
Supplement of Atmos. Chem. Phys., 17, 9435–9449, 2017
https://doi.org/10.5194/acp-17-9435-2017-supplement
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Supplement of

Sources of particulate matter components in the Athabasca oil sands
region: investigation through a comparison of trace
element measurement methodologies
Catherine Phillips-Smith et al.

Correspondence to: Greg Evans (greg.evans@utoronto.ca)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.



S.1 Quality Control and Analysis 

The Xact incorporates several Quality Assurance and Quality Control measures. With each 

measurement the instrument takes, it simultaneously measures the concentration of a Pd rod that 

is located within the instrument to ensure measurement stability (Batelle, 2012). Additionally, 

every day at midnight, the instrument completes several tests. In one of these tests, the Xact 

measured the concentrations of metals located within an upscale rod made of Pd, Pb, Cr, and Cd. 

The three metals, Pb, Cr, and Cd, in the upscale rod represent each energy level the instrument 

(Batelle, 2012). When the instrument is operating under normal conditions, these measurements 

are constant with each test. This feature was invaluable during the August, 2013 campaign when 

there was a drop in the internal Pd measurement values between August 25 and September 2, 2013. 

As this had the potential to alter the measured metal concentrations, the changing Pd upscale value 

was linearly regressed against the upscale values of Cr, Pb, and Cd, which were found to have 

slopes of 0.63, 8, and 3.3, respectively (Figure S1). These relationships were assumed to be the 

same for all metals within that energy level, and measurements made August 25 to September 2 

were then adjusted assuming a constant ratio between the upscale metal concentration and the 

various metals within its energy level. To validate this assumption, a linear comparison of the 

sulphur (S) data before, as well as both the raw and corrected S data during the incident was 

compared to the collection-efficiency corrected PM1.0 SO4 data measured by a soot particle aerosol 

mass spectrometer SP-AMS (Willis et al., 2014); the AMS sulphate was divided by three to 

determine the equivalent sulphur mass. Prior to August 25 the slope of the line was 2.75 (Figure 

S2a); a slope greater than 1.0 was expected given that PM2.5 and PM1.0 mass values were being 

compared. However, the slope of 2.75 was greater than that expected due to the difference in size 

cutpoints alone. For example, comparison of the ambient ion monitor ion chromatograph’s (AIM-

IC) PM2.5 to the AMS’s PM1.0 data yielded a slope of 1.66 (Figure S3a), which suggested that there 

is 66% more sulphate in PM2.5 than in PM1.0. The difference in the slopes of 2.75 vs. 1.66 implied 

that the Xact might be measuring additional sulphur that was not in the form of sulphate. However, 

comparison of the Xact sulphur with the AIM-IC or PM2.5 filter data, as described below, indicated 

that the Xact sulphur values were on average only 40% too high. The additional 17% divergence 

with the AMS data could not be resolved. As described below, the accuracy of most other 

metal(oid)s determined by the Xact was much better than that for sulphur. 

Correcting the Xact S data for Aug 25-Sept 2 based on the concentration-dependent equations seen 

in Figure S1 raised the r2 value from 0.77 to 0.96, and changed the slope of the line from 1.60 to 



3.57 (Figures S2c and S2d). Overall, there was a large change in the slope of the line from 2.75 

before August 25 to 3.57. However, the corrected slope was comparable to the slope in a similar 

concentration range (Figure S2b) before August 25 (3.26 vs. 3.57), suggesting that the Xact data 

correction was reasonable. It is more likely that the data after August 25, 2013 may have been over 

corrected by up to 20%. This represented 35% of the total Xact data used in the PMF analysis. 

 

  



 

 

Figure S1. Comparison of Pd rod concentration to the three measured upscale metals: Cr, Cd, and Pb that 

were measured throughout the intensive campaign. 

 

  
Figure S2. a) Comparison of SP-AMS sulphur equivalent to Xact S before Aug. 25, 2013, b) comparison of SP-

AMS sulphur equivalent lower than 300 ng/m3 to Xact S before Aug. 25, 2013, c) comparison of SP-AMS 

sulphur equivalent to corrected Xact S data after Aug. 25, 2013, and d) comparison of SP-AMS sulphur 

equivalent to raw (uncorrected) Xact S data after Aug. 25, 2013. All the SP-AMS sulphate values were divided 

by three to determine equivalent sulphur mass values.  
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A comparison of the 1-hr instrumentation data against the coincident 23-hr filter data was 

conducted to ensure the data measured with the Xact was equivalent to that measured with the 

filters. The 1-hr data was averaged between 8:30 am and 7:30 am to correspond with the period 

during which the filter sample was taken. Any averaged values that were below the detection limit 

(DL), or calculated using data more than 50% of which were below the DL, were removed. The 

data was then divided into three groups: low, medium, and high concentrations. Low-concentration 

metals, those with average values <10 ng/m3 (Figure S3b), exhibited excellent agreement, with a 

linear slope of 1.03 and an r2 value of 0.95 (Xact to Filter data). This represented 63% of the metals 

measured by the Xact used in the PMF analysis. The medium-concentration metals, those with 

averages between 10 ng/m3 and 50 ng/m3 (Figure S3c), had a slope of 0.77 and an r2 of 0.99, while 

the high-concentration elements, with averages above 50 ng/m3, such as sulphur, had a slope of 

1.43 and an r2 of 0.99 (Figure 3d). The sulphur data was also linearly regressed against the SO4 

data measured with an ambient ion monitor ion chromatograph (AIM-IC), which was divided by 

three to estimate the S equivalent concentration (Markovic et al., 2012). The result was a line with 

a slope of 1.42 and an r2 of 0.84 (Figure 3), this further indicated the likely presence of a 40% bias 

in the Xact sulphur measurements.  

 

 
Figure S3a. PM2.5 concentrations measured by the AIM-IC to PM1.0 concentrations measured by the AMS 

comparison S before Aug. 25, 2013.   
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Figure S3b. Filter-Xact comparison for metals with average concentrations < 10 ng/m3. 

 

Figure S3c. Filter-Xact comparison for metals with average concentrations >10 ng/m3 and <50 ng/m3. 

 
Figure S3d. Filter-Xact comparison for metals with average concentrations > 50 ng/m3. 
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Figure S3e. AIM-IC/Xact comparison for sulphur before Aug. 25, 2013.  

 

After the instrument was returned to the laboratory, all metal standards were run to assess the 

accuracy, precision, and uncertainty of each metal. High-concentration metal standards, between 

7650 and 40852 ng/cm2 in concentration, were initially run for each metal between 3 and 7 times, 

and each metal was found to have an accuracy and precision in the range of 98-113% and 0.3-

17%, respectively (Table S1). The metal-specific analytic uncertainty was then calculated based 

on the sum of the average ratio of the difference between the target (T) and measured (X) values 

of each run (α) divided by the target value multiplied by the total number of runs (A), the 

uncertainty of the flow rate accuracy, set to be 10%, and additional metal-specific uncertainties 

(M), as seen in Equation 1. If the resulting uncertainty of any metal was less than 10%, it was 

raised to 10%; if there was no metal standard available for a measure metal, it was assigned an 

uncertainty based on the average uncertainties of the rest of the metals in the corresponding energy 

level. The results of this can be seen in Table S1.  

{|
∑ (𝑋−𝑇)𝐴

𝑎=1

𝐴∗𝑇
|

2

+ 0.12}

1/2

+ 𝑀    (1) 

Concerns that the high concentration metal standards were unrepresentative of the metal 

concentrations witnessed throughout the campaign led to a secondary test of 6 medium-

concentration metal standards; S, V, Ba, Fe, Zn, Ni (Table S1). These metal standards, chosen as 

they represented all 3 energy levels of the Xact, ranged in value from 490 ng/cm2 to 2010 ng/cm2, 

were much closer to the instrument’s measurements during the campaign (between 0.1 and 1300). 

Based on these medium standards the metal analysis by the Xact was estimated to have accuracies 

in the range of 93-113% and precisions in the range of 0.2%-9.5% (Table S1), which was similar 

to those seen in the high concentration metal standards. 
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Table S1. Uncertainties, energy levels, accuracies, and precisions of the metal analysis by the Xact used for the 

PMF analysis of the intensive monitoring campaign.   

 

 
High Concentration Element 

Standards 

Medium Concentration 

Element Standards 

Element 
Energy 

Level 

Accuracy 

(measured 

value/target 

value*100%) 

Precision 

(95% 

CI/target 

value*100%) 

Accuracy 

(measured 

value/target 

value*100%) 

Precision 

(95% 

CI/target 

value*100%) 

Uncertainty 

(%) 

Si 1     14 

S 1 98 12 108 9.5 12 

K 1     12 

Ni 2 113 17 102 0.3 18 

Ca 1 108 1   16 

Cd 3 99 7   10 

Se 2 99 1   10 

Mn 1 101 4   10 

Ti 1 102 4   10 

V 1 104 4 93 3.7 11 

Cr 1 104 0.5   11 

Fe 2 100 2 106 0.2 10 

Cu 2 99 2   10 

Zn 2 102 0.3 113 1.9 10 

Br 2 
  

  11 

Sr 2 
  

  10 

 

Despite the variations in the slopes that the high, medium, and low concentration metals exhibited 

when compared to the co-measured filter samples, the r2 values were high (over 0.95) (Figure 3). 

This, in addition to the results from the high and medium metal standards, led to the conclusion 

that the concentrations measured by the Xact were precise and largely accurate for most metals. 

Unresolved divergence remained among the Xact, AIM-IC, SP-AMS, and filter measurements for 

some elements such as sulphur. The agreement between the medium and high concentration 

standards indicated that this was not due to non-linearity in the calibration. 

 



 

Figure S3f. Comparison of ED-XRF and ICP-MS measurements at AMS 5, 11, and 13 from Dec. 16, 2010 to Nov. 

29, 2012. Nine elements with more than 80% of data below the minimum detection limit were excluded from the 

comparison.  

  



 

S.2 PMF 

Prior to analysis with PMF, the data for both the filter and intensive monitoring campaigns were 

pre-treated for Quality Control. In addition to only allowing metals which had >10% above DL 

data, or data that exhibited strong, “plume-like” behaviour when it was above detection limit, into 

the PMF matrices, the data matrices were also treated for biases. As the intensive monitoring 

campaign measured one blank value every 24 to 48 -hr, these blank values were averaged to create 

a single ‘baseline bias’ for each metal from which every datum was subtracted. This was possible 

as the blank values did not vary from measurement to measurement. This was not the case in the 

filter campaign. As the blank measurements were spaced a large temporal distance apart, and the 

values had wide variances, the data measured in this campaign were subtracted from the blank 

value which was the closest temporally. In order to quantitatively compare the contributions of 

PMF-resolved sources for the filter and Xact campaigns, the concentrations of major elements 

(i.e., Si, S, Ca, Fe) measured using Xact were corrected based on the intercomparison of filter and 

Xact data as described in the previous section.     

Special consideration was given to the input data (X) and uncertainty (σ) matrices by sorting the 

data into three categories: above the DL, below the DL, and missing values (Xie et al., 1999). Data 

above the DL was input directly, with an uncertainty of σij + DL/3.  Data below the DL was 

replaced with DL/2, and given an uncertainty of 5(DL)/6. Missing values were replaced with the 

geometric mean of the measured concentrations (v), and had the highest uncertainty of the three 

categories (4v) (Xie et al., 1999). Additionally, each remaining metal species was classified as 

good, weak, or bad depending on the S/N ratio (Equation 2). Metal species with an S/N ratio above 

2 were classified as good, while weak data had an S/N ratio between 0.2 and 2, and were down-

weighted by a factor of 3 (Paatero and Hopke, 2003, Norris and Duvall, 2014) (Table S2). Data 

with an S/N ratio below 0.2 were classified as “bad” and given a weight of zero (Paatero and 

Hopke, 2003). The only exception to this was Cu, which had an S/N ratio of 2.76, but was classified 

as ‘weak’. This was done as all measurements that were above the DL were very close to the DL, 

raising their uncertainties. Finally, the data set were all given an additional 10% “Extra Modelling 

Uncertainty” to further reduce the effects of noise within the data (Norris and Duvall, 2014). 

𝑆 𝑁⁄ =  √∑ 𝑥𝑖
2/ ∑ 𝜎𝑖

2𝑛
𝑖=1

𝑛
𝑖=1           (2) 

 



Table S2. Minimum detection limits (DL), S/N ratios, and average values of elements measured by the Xact 

and analyzed using PMF. 

 

Element DL (ng/m3) S/N Ratio 
Average Value 

(ng/m3) 

Percentage 

of Missing 

Data 

Percentage 

of Data 

Below 

Detection 

Limit 

Si 107.0 3.72 143 21.13% 45.16% 

S 26.7 8.10 468 21.13% 0.97% 

K 11.1 4.29 31 21.13% 16.94% 

Ca 26.2 3.89 54 21.13% 46.29% 

Ti 1.9 4.79 3.4 21.13% 39.35% 

V 0.3 3.22 0.21 21.13% 60.81% 

Cr 5.1 1.82 0.04 21.13% 69.35% 

Mn 0.4 2.40 1.12 21.13% 53.71% 

Fe 21.8 4.78 60 21.13% 41.29% 

Ni 0.3 0.80 0.08 21.13% 73.55% 

Cu 1.8 2.76 2.04 21.13% 59.52% 

Zn 1.4 0.75 0.88 21.13% 77.74% 

Se 0.2 1.50 0.07 21.13% 59.68% 

Br 0.2 4.79 0.54 21.13% 16.7% 

Sr 0.9 0.82 0.23 21.13% 71.77% 

 

 

S.3 Evaluation of the PMF solution 

The Q value (Equation 3) calculated by PMF algorithm was used to determine the number of 

resolvable factors affecting the receptor site, through its stability and inflection point. Because 

different pseudorandom numbers are selected by the algorithm at the initiation of each run, a stable 

solution with a preset number of factors will not experience a change in the Q value through a 

series of runs (Xie et al., 1999). Also, since the ratio of Q to the expected Q (Qexp, Equation 4) of 

the solution decreases with an increase in the preset number of output factors, an inflection point 

in the rate of decrease will indicate the most central, or optimal, solution (Xie et al., 1999) (Figure 

S4). The optimal number of factors was also determined by examination of the G-space plot, a 

direct comparison of the time series (G matrix) of one factor against that of another factor, and the 

scaled residuals of the results. Factor solutions that contain metals with a non-normal distribution 

in the scaled residual could signify that the uncertainty of the metal is too low, that there is noise 

in the data, or that there is another pollutant source of the metal not separated in the factor solution 



(Paatero, 1996). It should also be noted that a linear relationship between two factors in the G-

space plot could signify either a co-aligned or identical source (Paatero et al., 2005). 

𝑄 = ∑ ∑ 𝑒𝑖𝑗
2 𝜎𝑖𝑗

2⁄𝑚
𝑗=1

𝑛
𝑖=1     (3) 

Qexp = nm – p(n+m)                  (4) 

where n is the number of samples and m is the number of species, eij is the residual concentration 

of the jth species in the ith sample; σij is the uncertainty of the jth species in the ith sample, and p 

is the number of factors. 

 

 

 

 
Figure S4. Q analysis of the intensive and long-term campaigns.  

 

The final parameter examined in the selection of the optimal solution for the receptor site was the 

user-specified rotational parameter, Ф, chosen for the FPEAK analysis. When the PMF algorithm 

is run normally, i.e. with Ф=0, it finds the optimal solution the farthest away from any zeros in 

both the G and the F matrices (Paatero et al., 2002). When the value of Ф is changed to lie between 

-2 and 2, in the FPEAK analysis, the rotation of the algorithm is altered to allow for zeros or 

negative numbers in either the G or the F matrix. A stable solution will not change radically when 

the rotation, Ф, is changed, but the change in rotation may “clean” the solution by allowing the 

minor elements of the factor to go to zero. Throughout this study, the value of Ф was selected to 

be 0. 

Both the filter and the Xact data were analyzed separately using PMF due to their difference in 

the sampling intervals. Filter data from the monitoring and the filter campaign were combined to 



produce a single data matrix.  Additionally, the filter data from all three sites were combined into 

one data set prior to running the PMF algorithm. The goal of this was to take advantage of the 

close proximity and remote nature of the three sampling locations, assuming most, if not all 

aerosol sources are common among the sites, at the expense of independent PMF solutions. The 

spatial variability of the sites may also add extra factor-discriminating power, as each site is in a 

different direction to the various sources. As shown in Table S3, this technique succeeded in 

producing a stable 5-factor solution, which was similar to the 4- or 5-factor solutions produced 

when the filter data from each site was run independently (AMS 5, AMS 11, and AMS 13). Not 

only did the 5-factor solution exhibit the most central and stable Q factor, but also proved to be 

the most physically meaningful when compared to the solutions with 6 and 7 factors.  

 

Table S3. Standard deviations of the Q-factor across 150 PMF runs for the intensive monitoring and long-

term campaigns. 

Number of 

Factors 

Intensive 

Monitoring 

Campaign 

Long-term 

Campaign-

Combined 

Filters 

Long-term 

Campaign 

AMS13 

Long-term 

Campaign-

AMS5 

Long-term 

Campaign- 

AMS11 

3 0.01 396.97 130.76 65.19 0.06 

4 14.47 139.66 62.06 0.03 0.01 

5 0.00 21.94 22.70 15.55 1.75 

6 1.27 27.92 27.94 18.57 5.35 

7 0.01 6.91 17.17 14.12 22.27 

8 0.01 84.40 12.39 0.84 11.66 

9 0.05 17.01 12.63 6.16 11.97 

10 0.12 16.50 4.02 3.27 1.60 

11 0.01 2.42 7.03 6.85 1.13 

12 0.08 5.56 8.60 3.70 1.68 

13 0.02 6.79 5.62 2.64 1.34 

 

EPA PMF 5.0 includes useful tools to estimate uncertainties and evaluate the robustness and 

rotational ambiguity of PMF modeling results. The bootstrap (BS) analysis was conducted to 

evaluate the uncertainties (i.e. random error in data values) of the source profiles and the 

reproducibility of factors in every bootstrap (Paatero et al., 2014; Brown et al., 2015). In the BS 

analysis, the BS factors are compared with the base run factors and then mapped to the base 

factor if the correlation is higher than a threshold (r2=0.8 in this study). Tables S4 and S5 

summarize the diagnostics of the error estimation for three PMF solutions (i.e. 4-, 5-, 6-factor 

solution) for the intensive Xact data and the long-term filter data, respectively.  In the 5-factor 

solution of both Xact and filter data, we found most bootstrap factors were well assigned to base 



factors in >96% of every bootstrap. Overall reproducibility (i.e. average BS mapping 

percentages) for each factor in the 5-factor solution was higher than other solutions, suggesting 

the 5-factor solution was very reproducible and the optimal solution. The displacement (DISP) 

analysis was conducted to evaluate rotational ambiguity in the PMF solution as well. Multiple 

solutions may be generated with the same value of the object function Q due to rotational 

ambiguity. In DISP, each fitted element (only good species) in a source profile is displaced in 

turn from its fitted value until Q increases by a predetermined maximum change in Q. An 

uncertainty estimate for each element in each factor profile is thereby yielded and factor swaps 

may occur if factors change too much. A comprehensive error estimate method, bootstrap 

enhanced by displacement (BS-DISP) combine the strengths of BS and DISP, which evaluate 

both the robustness to data errors and rotational uncertainty. Overall, no change in DISP Q 

(%dQ) was found for the 5-factor solutions. Furthermore, no swapped factor was found in DISP 

BS-DISP runs, indicating the 5-factor solution was a global minimum and well-defined PMF 

solution. 

The source profiles of the 4- and 6-factor solution for the intensive Xact PMF analysis are shown 

in Figures S5 and S6. In the 4-factor solution, the Soil and Haul Road Dust factors can be 

combined, but the reproducibility of the solution was poor and there were factor swaps in the 

BS-DISP runs. In the 6-factor solution, the Soil factor from the 5-factor solution split into two 

similar soil factors which have poor BS mapping reproducibility and very high factor swaps in 

the BS-DISP analysis. Another solution could be possible in the 6-factor solution which was 

characterized by additional resolution of the Mixed sources in the 5-factor solution. As shown in 

Figure S6b, two Mixed sources were characterized by high loadings of Cu (Mixed Sources I) and 

Br and Se (Mixed Sources II). Thus, due to the robustness of the solution and the physically 

meaningfulness of the factor profiles, the 5-factor solution was clearly acceptable for the 

intensive campaign.  

In the long-term campaign the Haul Road Dust and Soil factors in the 5-factor solution can be 

combined into one factor in the 4-factor solution (Figure S7a). However, there was an alternative 

solution including a combined factor of Mixed and Upgrader Emissions (Figure S7b). Due to the 

instability, there were factor swaps in BS-DISP and the reproducibility of the 4-factor solution 

was poor. With 6 factors, an additional Soil factor characterized by high loadings of rare earth 

elements and vanadium was found. However, this second Soil factor is only found 56% of the 



BS resamples and 85% of the BS-DISP runs were accepted with high factor swaps. In the 7-

factor solution, additional factor containing high Pb and Br can be isolated from the Upgrader 

Emissions factor, but it’s stability was very poor and there was no reasonable source for Pb and 

Br only. The BS resamples and BS-DISP runs of the 5-factor solution was better than the 4- and 

6-factor solutions for the long-term filter data (Table S5). These results indicate that the 4- and 6-

factor solution are much less certain than the 5-factor solution. As a result, the 5-facror solution 

was chosen as the most reasonable and stable solution for the filter data.   

In order to determine the relative weights of the different factors, a multiple linear regression of 

the time series of each factor for both campaigns was run against both the summed metal 

concentrations as well as the PM2.5 concentrations (obtained from WBEA). As trace metals only 

account for a small percentage of the overall PM2.5 mass, the results of the PM2.5 regression 

proved to be a poor fit both statistically (r2<0.8) and physically, as it resulted in negative relative 

weights, to the metal speciation factor solutions. Because of this, the total metals concentration 

was used to determine the relative weights of the different factors, which resulted in a much 

better fit (r2>0.99). 

  



Table S4. Summary of error estimation diagnostics for intensive Xact data. 

 4-Factor Solution 5-Factor Solution 6-Factor Solution 

Robust Mode Yes 

Seed Value Random 

# of Bootstraps 

in BS 

100 

R2 in BS 0.8 

DISP active 

species 

Si, S, K, Ca, Ti, V, Mn, Fe 

BS-DISP active 

species 

S, K, Ti, V, Fe 

Factors with BS 

mapping < 100% 

Upgrader Emissions II(51%),  

Mixed (99%) 

Upgrader Emissions II (98%) Soil (53%),  

Soil II (93%) 

DISP %dQ 0 0 0 

DISP # of swaps 0 0 0 

BS-DISP % of 

Cases Accepted 

95 97 27 

BS-DISP # of 

swaps 

4 0 198 

 

 

Table S5. Summary of error estimation diagnostics for long-term combined filter data. 

 4-Factor Solution 5-Factor Solution 6-Factor Solution 

Robust Mode Yes 

Seed Value Random 

# of Bootstraps 

in BS 

100 

R2 in BS 0.8 

DISP active 

species 

Si, S, K, Ca, Ti, Fe, Cu, Sr, Al, Cd, Ce, La, Pr, Nd, Sm, Gd, Pb, U 

BS-DISP active 

species 

Si, S, K, Ca, Fe, Cu, La 

Factors with BS 

mapping < 100% 

Mixed (29%),  

Biomass Burning (98%) 

Mixed (96%),  

Soil (99%) 

Soil (56%),  

Haul Road Dust (97%),  

Mixed (99%) 

DISP %dQ 9.3E-5 0 1.8E-5 

DISP # of swaps 0 0 0 

BS-DISP % of 

Cases Accepted 

87 97 85 

BS-DISP # of 

swaps 

10 0 12 

 

 

 

  



S.4 PMF Factor Solutions 

 

 

 
Figure S5. Alternative 4-factor solution calculated using PMF for the intensive campaign (Xact metal data) 

Factor Concentrations depicted as bars, percentages depicted as circles. 

 

 

 

 

 

 

 

 

 



 
 
Figure S6a. Alternative 6-factor solution calculated using PMF for the intensive campaign (Xact metal data). 

Factor Concentrations depicted as bars, percentages depicted as circles. 

  



 

Figure S6b. Alternative 6-factor solution calculated using PMF for the intensive campaign (Xact metal data). 

Factor Concentrations depicted as bars, percentages depicted as circles. 

  



 
Figure S7a. Alternative 4-factor solution calculated using PMF for the long-term campaign (Filter data). 

Error bars represent standard deviations estimated by 100 bootstrap runs. Factor Concentrations 

depicted as bars, percentages depicted as circles. 

 

Figure S7b. Alternative 4-factor solution calculated using PMF for the long-term campaign (Filter data). 

Error bars represent standard deviations estimated by 100 bootstrap runs. Factor Concentrations 

depicted as bars, percentages depicted as circles. .  



 
Figure S8. 5-factor solutions for 4 independently run PMF analyses of the long-term campaign data 

(Integrated filter data). Black is the overall solution run after combining the data from all three sites; green is 

the independently run AMS5 data; red is the independently run AMS11 data; and blue is the independently 

run AMS13 data. 

 

 

 

 

  



S.5 Overall Species comparison 

Table S6. Average concentrations of elements used in the PMF analysis of the long-term campaign average 

and 90th percentile (Dec. 2010-Nov. 2012, Aug. 2013) for all three sites compared to average metal 

concentrations in Halifax, St John, Montreal, Windsor, Toronto, Edmonton, and Vancouver (Environment 

Canada, 2015). All metal(oid)s are measured either by acid digested ICP-MS (1) or ED-XRF (2).   

Element 

(ng/m3) 

Oil Sands - 

Average 

Oil Sands- 

90th 

Percentile 

Halifax, 

NS 

St John, 

NB 

Montreal, 

QC 

Windsor, 

ON 

Toronto, 

ON 

Edmonton, 

AB 

Vancouver, 

BC 

Ag1 0.02 0.02 0.02 0.02 0.04 0.03 0.03 0.03 0.03 

Al2 121 290 36 31 43 29 31 47 29 

As1 0.12 0.25 0.25 0.25 0.83 1.0 0.48 0.41 0.51 

Ba1 1.4 3.5 1.2 0.88 1.79 2.26 2.45 2.87 2.42 

Be1 N/A N/A 0.005 0.004 0.005 0.005 0.004 0.005 0.004 

Br2 2.1 4.3 2.0 1.8 2.5 2.7 2.0 2.6 2.0 

Ca2 154 390 23 14 58 69 45 60 19 

Cd1 0.04 0.08 0.03 0.04 0.19 0.16 0.08 0.13 0.07 

Ce1 0.16 0.35        

Co1 0.05 0.11 0.12 0.02 0.03 0.02 0.03 0.15 0.03 

Cr1 N/A N/A 0.23 0.21 0.54 0.43 0.37 1.6 0.55 

Cu1 2.7 6.0 2.0 1.2 3.2 3.3 2.8 3.6 2.7 

Dy1 0.01 0.02        

Er1 0.01 0.02        

Fe2 151 350 32 20 59 123 51 120 52 

Gd1 0.01 0.03        

K2 97 200 51 42 75 70 48 66 56 

La1 0.08 0.17        

Lu1 N/A L/A        

Mn1 5.1 13 0.91 0.60 2.2 4.5 1.6 7.7 2.6 

Mo1 0.21 0.39 0.11 0.09 0.31 0.33 0.18 0.40 0.22 

Ni1 0.94 1.4 2.3 0.76 0.73 0.75 0.46 1.5 1.4 

Nd1 0.06 0.14        

Pb1 0.42 0.99 1.5 0.85 3.9 4.3 2.0 1.4 2.5 

Pr1 0.02 0.04        

S2 373 760 334 357 415 720 455 331 248 

Se1 0.09 0.15 0.19 0.20 0.63 1.1 0.57 015 0.15 

Si2 265 670 46 29 54 53 40 14 26 

Sm1 0.01 0.03        

Sr1 N/A N/A 0.50 0.48 0.69 0.78 0.58 0.50 0.62 

Ti1 7.3 15 0.85 0.32 1.6 0.52 0.35 0.61 0.38 

Tl1 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.01 0.01 

U1 N/A N/A        

V1 0.84 1.9 2.9 1.2 0.81 0.71 0.23 0.35 2.4 

Yb1 N/A N/A        

Zn1 6.4 14 6.5 8.6 16 22 10 12 8.9 

 

 

  



S.6 Shannon Entropy  

Shannon entropy is a theoretical measure of the uncertainty associated with a random variable 

(Healy et al., 2014). Shannon entropy was used to quantify how each species was partitioned 

across various factors. The bulk population diversity (Di) for each species (i) was determined 

based on the mass fractions of each species (pa) for each factor (a) across the total number of 

factors (A).  A species equally distributed across all five factors would have a diversity of 5: a 

species with a value of 1 is considered to be entirely distributed to a single factor. Overall, 

Shannon Entropy is an information-theoretic measure that has been previously used to indicate 

biodiversity (Whittaker, 1965), genetic diversity (Rosenburg et al., 2002), and economic 

diversity (Attaran, 1986).  More recently, Shannon entropy has been used to analyze how 

chemical species present in particles are distributed in an aerosol population (Healy et al., 2014; 

Reimer and West, 2013). In this study, Shannon entropy was used to analyze how the metals 

species were distributed across the various factors. A metal species with a diversity value above 

3.5 was considered to be equally distributed, and, therefore, that species could not be used as a 

characteristic species for factor identification. 

 𝐷𝑖 = 𝑒∑ −𝑝𝑎𝑙𝑛𝑝𝑎𝐴
𝑎=1      (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Table S7. Diversity values for the elements analyzed in the intensive monitoring and long-term campaigns. 

Species in bold had diversity values greater than 3.5 and thus were too diverse to be used to distinguish 

between factors. 

Elements Intensive 

Campaign 

Long-term 

Campaign 

Si 2.0 2.4 

S 2.1 1.8 

K 2.4 3.3 

Ca 2.3 2.2 

Ti 2.6 3.3 

V 1.6 2.4 

Cr 3.9  

Mn 3.5 2.3 

Fe 3.1 2.1 

Ni 2.6 3.7 

Cu 1.4 1.9 

Zn 2.0 2.8 

Se 2.2 3.6 

Br 1.5 2.6 

Sr 3. 5 3.6 

Be  3.5 

Al  2.6 

Co  3.8 

As  4.2 

Mo  2.9 

Ag  3.4 

Cd  2.2 

Ce  2.6 

Ba  2.8 

La  2.6 

Pr  2.4 

Nd  2.5 

Sm  2.2 

Gd  2.3 

Dy  2.4 

Er  3.2 

Yb  2.4 

Lu  3.2 

Tl  3.0 

Pb  3.4 

U  3.4 

 

 

 

  



S.7 Temporal trends  

 

 

Figure S9. Concentration time series of PMF-resolved 5 factors during the intensive campaign. 

  



 

Figure S10. Concentration time series of PMF-resolved 5 factors during the long-term campaign from 

December, 2010 to November, 2012 for AMS13, AMS5, and AMS11. 

  



S.8 Seasonal and Geographical Wind Directions  

    

     

     

     

  

Figure S11. Overall and seasonal wind roses of the three sites analyzed in the long-term campaign. 

AMS13-Overall 

AMS13-Winter 

AMS13-Spring 

AMS13-Summer 

AMS13-Fall 

AMS5-Overall AMS11-Overall 

AMS5-Winter AMS11-Winter 

AMS5-Summer AMS11-Summer 

AMS5-Fall AMS11-Fall 

AMS5-Spring AMS11-Spring 

<= 10 km/h 

10-20 km/h 

20-30 km/h 

>30 km/h 



S.9 Seasonal Temperatures 

 

Figure S12. Typical average monthly temperatures for Fort McMurray, AB for the year 2010-2011. 
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S.10 Long-Term Campaign CPF Plots 

 
Figure S13. CPF plots from all three sites; AMS13, AMS5, and AMS11 for each factor identified using PMF 

on the long-term campaign’s data. Blue Circles indicate the location of potential sources. ‘Gaps’ in the yellow 

wind rose are due to a lack of wind data coming from certain directions. Map courtesy of Alberta: 

Environmental and Sustainable Resource Development. Available: http://osip.alberta.ca/map 
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S.11 HYSPLIT Analysis 
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Figure S14. HYSPLIT Analysis diagrams of the 4 days with the overall highest contributions of the biomass 

burning factor: June 2, 2011; June 14, 2011; May 27, 2011; May 21, 2011. 
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Figure S15. HYSPLIT analysis diagrams of the 2 days with the highest overall soil contributions: June 8, 

2011; March 22, 2012. 
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