

Supplement of

Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA

Prettiny K. Ma et al.

Correspondence to: Patrick L. Hayes (patrick.hayes@umontreal.ca)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

6 Estimation of SOA yields for the MA model cases by accounting for chamber vapor losses

7 The approach used here to estimate SOA yields for VOC oxidation that account for losses of gas phase organic compounds to the 8 walls of Teflon environmental chambers uses a set of recently published parameters for modeling gas-wall partitioning in chamber 9 experiments (Krechmer et al., 2016). This previous work found that the fraction of each compound that partitioned to the walls at 10 equilibrium followed absorptive partitioning theory with an equivalent wall mass concentration that could be calculated from the 11 following equation.

$$c_w = 16(c^*)^{0.6} \ \mu g \ m^{-3} \quad for \ c^* = 1, 10, 100, or \ 1000 \ \mu g \ m^{-3} \tag{1}$$

Our approach assumes equilibrium between the organic material found in the gas phase, particle phase, and the chamber walls. The limitations of this assumption and its potential impact on the model results are discussed below. The partitioning of the SVOCs between the particle and gas phases and the chamber walls can be calculated using the particle concentration, C_{OA} as well as the equivalent wall mass concentration calculated from Equation 1 above.

$$\frac{[SVOC]_w}{[SVOC]_g} = \frac{c_w}{c^*} \qquad (2)$$
$$\frac{[SVOC]_p}{[SVOC]_g} = \frac{c_{OA}}{c^*} \qquad (3)$$

17 Furthermore, the yield, α_i , is the total amount of SVOC at a given volatility, *i*, formed from a given VOC.

$$[SVOC]_{g,i} + [SVOC]_{p,i} + [SVOC]_{w,i} = \alpha_i [\Delta VOC]$$
(4)

18 Combining Equations 2, 3, and 4, one can obtain the following equation.

12

$$[SVOC]_{p,i} = \alpha_i \left(1 + \frac{C_i^*}{C_{OA}} + \frac{C_{w,i}}{C_{OA}} \right)^{-1} [\Delta VOC]$$
(5)

19 If a four bin basis set is used where i = 1, 10, 100, or 1000 µg m⁻³, then the total SOA yield, *Y*, measured during an environmental 20 chamber experiment can be fit with Equation 6, which is simply Equation 5 summed over the four volatilities and then rearranged.

$$Y = \alpha_1 \left(1 + \frac{1}{C_{OA}} + \frac{C_{w,1}}{C_{OA}} \right)^{-1} + \alpha_{10} \left(1 + \frac{10}{C_{OA}} + \frac{C_{w,10}}{C_{OA}} \right)^{-1} + \alpha_{100} \left(1 + \frac{100}{C_{OA}} + \frac{C_{w,100}}{C_{OA}} \right)^{-1} + \alpha_{1000} \left(1 + \frac{1000}{C_{OA}} + \frac{C_{w,100}}{C_{OA}} \right)^{-1}$$
(6)

The corrected yields in this work were determined by simulating yield curves using the parameters published in Tsimpidi et al. (2010) and then refitting the curves using Equation 6.

For clarity, c_w is the equivalent organic mass concentration of the walls, and it is an empirically determined value. Equations 2 and 3 are the partitioning equations that describe either the partitioning between the gas phase and walls or the gas phase and the particles, which both depend on the volatility of the organic vapors, c^* . The significance of c_w can be understood by comparing equations 2 and 3. In equation 3, the partitioning is dependent on the total particle phase, c_{OA} . Similarly, the parameter c_w is the amount of mass in the chamber walls available for partitioning expressed as an effective mass concentration based on the work of Krechmer et al. (2016). However, the value of c_w is a function of c^* as shown in equation 1.

As mentioned above, the approach described here assumes equilibrium between the particle and gas phases as well as the 29 chamber walls. For higher volatility compounds ($c^* \ge 10 \ \mu g \ m^{-3}$), this assumption is reasonable given recently published results that 30 show transfer of mass between particles and walls on the timescale of an hour (Ye et al., 2016). The same paper has shown however 31 that for compounds with a volatility of $c^* = 1 \ \mu g \ m^{-3}$, the organic material condensed on particles evaporates and partitions to the 32 chamber walls on timescales that are longer than typical chamber experiments. The α value for the c^{*} = 1 µg m⁻³ bin would then be 33 biased high since the model described above would attribute mass to the chamber walls that is not actually present. Therefore, the 34 amount of V-SOA in model cases that use the corrected yields determined here should be considered an upper limit. Furthermore, the 35 original yields (without aging) should be considered lower limits. 36

Estimation of the SVOC volatility distribution at Pasadena from Thermonuder Aerosol Mass Spectrometry Measurements (TD-AMS)

The TD-AMS measurements at Pasadena were carried out using the system previously described by Huffman et al. (2008). Briefly, switching valves were used to sample both ambient air as well as ambient air passed through a thermodenuder (TD) that was scanned between 37 and 260°C. The mass fraction remaining (MFR) as a function of temperature, also known as a thermogram, is then calculated from the ratio of the TD measurements and the linearly-interpolated ambient measurements. In order to compare against the model, the thermogram was only determined for the period between 12:00 - 15:00 local time, which corresponded to 5 h of photochemical aging at a reference OH concentration of 1.5×10^6 molec OH cm⁻³. This thermogram is shown below in Figure S11. The thermogram is then converted to a volatility distribution using the method described by Faulhaber et al. (2009).

The lowest volatility bin modeled is $c^* = 0.01 \ \mu g \ m^{-3}$, but similar to previous measurements (Dzepina et al., 2011), the TD 46 volatility distribution extends to lower volatility bins. The mass in these lower bins is lumped into the $c^* = 0.01$ bins to allow 47 comparison with the model. In addition, since the background SOA is treated as non-volatile in the box model, we subtract the amount 48 of background SOA from the lowest bin ($c^* = 0.01 \ \mu g \ m^{-3}$) after lumping to determine the volatility distribution of urban OA at 49 Pasadena. Both of these approximations will bias the measured urban OA towards higher volatilities. When subtracting the 50 background SOA, this bias would be due to the possibility that some of the background SOA is found in c* bins greater than 0.01 µg 51 m⁻³. Thus, some of the mass subtracted from the $c^* = 0.01 \ \mu g \ m^{-3}$ bin should instead be subtracted from more volatile bins. Given the 52 measured urban OA is already lower volatility than that predicted in the model, correcting these potential sources of error would not 53 change the conclusion in the main text that the measured SOA is less volatile than the modeled SOA. 54

56 **REFERENCES**

- Dzepina, K. Cappa, C. D. Volkamer, R. M. Madronich, S. DeCarlo, P. F. Zaveri, R. A. and Jimenez, J. L.: Modeling the Multiday
 Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006, Environ. Sci. Technol., 45, 3496-3503, 2011
- Faulhaber, A. E. Thomas, B. M. Jimenez, J. L. Jayne, J. T. Worsnop, D. R. and Ziemann, P. J.: Characterization of a thermodenuder particle beam mass spectrometer system for the study of organic aerosol volatility and composition, Atmos. Meas. Tech., 2,
 15-31, 2009
- Huffman, J. A. Ziemann, P. J. Jayne, J. T. Worsnop, D. R. and Jimenez, J. L.: Development and characterization of a fast stepping/scanning thermodenuder for chemically-resolved aerosol volatility measurements, Aerosol Sci. Technol., 42, 395 407, 2008
- Krechmer, J. E. Pagonis, D. Ziemann, P. J. and Jimenez, J. L.: Quantification of Gas-Wall Partitioning in Teflon Environmental
 Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ, Environ. Sci. Technol., 50, 5757-5765,
 2016
- Tsimpidi, A. P. Karydis, V. A. Zavala, M. Lei, W. Molina, L. Ulbrich, I. M. Jimenez, J. L. and Pandis, S. N.: Evaluation of the
 volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos.
 Chem. Phys., 10, 525-546, 2010
- Ye, P. Ding, X. Hakala, J. Hofbauer, V. Robinson, E. S. and Donahue, N. M.: Vapor wall loss of semi-volatile organic compounds in
 a Teflon chamber, Aerosol Sci. Technol., 50, 822-834, 2016

74	Table S1. Parameters for VOC oxidation used in the model. The aging rate constant for the multi-generation oxidation of VOCs is
75	$1 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$.

		Molecular			Stoichiometric SOA yield High-NOx,					
Classification	Compounds	weight	$(\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1})$	$(nnt nnh^{-1})$	298 K (μg m ⁻³)					
		(g mol ⁻¹)	(cm morec s)	(hhr hhn)	0.1	1	10	100	1000	
	Methylcyclopentane	84.2	5.68×10^{-12}	0.566						
	Cyclohexane	04.2	$6.97 imes 10^{-12}$	0.285						
	Methylcyclohexane	98.2	9.64×10^{-12}	0.202			0.150	0.000		
	n-Heptane		6.76×10^{-12}	0.398						
	2-Methylhexane		6.89×10^{-12}	0.385						
	3-Methylhexane	100.2	7.17×10^{-12}	0.460					0.000	
	2,3-Dimethylpentane	100.2	7.15×10^{-12}	0.252						
	2,4-Dimethylpentane		4.77×10^{-12}	0.171						
A 11z5	2,2,3-Trimethylbutane		3.81×10^{-12}	0.031	0.000					
AIKJ	n-Octane	114.2	8.11×10^{-12}	0.197		0.000				
	3-Methylheptane		8.59×10^{-12}	0.131						
	2-Methylheptane		8.31×10^{-12}	0.171						
	2,2,4-Trimethylpentane		3.34×10^{-12}	0.476						
	2,3,4-Trimethylpentane		6.60×10^{-12}	0.171						
	2,3,3-Trimethylpentane		4.40×10^{-12}	0.194						
	n-Nonane	128.3	9.70×10^{-12}	0.220				ł		
	n-Decane	142.3	1.10×10^{-11}	0.180						
	Undecane	156.3	1.23×10^{-11}	0.290						
	Propene	42.1	2.63×10^{-11}	3.740						
	1-Butene	56.1	3.14×10^{-11}	0.340						
Ole1	1-Pentene		3.14×10^{-11}	0.112	0.000	0.001	0.005	0.038	0.150	
	2-Methyl-1-Butene	70.1	6.10×10^{-11}	0.250						
	3-Methyl-1-Butene	1	3.18×10^{-11}	0.058						
	1,3-butadiene	54.1	6.66×10^{-11}	0.350						
Ole2	trans-2-pentene	70.1	$6.70 imes 10^{-11}$	0.097	0.000	0.003	0.026	0.083	0.270	
	cis-2-pentene	/0.1	$6.50 imes 10^{-11}$	0.050						

Table S1 (continued).

Classification	Compounds	Molecular weight	<i>k_{OH}</i>	ΔVOC/ΔCO	Stoichiometric SOA yield High-NOx, 298 K (µg m ⁻³)				
	0 0111 P 0 01100	$(g \text{ mol}^{-1})$	$(\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1})$	(ppt ppb ⁻¹)	0.1	1	10	100	1000
Ole2	Styrene	104.2	$5.80 imes 10^{-11}$	0.220	0.000	0.003	0.026	0.083	0.270
	Benzaldehyde	106.1	1.15×10^{-11}						0.000
	o-Tolualdehyde			1.15×10^{-9} 0.0					
Ald	<i>m</i> -Tolualdehyde	120.1			0.000	0.000	0.000	0.000	
Alu	p-Tolualdehyde		1.13 × 10	1.13 × 10	0.000 0.00	0.000	0.000	0.000	
	2,5- Dimethylbenzaldehyde	134.2							
	Toluene	92.1	5.63×10^{-12}	3.180					0.435
	Ethylbenzene	106.2	$7.00 imes 10^{-12}$	0.570	0.000				
Aro1	<i>i</i> -Propylbenzene	120.2	6.30×10^{-12}	0.030		0.003	0.165	0.300	
	n-Propylbenzene	120.2	5.80×10^{-12}	0.110					
	Benzene	78.1	1.22×10^{-12}	1.300					
	o-Ethyltoluene		1.19×10^{-11}	0.120			0.195	0.300	0.435
	<i>m/p</i> -Ethyltoluene		1.52×10^{-11}	0.349					
	1,2,3-Trimethylbenzene	120.2	3.27×10^{-11}	0.240		0.002			
Aro2	1,2,4-Trimethylbenzene		3.25×10^{-11}	0.620	0.000				
	1,3,5-Trimethylbenzene		5.67×10^{-11}	0.310	_				
	<i>m/p</i> -Xylene	106.2	1.87×10^{-11}	1.790 ^a					
	o-Xylene	100.2	1.36×10^{-11}	0.459 ^b					
Ison	Anthropogenic isoprene	68.1	1.00×10^{-10}	0.300	0.000	0.001	0.023	0.015	0.000
Isop	Biogenic isoprene	00.1	1.00×10	N/A	N/A 0.000		0.025	0.015	
Terp	α-pinene + β-pinene + limonene	136.2	9.82×10^{-11}	N/A	0.000	0.012	0.122	0.201	0.500

^aAverage of both emission ratios; ^bZhao et al. 2014

		kon	k_{OH} $\Delta IVOC/\Delta CO$		Stoichiometric SOA yield High-NOx,				
Classification	Compounds	$(\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1})$	$(ng m^{-3} ppb^{-1})$	298 K (μg m[°])					
		(••••• •• • • • • • •	(g PP~)	0.1	1	10	100	1000	
	Naphtalene	2.44×10^{-11}	0.341				0.516		
Nanh	1-Methylnaphtalene	4.09×10^{-11}	0.058	0.000	0 165	0.005		0.881	
тарп	2-Methylnaphtalene	4.86×10^{-11}	0.110	0.000	0.105	0.005		0.001	
	Phenanthrene	3.20×10^{-11}	0.187						
Alk10	B12 alkane	1.32×10^{-11}	1.718	0.000	0 150	0.000	0.000	0.000	
Alk11	B13 alkane	1.51×10^{-11}	1.513	0.000	0.150	0.000		0.000	
	Dodecane	1.32×10^{-11}	0.446	0.000 0.014				0.000	
Alk12	B14 alkane	1.68×10^{-11} 0.951	0.951		0.014	0.110	0.160		
	B12 cyclic	1.32×10^{-11}	8.950						
	Tridecane	1.51×10^{-11}	0.310						
A 11-1-2	Heptylcyclohexane	1.91×10^{-11}	0.049	0.014	0.059	0.220	0.400	0.000	
AIK15	B15 alkane	1.82×10^{-11}	0.574						
	B13 cyclic	1.51×10^{-11}	5.868						
	Tetradecane	1.68×10^{-11}	0.479		0.094	0.300	0.350	0.000	
A 11-14	Octylcyclohexane	$2.05 imes 10^{-11}$	0.049	0.022					
AIK14	B16 alkane	1.96×10^{-11}	0.486	0.022					
	B14 cyclic	1.68×10^{-11}	5.009						
	Pentadecane	1.82×10^{-11}	0.277						
	Nonylcyclehexane	2.19×10^{-11}	0.036			0.071 0.410			
Alk15	Pristane	2.44×10^{-11}	0.062	0.044	0.071		0.300	0.000	
	B17 alkane	2.10×10^{-11}	0.795						
	B15 cyclic	1.82×10^{-11}	2.758						
	Hexadecane	1.96×10^{-11}	0.204						
A 11-16	Decylcyclohexane	2.33×10^{-11}	0.029	0.052		0.460	0.250	0.000	
AIKIO	Phytane	2.61×10^{-11}	0.031	0.033	0.085	0.400	0.230	0.000	
	B18 alkane	2.24×10^{-11}	0.278						

Table S2. Parameters for P-IVOC oxidation used in the model. Measurements of the IVOCs were reported in Zhao et al. 2014. The aging rate constant for the multi-generation oxidation of P-IVOCs is 4×10^{-11} cm³ molec⁻¹ s⁻¹.

81 Table S2 (Continued).

Classification	Compounds	k_{OH}	$\Delta IVOC/\Delta CO$	Stoichiometric SOA yield High-NOx, 298 K (µg m ⁻³)					
		(cm molec s)	(ng m ppp)	0.1	1	10	100	1000	
Alk16	B16 cyclic	1.96×10^{-11}	1.855	0.053	0.083	0.460	0.250	0.000	
	Heptadecane	2.10×10^{-11}	0.141						
	Octadecane	2.24×10^{-11}	0.070						
	Nonadecane	2.38×10^{-11}	0.030						
	Eicosane	2.52×10^{-11}	0.015						
	Heneicosane	2.67×10^{-11}	0.010						
	B19 alkane	2.38×10^{-11}	0.123						
Alk17	B20 alkane	2.52×10^{-11}	0.072	0.063	0.063 0.089 0.550		0.200 0.0	0.000	
	B21 alkane	2.67×10^{-11}	0.028						
	B17 cyclic	2.10×10^{-11}	2.473						
	B18 cyclic	2.24×10^{-11}	0.939						
	B19 cyclic	2.38×10^{-11}	0.526						
	B20 cyclic	2.52×10^{-11}	0.311						
	B21 cyclic	2.67×10^{-11}	0.142						

83 Table S3. Parameters for P-SVOC oxidation and the P-SVOC volatility distribution used in the model. The volatility distribution of P-

84 SVOCs reported by Worton et al. (2014) is used for vehicular emissions whereas the volatility distribution of P-SVOCs reported by

85 Robinson et al. (2007) is used for cooking emissions.

c* (µg m ⁻³)	ΔH_{vap} (kJ mol ⁻¹)	Molecular Weight (g mol ⁻¹)	Fraction of total P-SVOC (%)		
ROB & WOR	ROB & WOR	ROB & WOR	ROB	WOR	
10 ⁻²	112		6	4	
10-1	106		12	6	
10^{0}	100	250	18	12	
10^{1}	94		28	19	
10^{2}	88		36	59	
\mathbf{K}_{OH} (cm ³ molec ⁻¹ s ⁻¹)	4 x 10 ⁻¹¹				
Oxygen mass gain per oxidation generation (%)		7.5			
Volatility decrease per oxidation generation	1 order of magnitude				

Classification	Stoichiometric SOA yield, High-NO _X , at 298 K (μg m ⁻³)							
Classification	1	10	100	1000				
Alk5	0.157	0.000	0.000	0.000				
Ole1	0.014	0.000	0.098	0.088				
Ole2	0.052	0.000	0.183	0.157				
Ald	0.000	0.000	0.000	0.000				
Aro1	0.276	0.002	0.431	0.202				
Aro2	0.310	0.000	0.420	0.209				
Isop	0.034	0.000	0.005	0.000				
Terp	0.210	0.000	0.348	0.297				

Table S4. Updated version of the SOA yields for VOCs accounting for losses of semi-volatile gases to chamber walls.

90 Figure S1. Predicted urban SOA mass from the alkane VOCs (Alk5) for different SOA formation parameterizations.

92 Figure S2. Predicted urban SOA mass from the olefin VOCs (Ole1) for different SOA formation parameterizations.

94 Figure S3 Predicted urban SOA mass from the olefin VOCs (Ole2) for different SOA formation parameterizations.

Figure S4. Predicted urban SOA mass from the aromatic VOCs (Aro1) for different SOA formation parameterizations.

Figure S5. Predicted urban SOA mass from the aromatic VOCs (Aro2) for different SOA formation parameterizations.

100 Figure S6. Predicted urban SOA mass from isoprene (Isop) for different SOA formation parameterizations.

Figure S7. Predicted urban SOA mass from terpenes (Terp) for different SOA formation parameterizations.

Figure S8. Predicted urban SOA mass by the A) WOR + ZHAO + TSI and B) WOR + ZHAO + MA cases when using the meat
 cooking volatility distribution reported by Woody et al. (2016).

Figure S9. Estimated fractional contributions to urban SOA mass concentration using the WOR + ZHAO + MA case.

108

109 Figure S10. Predicted urban SOA mass for the A) ROB + ZHAO + MA and B) WOR + ZHAO + MA cases when using IVOC initial

110 concentrations determined using photochemical age, the Pasadena IVOC concentrations and the estimated IVOC oxidation rate 111 constants.

Figure S11. Organic mass fraction remaining as a function of temperature for Pasadena, California during CalNex 2010. Data
 correspond to 12:00 – 15:00 local time.