given. Results for a 210×210 km2 grid
box. Further explanation in Sect. 3.2.

For model evaluation: averaging both model data and ob-
servations over multiple sites can be used to increase repre-
sentativity (see also S16a).

9.2 Passive remote sensing ground sites

These observations suffer from both spatial and temporal
sampling issues, and the latter is usually more important. A
representation error driven by temporal sampling is unlikely
to be reduced through temporal averaging; see Sect. 4 and
also S16b. Further study is required to validate the use of
such observations to construct climatologies. The use of a
minimum required number of observations cannot be relied
upon to control representation errors (see Sect. 5) or only has
a weak impact (see Sect. 6). Representation errors in AOT
are typically 10–40 % (monthly) and 20–50 % (daily).

For model evaluation: collocating model data to the hour
of observations should be the first step to reduce representa-
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Figure 22. Hourly representation errors as a function of averaging
period 1T used for surface PM2.5 observations. In the top-left cor-
ner of each panel, the ratios of q98–q2, q91–q9 and q75–q25 for
1T = 0 to optimal 1T are given. Results for a 210×210 km2 grid
box. Further explanation in Sect. 3.2.
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Figure 23. Relative representation RSMD for N10 measurements
as a function of transit time over averaging period, for W-Europe
(red), Oklahoma (blue) and Congo (green). Further explanation in
Sect. 3.2.
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ence in precipitation between observation and wider area), the grey
quantile boxes the right-hand axis. Results for a 210×210 km2 grid
box for Ocean.

tion errors. The representation error due to spatial sampling
may be reduced by temporally averaging the collocated data.
In this case, a minimum required number of observations can
be used to control representation errors. Representation er-
rors in AOT are typically 5–15 % (monthly) and 10–30 %
(daily). Collocation to the day of observation is sub-optimal;
we found very similar representation errors as when no collo-
cation is used (see Sect. 5). See also in S16b how collocation
to the day creates a longitude dependence in representation
errors.

9.3 Passive remote sensing imagers on satellites

These observations suffer from both spatial and temporal
sampling issues but often allow spatial aggregation over the
represented area. Temporal sampling will dominate represen-
tation errors and prove insensitive to temporal averaging; see
Sect. 4 and also S16b. Further study is required to validate the
use of such observations to construct climatologies. Using
a minimum required number of super-observations cannot
be relied upon to control monthly representation errors (see
Sect. 5). For imagers on polar-orbiting satellites, monthly
representation errors in AOT are typically 10–40 % (repeat
cycle: 1 day) or 35–55 % (repeat cycle: 8 days). Daily rep-
resentation errors in AOT are 25–40 %. For imagers on geo-
stationary satellites, representation errors are similar to those
for polar-orbiting satellites with a 1 day repeat cycle.

For model evaluation: temporal collocation of model data
to the hour of super-observations is the best strategy. In prin-
ciple, the representation error due to spatial sampling can be
arbitrarily reduced through a required minimum spatial cov-
erage of the super-observations. Monthly representation er-
rors can also be reduced through a minimum required tem-
poral coverage. The flip side will be lower case coverage.
Monthly representation errors in AOT are typically 5–15 %
(repeat cycle: 1 day) or 10–15 % (repeat cycle: 8 days). Daily
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Figure 25. Impact on monthly representation errors from filtering
out precipitation events. Orange box whiskers show errors when all
data is used, purple box whiskers show errors when precipitation
events are discarded (a: daily precipitation> 10 mm d−1; b: daily
precipitation difference> 0.75). Only locations where this maxi-
mum was exceeded at least once were used in the statistics. Results
for a 210× 210 km2 grid box. Further explanation in Sect. 3.2.

representation errors in AOT are 10–15 %. This daily rep-
resentation error is significantly lower than that for ground
sites due to the spatial aggregation. As in the case of remote
sensing ground-site observations, collocation to the day of
observation is sub-optimal (see Sect. 5).

9.4 Active remote sensing satellites

Due to their narrow swath, lidar observations from space will
have long repeat cycles causing significant representation
errors. Monthly representation errors in aerosol extinction
are 70–160 %, with significantly skewed error distributions.
Note that we only considered a single atmospheric level near
the top of the boundary layer in our very limited study.

For model evaluation: monthly representation errors after
collocation to the hour were still 20–40 %, with one region
(Ocean) showing errors of 140 %. Further reduction of rep-
resentation errors should be possible by averaging data over
larger geographic regions.
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10 Conclusions

Measurements always have a discontinuous spatio-temporal
sampling, unlike the natural system they are trying to ob-
serve. As a consequence, actual daily, monthly and yearly
averages over areas may be very different from those based
on the undersampled observations. This limits the informa-
tion present in observations and their usefulness in describing
nature or evaluating models. In this paper, we have estimated
these representation errors using high-resolution models to
generate an objective truth and synthetic observations for a
slew of idealised observing systems (in situ ground sites, re-
mote sensing ground sites, passive and active remote sens-
ing satellites). For a wide range of timescales (hour–daily–
monthly to semi-annually) and length scales (50–300 km),
representation errors were shown to be significant, ranging
from 10 to 100 %.

In particular, we study typical aerosol observables
such as AOT, PM2.5, BC concentrations and number
concentrations for idealised observing systems that cap-
ture the essence of real-life observing systems such as
AERONET (AErosol RObotic NETwork), SKYNET, IM-
PROVE, EMEP (European Monitoring & Evaluation Pro-
gramme), MODIS, AATSR (Advanced Along-Track Scan-
ning Radiometer), MISR (Multi-angle Imaging Spectro-
radiometer) and CALIOP. Typical length scales at which we
estimate representation errors (hundreds of kilometres) are
based on the grid resolution of the global models often used
in our field.

Our study not only allows us to estimate representation er-
rors but also assess various ways in which to reduce them. In
particular, we were able to assess the usefulness of different
methods to generate gridded satellite L3-data (Levy et al.,
2009). Our results suggest that the current practice of un-
conditional averaging of super-observations into a monthly
product is a good procedure but still allows for significant
monthly representation errors (10–40 % at best). Small im-
provements are possible if the super-observations are log-
transformed before averaging.

When using observations to evaluate models, it is possi-
ble to temporally collocate model data with the observations,
and we showed this to be a very efficient way to reduce rep-
resentation errors, especially if this is followed up by tempo-
ral averaging. However, such collocation should use hourly
model data collocated to the hour of the observation. Cur-
rently, daily model data is often collocated to the day of the
observation and this is sub-optimal (and sometimes no better
than no collocation). Also, collocation allows some control
on representation errors through the number of observations
used.

Some other interesting finds are as follows: (1) to better
represent hourly data for a larger area, observations should
be averaged over 6 h (210×210 km2) or 4 h (110×110 km2);
(2) representation errors for either remote sensing ground
sites or imagers on polar-orbiting (1-day repeat cycle) or geo-

stationary satellites are very similar on daily and monthly
scales, despite very different sampling; (3) representation er-
rors often depend counter-intuitively on observational cov-
erage (the number of observations used); (4) temporal sam-
pling issues clearly dominate representation errors in remote
sensing data on monthly scales and dominate less clearly on
daily scales; (5) local precipitation does not appear to be a
major cause of representation errors, and vetting observa-
tions based on precipitation measurements does not improve
representativity; (6) emission sources and orography can give
rise to persistent and significant representation errors.

Since we used simulations to assess representation errors,
our results depend on the quality of the numerical models. In
Schutgens et al. (2016a) we showed that two different mod-
els estimated very similar representation errors over the same
region. A more fundamental issue is that we only have simu-
lations over six different regions for a few months. Obviously
we cannot claim that our results are universal. We surmise
that error values will be different in detail for other regions
or months but still be of similar magnitude. The consistency
across our six regions and three models in this study, and sim-
ilarly the consistency of temporal representation errors esti-
mated in Schutgens et al. (2016b) for global model data, sup-
port this. In particular, our simulations consistently showed
that increasing required spatial coverage of satellite observa-
tions leads to decreasing temporal coverage and increasing
representation errors, unless collocation can be used.

It is possible that the representation errors estimated in
this paper are underestimates. As argued in S16a, (1) model
variability tends to increase with increasing resolution, (2) at
10 km resolution we can not resolve the fine structure on the
scale of in situ sampling volumes, (3) we use assumed tem-
poral profiles of our emission that do not capture day-to-day
or week-to-week variations, and (4) our models offer only a
bulk abstraction of aerosol without all the detail nature has to
offer.
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