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Table S1. The SPAMS markers used to search for major groups of oxalic acid 

particles in this work. 

Species m/z Marker Ion Area 

Relative 

Area Function 

Elemental Carbon 12±0.5 [C]+ 50 0.005 or 

 

24±0.5 [C2]
+ 50 0.005 or 

 

36±0.5 [C3]
+ 50 0.005 or 

 

48±0.5 [C4]
+ 50 0.005 or 

 

60±0.5 [C5]
+ 50 0.005 or 

 

-12 [C]- 50 0.005 or 

 

-24 [C2]
- 50 0.005 or 

 

-36 [C3]
- 50 0.005 or 

 

-48 [C4]
- 50 0.005 or 

 

-60 [C5]
- 50 0.005 or 

Organic Carbon 27 [C2H3]
+ 50 0.005 or 

 

43 [C2H3O]+ 50 0.005 or 

Elemental Carbon and Organic Carbon 12 [C] + 50 0.005 or 

 

24 [C2]
+ 50 0.005 or 

 

36 [C3]
+ 50 0.005 or 

 

37 [C3H]+ 50 0.005 or 

 

43 [C2H3O]+ 50 0.005 or 

Biomass Burning 39 [K]+ 1500 

 

and 

 

113,115 [K2Cl]+ 50 0.005 or 

 

213 [K3SO4]
+ 50 0.005 or 

 

-26 [CN]- 50 0.005 or 

 

-59 [C2H3O2]
- 50 0.005 or 

 

-73 [C3H3O2]
- 50 0.005 or 

Sec 18 [NH4]
+ 50 0.005 or 

 

39 [K]+ 1500 

 

and 

 

-62 [NO3]
- 100 0.05  

 

-97 [HSO4]
- 100 0.05  

Heavy Metal 206-208 [Pb]+ 50 0.005 or 

 

64,66 [Zn]+ 50 0.005 or 

 

63,65 [Cu]+ 50 0.005 or 

 

56 [Fe]+ 50 0.005 or 

 

55 [Mn]+ 50 0.005 or 

 

71 [MnO]+ 50 0.005 or 

 

51 [V]+ 50 0.005 or 

 

67 [VO]+ 50 0.005 or 

Dust 24 [Mg]+ 1000 

 

 

 

27 [Al]+ 1500 

 

 

 

40 [Ca]+ 2500 

 

 

 

56 [CaO]+/[Fe]+ 100 0.05 

 



 

-76 [SiO3]
- 500 0.05 

 NaK 23 [Na]+ 100 0.05 

 

 

62 [Na2O]+ 50 0.005 or 

 

63 [Na2OH]+ 50 0.005 or 

 

81,83 [Na2Cl]+ 50 0.005 or 

 

-35,-37 [Cl]- 100 0.05 

 Ammonium 18 [NH4]
+ 50 0.005 

 Nitrate -46 [NO2]
- 100 0.05 

 

 

-62 [NO3]
- 100 0.05 

 Sulfate -80 [SO3]
- 100 0.05 

 

 

-97 [HSO4]
- 100 0.05 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1. The topography of Heshan sampling site (22.73N, 112.93E) and its 

surrounding areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S2. The positive and negative mass spectra of pure oxalic acid (H2C2O4, purity: 

99.99%, Aladdin Industrial Corporation) measured by SPAMS through authentic 

oxalic acid solution (200 μg•ml
-1

). 

The relative area of each fragment refers to the abundance of each peak area in 

total signal of the mass spectra. The parent ion signal of oxalic acid at mass-to-charge 

(m/z) -89 (HC2O4
-
) is significant in the negative mass spectrum. Carbon clusters of 

12[C]
+
, 24[C2]

+
, 36[C3]

+
 are observed in positive mass spectrum, and 23[Na]

+
 and 

39[K]
+
 also show peaks due to extremely high sensitivity of SPAMS to these elements 

which are present as trace impurities (<0.01). HC2O4
-
 (m/z -89) is selected as the 

marker ion for oxalic acid containing particles. In this work, oxalic acid particles are 

identified if the peak area of m/z -89 was larger than 0.5% of the total signal in the 

mass spectrum. 
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Figure S3. The temporal variation of in-situ pH (pHis) of ambient PM2.5 particles 

during sampling period in summer. 

 

 

 

 

 

Figure S4. The clustered 48 hr back trajectories of air masses arriving in Heshan 

during the sampling period: (a) summer (from July 18 to August 1, 2014), (b) winter 

(from January 27 to February 8, 2015).  
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Figure S5. The diurnal variations of in-situ pH (pHis), RH, nitrate, sulfate, ammonium 

and the aqueous phase concentration of H
+
 (mol L

-1
) in aerosols from July 28 to 

August 1 in 2014. 

The pHis of ambient particles ranged from -1.42 to 4.01, which indicate that fine 

particles in the sampling site are highly acidic. These values are within the range of 

previous studies that investigated pHis through filter-based and real-time 

measurements in the PRD area (Xue et al., 2011;Pathak et al., 2004;Yao et al., 2006). 

Based on the calculation equation, the pHis is determined by the concentration of H
+
 

and liquid water content (LWC) in the aerosols. LWC is strongly dependent on the 

ambient RH and water-soluble inorganic salts like sulfate, nitrate and ammonium in 

the aerosols. The aqueous phase concentration of H
+
 was lower from 12:00 to 21:00 

compared to other time, which suggests a less acidity effect on the photochemical 

production of oxalic acid during this period.  
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Figure S6. The diurnal variations of temperature (T), RH, wind speed (WS), oxalic 

acid particles, total EC particles, the EC type oxalic acid-containing particles and 

ambient NO2 concentrations from July 28 to August 1 in 2014. 
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Figure S7. Temporal variation of organosulfate (m/z=-155) containing particles in 

total particles and in oxalic acid particles in Heshan, China. 

The organosulfate derived from reaction between glyoxal and sulfuric acid was 

identified at m/z=-155 ([C2H3O2SO4]
-
) based on previous work conducted by Surratt 

(Surratt et al., 2007;Surratt et al., 2008) and Hatch (Hatch et al., 2011) in chamber and 

field measurements. In current work organosulfate-containing particles were 

identified if the relative peak area of m/z -155 was larger than 0.5%. With this 

threshold, 78 and 1874 of organosulfate particles were obtained in summer and winter 

separately, accounting for 0.01% and 0.25% in each total detected particles. The 

temporal trend of organosulfate-containing oxalic acid particles in winter is also 

shown in Figure S8, which exhibited a similar pattern as the total oxalic acid particles. 

The percentage of organosulfate-containing oxalic acid particles in total oxalic acid 

particles ranged from 0 to 16.4% with the highest ratio observed on February 8. 
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