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Abstract. Gridded emission inventories are essential inputs
for chemical transport models and climate models. Spatial
proxies are applied to allocate emissions from regional to-
tals to spatially resolved grids when the exact locations of
emissions are absent, with additional uncertainties arising
due to the spatial mismatch between the locations of emis-
sions and spatial proxies. In this study, we investigate the
impact of spatial proxies on the accuracy of gridded emis-
sion inventories at different spatial resolutions by compar-
ing gridded emissions developed from different spatial prox-
ies (proxy-based inventory) with a highly spatially disaggre-
gated bottom-up emission inventory developed from the ex-
tensive use of locations of emitting facilities (bottom-up in-
ventory) in Hebei Province, China. We find that proxy-based
inventories are generally comparable to bottom-up invento-
ries for grid sizes larger than 0.25◦ because spatial errors
are largely diminished at coarse resolutions. However, for
gridded emissions with finer resolutions, large positive bi-
ases in urban centers and negative biases in suburban and ru-
ral regions are identified in proxy-based inventories and are
then propagated into significant biases in urban-scale chemi-
cal transport modeling. Compared to bottom-up inventories,
the use of proxy-based emissions exhibits similar modeling
results, with biases varying from 3 to 13 % when predicting
surface concentrations of different pollutants at 36 km reso-
lution and an additional 8–73 % at 4 km resolution. The res-

olution dependence of uncertainties in proxy-based gridded
inventories can be explained by the decoupling of emission
facility locations from spatial surrogates, especially because
industry facilities tend to be located away from urban cen-
ters. This distance results in a divergence between emission
distributions and the allocation of proxies on smaller grids.
The decoupling effects are weakened when the grid size in-
creases to cover both urban and rural regions. We conclude
that proxy-based inventories are of sufficient quality to sup-
port regional and global models (larger than 0.25◦ in this case
study); however, to support urban-scale models with accurate
emission inputs, bottom-up inventories incorporating the ex-
act locations of emitting facilities should be developed in-
stead of proxy-based inventories.

1 Introduction

Gridded emission inventories have emerged as a critical com-
ponent of atmospheric chemistry and climate models. The
importance of these inventories has been driven by the advent
of regional chemical transport models on different spatial
scales. As the key inputs, spatial representations of emission
estimates containing errors can be propagated into modeled
concentrations, affecting subsequent studies based on those
chemical transport models.
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Gridded emission inventories can be developed using two
methods: bottom-up estimates and proxy-based estimates
with downscaling techniques. Bottom-up estimates rely on
massive spatial information such as point sources, detailed
censuses, and traffic statistics. For large point sources, emis-
sions can be estimated for each individual facility and then
mapped at high resolutions (e.g., Zhao et al., 2008; Liu et
al., 2015). For on-road emissions, high-resolution mapping
can be achieved using road-specific traffic count data on spa-
tial scales ranging from 500 m to 10 km (e.g., Gately et al.,
2013, 2015; McDonald et al., 2014). The bottom-up inven-
tory methods above rely on mass data inputs, which are ac-
curate but difficult to extend through all sectors and regions.
For example, Gurney et al. (2009) developed the Vulcan in-
ventory to quantify fossil fuel CO2 emissions for the con-
tiguous USA at a resolution of 10 km. This data product was
built upon the best available data sources through all sectors
throughout the USA, including point, nonpoint, and airport
datasets with additional emission monitoring data from indi-
vidual facilities.

The proxy-based method relies on spatial proxies to build
emission inventories in gridded form. Because they require
relatively less data, proxy-based approaches are widely used
for developing gridded emission inventories. Proxies such
as population and nighttime lights have been used to de-
rive gridded emissions (e.g., Raupach et al., 2010; Oda and
Maksyutov, 2011; Wang et al., 2013), which are implic-
itly assumed to be resolution-independent at sizes ranging
from district level to grid cells. However, this correlation is
likely sensitive to fine-scale spatial resolutions, which in-
troduce uncertainties in high-resolution emission mapping.
Gurney et al. (2009) highlighted the spatial biases inherent
in a population-based gridded emission inventory due to the
decoupling of emissions and population at 0.1◦. Oda and
Maksyutov (2011) presented the uncertainties in a nighttime
light-based inventory due to the saturation errors in night-
time light data at 1 km. Gately et al. (2013, 2015) found
that the spatial correlation between the per-mile CO2 emis-
sions of motor vehicles and population density changed from
positive to negative when population density increased (cut-
off point of approximately 2000 persons km−2). The stud-
ies above suggest that nonlinearities exist between emis-
sions and spatial proxies on fine scales. The downscaling
method with fixed correlation can involve large uncertainties
in proxy-based gridded emissions, especially at high resolu-
tions.

The uncertainties in proxy-based gridded emission inven-
tories are sensitive to spatial resolution. Recent efforts sug-
gest that the spatial errors of proxy-based CO2 emission in-
ventories tend to increase as spatial resolutions rise (e.g.,
Gurney et al., 2009; Rayner et al., 2010; Oda and Maksyu-
tov, 2011; Wang et al., 2013; Asefi-Najafabady et al., 2014)
because spatial proxies are decoupled from emissions at fine
resolutions; however, the influence of uncertainties in grid-
ded emission inventories of air pollutants and their propaga-

tion in atmospheric chemistry models is not considered. This
shortcoming hampers high-resolution air pollution modeling
when proxy-based inventories are used because the grid size
suitable for constraining the uncertainties is unknown.

This paper aims to investigate how resolutions influence
uncertainties in gridded emission inventories of air pollu-
tants and the subsequent atmospheric chemistry modeling.
The spatial resolution dependence of uncertainties in grid-
ded emission inventories is quantified using multi-resolution
emission inventories, a chemical transport model, and in situ
measurements. We use Hebei Province in China, where a
detailed bottom-up emission inventory is available. We first
develop gridded emission inventories for Hebei at the res-
olution of 1 km using proxy-based and bottom-up methods
and then compare the two datasets at multiple aggregated
spatial resolutions. The Community Multi-scale Air Qual-
ity (CMAQ) model is driven by the two gridded emission
datasets to explore how uncertainties affect the performance
in predicting the surface concentrations of different air pol-
lutants.

2 Methodology

2.1 Gridded emission inventories

2.1.1 Bottom-up inventory

We used the bottom-up method to develop a high-resolution
emission inventory for Hebei Province in 2013 (denoted by
HB-EI). The emission sources were subdivided into more
than 700 sector, fuel (or product), and technology combina-
tions of source categories and aggregated into five sectors
(power, industry, residential, transportation, and agriculture).
Each source category was classified as point, nonpoint, or
mobile, with a different emission accounting method applied
to each category.

Point sources were stationary emitting sources invento-
ried at a facility level. The power and industry sectors were
treated as point sources, from which the emissions were cal-
culated using the following:

Emisi,s = Ai ×EFi,s ×
∏
n

(
1− ηi,n,s

)
, (1)

where i represents the emitting facility, s represents air pol-
lutants (i.e., SO2, NOx , VOCs (volatile organic compounds),
NH3, CO, CO2, PM2.5, BC, OC, PM10, and TSP (particulate
matter with aerodynamic diameter of 100 µm or less)), A is
the activity rate, EF is the unabated emission factor, n repre-
sents an air pollution control device, and ηi,n,s is the removal
efficiency of pollutant s by control device n installed at facil-
ity i. The point sources were located according to their lat-
itudinal and longitudinal coordinates. The locations of large
point sources were checked and corrected by visual inspec-
tion in Google Maps. Large point sources included power
and heating plants, large industrial boilers (≥ 24.5 MW), and
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Table 1. Proxies used for spatial distributions of emissions in HB-EI and MEICa.

Sector Subsector
HB-EI MEIC

Province to county County to grid Province to county County to grid

Power Point source Point source

Industry Point source Industrial GDPb Urban populationd

Residential
Urban Residential coal usec Urban populationd Urban populationb Urban populationd

Rural Residential coal and/or Rural populationd Rural populationb Rural populationd

biofuel usec

Transportation

On-roade Vehicle numbers Road network; Vehicle numbers Road network;
traffic flow data traffic flow data

Non-road: Machine powerb Rural populationd Machine powerb Rural populationd

agriculture

Non-road: Construction areac Urban populationd Total GDPb Urban populationd

construction

Non-road: Total populationb Total populationd Total populationb Total populationd

other source

Agriculture
Fertilizer Fertilizer useb Rural populationd Fertilizer useb Rural populationd

Livestock Livestock amountc Rural populationd Meat consumptionb Rural populationd

a The proxies in bold are used in HB-EI and are different from those used in MEIC.
b Data source: National Bureau of Statistics (2014).
c Data source: statistics from local agencies.
d Data source: population data (Oak Ridge National Laboratory, 2013), urban or rural extents (Schneider et al., 2009).
e Data source: Zheng et al. (2014).

manufacturing factories of coke, iron, steel, cement, and flat
glass. These sites constituted 90 % of the energy demand
from all the point sources. For the other point sources, the
coordinates of registered addresses were used directly.

Nonpoint or area sources were stationary emitting sources
inventoried at a province level, from which emissions exit
from diffuse sources without identifiable stacks. The residen-
tial, non-road transportation and agriculture sectors were es-
timated as nonpoint sources using the following:

Emisj,k,m,s =Aj,k ×Xj,k,m×EFj,k,m,s

×

∑
n

(
Cj,k,m,n×

(
1− ηn,s

))
, (2)

where j represents sector, k represents fuel or product, m
represents technology, X is the fraction of activity rates con-
tributed by a specific technology, C is the penetration of a
specific pollution-control technology, and the other parame-
ters are the same as in Eq. (1). The nonpoint sources were
allocated to a 30′′× 30′′ grid in two steps. First, the provin-
cial emission totals were distributed to each county based on
county-level activity statistics. For example, we used the res-
idential coal and biofuel use of each county to allocate resi-
dential emissions. Second, county emissions were allocated
to grids based on spatial proxies, such as urban or rural ex-
tents (Schneider et al., 2009) and population (Oak Ridge Na-

tional Laboratory, 2013). The parameters used in nonpoint
source emission distributions are summarized in Table 1.

Mobile sources referred to the on-road transportation sec-
tor and were estimated using the method established by
Zheng et al. (2014). The county-specific vehicle activity and
emission factors were simulated and multiplied to calcu-
late county-level vehicle emissions. County emissions were
downscaled to a 30′′× 30′′ grid using a geographic informa-
tion system (GIS) road atlas and traffic flow statistics specific
to different vehicle and road types (Zheng et al., 2014).

2.1.2 Proxy-based inventory

We used the data from the Multi-resolution Emission Inven-
tory for China (MEIC) as the proxy-based estimate. MEIC
is a technology-based emission model framework developed
by Tsinghua University (http://www.meicmodel.org). This
model was built on the foundation laid by the same group
responsible for the present study (e.g., Zhang et al., 2007,
2009; Lei et al., 2011), with high-resolution mapping of
emissions for power plants (Liu et al., 2015) and on-road ve-
hicles (Zheng et al., 2014).

The emission source categorization in MEIC is the same
as that in HB-EI. Emissions of power plants were estimated
for each unit using Eq. (1). The on-road transportation sector
was estimated following the method established by Zheng et
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Figure 1. Triple-nested domains of the CMAQ simulation: (a) spatial extent of triple-nested domains with OMI (ozone monitoring
instrument)-derived NO2 column densities (Boersma et al., 2011) in background, (b) domain 3 with NOx emissions from point sources
in HB-EI inventory.

al. (2014) as the bottom-up inventory. The industrial, residen-
tial, non-road transportation, and agricultural sectors were
estimated as nonpoint sources using Eq. (2) with activity
rates and emission factors at the provincial level. Emission
totals from nonpoint sources were allocated to grid cells us-
ing different spatial proxies. The proxies used for MEIC are
also presented in Table 1 and compared with HB-EI. For ex-
ample, in MEIC, the residential sector used county popula-
tion to split provincial emissions by county instead of resi-
dential energy consumption used in HB-EI.

In this work, we used Hebei emissions from 2013 from
MEIC v1.2 and scaled the emission magnitude to match the
HB-EI inventory by source category. This approach can sup-
port the magnitude-independent comparison to reflect the
discrepancies in the spatial distribution of gridded emis-
sions. Multi-resolution gridded emissions aggregated from
the 30′′× 30′′ grids were used to assess the resolution de-
pendence of uncertainties in the gridded emission inventory.

2.2 Chemical transport model

2.2.1 Model configuration

The WRF–CMAQ system was used to evaluate emission
inventories and assess how uncertainties in gridded emis-
sion inventories influenced atmospheric chemical modeling.
CMAQ v5.0.1 (http://www.cmascenter.org/cmaq/) was ap-
plied in this work, which was driven by assimilated me-
teorological fields from the Weather Research and Fore-
casting (WRF) model v3.5.1 (http://www.wrf-model.org/).
The model configurations were determined following the
method established in our previous work (Zheng et al., 2015).
We used the updated carbon bond gas-phase mechanism
with an updated toluene mechanism (Whitten et al., 2010),

aerosol module 6 (AERO6), and ISORROPIA v2.1 inorganic
chemistry (Fountoukis and Nenes, 2007). The aqueous-phase
chemistry method used in this study was the updated mech-
anism of the Regional Acid Deposition Model (Walcek and
Taylor, 1986; Chang et al., 1987). Photolytic rates were cal-
culated in line using simulated aerosol and ozone concentra-
tions. The ACM (asymmetrical convective model) methodol-
ogy was adopted in the cloud module to compute convective
mixing for aerosols. The configurations above were evalu-
ated in Zheng et al. (2015).

Anthropogenic emissions outside Hebei Province were
taken from MEIC for China (http://www.meicmodel.org) and
MIX for the other Asian countries (Li et al., 2015). Emis-
sion inputs were processed on simulation domains from their
native resolutions (30 s× 30 s for MEIC and 0.25◦× 0.25◦

for MIX). Other emissions, such as biomass burning, sea
salt, and biogenic VOCs, were taken from various models
and datasets following the method established by Zheng et
al. (2015).

The boundary and initial conditions were processed from
the GEOS-Chem model output (Bey et al., 2001) using the
tool developed by Henderson et al. (2014).

2.2.2 Simulation design

Two full-year simulations of 2013 were conducted using
MEIC (denoted by S1) and HB-EI (denoted by S2), both
at triple-nested domains (36, 12, and 4 km), with the finest
resolution focusing on Hebei Province (Fig. 1). We also
conducted a sensitivity simulation (denoted by S3) for Jan-
uary, April, July, and October using the adjusted HB-EI
emissions by changing ∼ 20 % point sources into nonpoint
source estimates to assess the influence of highly spatially
resolved emission sources on atmospheric chemistry model-
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ing. We aggregated the emissions from small industrial boil-
ers (≤ 24.5 MW) into provincial totals and then distributed
the totals onto grid cells using the same spatial proxies as
those used in the industrial sector in MEIC.

The model performances were evaluated against ground-
based measurements. We compared the annual daily mean
of simulation and observation for the criteria air pollutants
and we calculated mean bias (MB) and normalized mean
bias (NMB) to evaluate modeling results.

2.3 In situ measurements

The ground-based observations in Hebei were acquired from
the China National Environmental Monitoring Center (http:
//106.37.208.233:20035/), which published hourly concen-
trations of SO2, NO2, CO, O3, PM2.5, and PM10 from 53
monitoring stations over Hebei in 2013. This dataset was
built and maintained by the Ministry of Environmental Pro-
tection in China and is used as the official dataset for national
air-quality management. The ground-based stations are pri-
marily located in urban centers because they are designed to
assess population exposures in the densest areas.

3 Results

3.1 Emission inventories: bottom-up versus
proxy-based

In the HB-EI inventory, we estimated the anthropogenic
emissions of Hebei Province in 2013 as follows: 1.4 Tg SO2,
2.0 Tg NOx , 1.5 Tg VOCs, 0.5 Tg NH3, 16.8 Tg CO,
827.2 Tg CO2, 2.7 Tg TSP, 1.3 Tg PM10, 0.9 Tg PM2.5,
0.1 Tg BC, and 0.2 Tg OC. The magnitudes of emissions
in MEIC were scaled to match HB-EI by emission source;
therefore, the discrepancies between MEIC and HB-EI
were primarily attributed to the differences in spatial dis-
tributions. The MEIC inventory represented a mixture of
data sources from downscaled province-level emissions
and point sources (i.e., power plants), in which 25 % SO2,
NOx , and CO2 emissions were identified as point sources
(Fig. 2a). Conversely, more than 70 % emissions in the
HB-EI inventory were inventoried as point sources (Fig. 2b),
and the remaining emissions were constrained by road- and
county-level activities.

The discrepancy in emission shares of point sources var-
ied by pollutant between MEIC and HB-EI. For pollutants
that dominated emissions by industrial combustion and pro-
duction (e.g., CO2, SO2, and NOx), HB-EI presented a much
larger share of point source emissions than MEIC, while
for the pollutants mainly emitted from diffuse sources (e.g.,
VOCs, NH3, BC, and OC), the two datasets presented similar
contributions from point sources. These findings suggested
that the nonlinearities in CO2 emissions and spatial proxy co-
variance identified in early studies (e.g., Gurney et al., 2009;
Rayner et al., 2010; Oda and Maksyutov, 2011; Wang et al.,

Figure 2. Emission percentages contributed by point, nonpoint, and
mobile sources in Hebei Province: (a) the MEIC inventory, (b) the
HB-EI inventory.

2013; Asefi-Najafabady et al., 2014) may have diverged for
different air pollutants.

3.2 Resolution dependence of uncertainties in the
gridded emission inventory

Table 2 shows the comparison between the gridded emis-
sions of the bottom-up inventory (HB-EI) and the proxy-
based inventory (MEIC) over the Hebei region at different
resolutions. Following the method established by Rayner
et al. (2010), three metrics were adopted for compari-
son: (1) spatial correlation (R), which quantifies the corre-
spondence of spatial patterns; (2) summed absolute differ-
ence (SAD), which is the sum of the absolute difference for
the whole domain; and (3) relative summed absolute differ-
ence (RSAD), which is calculated as the SAD divided by
total emissions over the domain. For the pollutants of which
emissions are dominated by point sources, the two gridded
inventories agreed well at coarse resolutions (grid size larger
than 0.25◦), while the differences tended to increase when
grid size decreased, indicating more spatial biases involved
in proxy-based inventories at high spatial resolutions. For ex-
ample, the resolutions of 0.05 and 0.1◦ produced normalized
bias (RSAD) as large as 80–100 %, results that were much
higher than the uncertainties in total emissions (e.g., 20–40 %
for SO2 and NOx). For the pollutants of which emissions are
dominated by nonpoint sources (e.g., NH3), the two invento-
ries agreed well regardless of spatial resolution because they
shared the same spatial proxies.

Figure 3 compares the spatial distributions of gridded
emissions using NOx as an example. Figure 3a–d presents
NOx emission distributions in HB-EI at different spatial res-
olutions, and Fig. 3e–h presents the differences between the
two inventories. At high resolutions (0.05 and 0.1◦), MEIC
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Table 2. Comparison of gridded emissions from MEIC and HB-EI at different resolutions.

Ra SADb (Tg) RSADc (%)

0.05◦ 0.1◦ 0.25◦ 0.5◦ 1.0◦ 0.05◦ 0.1◦ 0.25◦ 0.5◦ 1.0◦ 0.05◦ 0.1◦ 0.25◦ 0.5◦ 1.0◦

TSP 0.25 0.44 0.71 0.84 0.84 3.56 2.92 2.09 1.56 1.28 136 111 80 60 49
CO2 0.59 0.66 0.76 0.91 0.92 783 628 439 287 200 96 77 54 35 24
SO2 0.54 0.68 0.81 0.9 0.89 1.33 1.06 0.75 0.57 0.47 99 79 56 42 35
PM10 0.31 0.49 0.73 0.87 0.86 1.38 1.13 0.83 0.64 0.52 111 91 67 51 42
CO 0.23 0.4 0.69 0.79 0.77 18.66 16.34 12.63 10.63 9.24 114 100 77 65 56
PM2.5 0.31 0.49 0.73 0.86 0.85 0.91 0.76 0.57 0.45 0.38 103 86 64 51 42
NOx 0.78 0.83 0.87 0.94 0.95 1.34 1.04 0.77 0.5 0.39 68 52 39 25 20
BC 0.33 0.49 0.71 0.88 0.9 0.11 0.09 0.07 0.05 0.04 77 65 51 39 32
VOCs 0.72 0.84 0.91 0.96 0.97 0.8 0.65 0.5 0.37 0.28 53 44 34 25 19
OC 0.42 0.59 0.79 0.91 0.93 0.12 0.1 0.08 0.06 0.05 56 48 38 30 24
NH3 0.93 0.97 0.99 1 1 0.04 0.03 0.03 0.02 0.02 7 6 5 4 3

a R: spatial correlation coefficient.
b SAD: summed absolute difference.
c RSAD: relative summed absolute difference.

Figure 3. Comparison of the spatial distributions of gridded emissions from HB-EI and MEIC at multiple resolutions. (a–d) present NOx
emission distributions in HB-EI, and (e–h) present the differences between the two inventories (MEIC subtracted from HB-EI).

tended to overestimate emissions in urban centers but under-
estimate emissions in rural areas, leading to unrealistically
higher urban–rural emission gradients. Following economic
development and air quality control progress in China, pol-
luted industries have tended to move away from urban cen-
ters in large cities (see Fig. 4 for the two largest cities in
Hebei), resulting in the divergence of polluting industries
from dense population distributions. Therefore, the use of

population distribution to allocate emissions tended to over-
estimate the urban–rural gradients of emissions. At coarse
resolutions of 0.5 and 1.0◦, relative differences between the
two inventories were smaller because the large grid covered
both urban and rural regions and smoothed emission distri-
butions.

To elucidate the variations in urban and rural areas, we
analyzed the relationships between emission fluxes of NOx

Atmos. Chem. Phys., 17, 921–933, 2017 www.atmos-chem-phys.net/17/921/2017/
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Figure 4. The spatial distributions of polluted industries and popu-
lation in (a) Shijiazhuang and (b) Tangshan.

and demographic trends at multiple resolutions, as shown in
Fig. 5. In HB-EI, 32 % of emissions were attributed to the
top 25 % of the populated dense grids, as shown by the line
of HB-EI-NOx . Emission fluxes gradually declined, moving
from the dense urban grids to the less dense suburban and
rural grids, while emission fluxes in MEIC declined rela-
tively sharply compared to HB-EI. This trend occurred be-
cause the proxy-based downscaling method tended to over-
allocate industrial emissions to urban areas, such that 42 %
of NOx emissions was distributed to populated grids in the
upper quartile, 10 % higher than HB-EI, which resulted in
larger urban–rural gradients. This pattern was evident at the
finer scales given that the NOx emission fluxes from the 10 %
most densely populated grids were 46–140 % higher than
those of HB-EI at 0.05 and 0.1◦. At coarse resolutions, the ur-
ban and rural areas were aggregated with evenly distributed
emissions. Therefore, both HB-EI-NOx and MEIC-NOx ap-
proached the 1 : 1 line at 0.5 and 1.0◦ and exhibited similar
emission flux patterns that were not influenced by spatial al-
location biases.

Urban-scale models have emerged in response to a criti-
cal need for fine-scale modeling. However, the proxy-based
downscaling method over-allocates emissions to urban cen-
ters, producing artificial emission hotspots that can result
in biases in high-resolution models. When estimated as
population-weighted exposures, the health risks induced by
air pollution may also be overestimated due to the colloca-

tion of gridded emissions with dense populations. We eval-
uate how uncertainties in fine-scale gridded emissions influ-
ence air pollution modeling in the next section.

3.3 Resolution dependence of biases in air pollution
modeling

The uncertainties in gridded emission inventories induced by
the proxy-based method can affect the biases of chemical
transport modeling. This bias propagation was quantified by
comparing performance of the WRF-CMAQ model with the
MEIC (S1) and HB-EI (S2) emission inputs. The compar-
ison was conducted at 36, 12, and 4 km resolutions, which
roughly corresponded to the 0.5–0.05◦ grid sizes discussed
above.

For the densest urban areas, the finer-scale simulations
predicted higher concentrations of air pollutants due to con-
centrated emissions (Fig. 6). This enhancement led to better
agreement with the observations, as demonstrated by the S2
simulation moving from 36 to 4 km. Higher concentrations
modeled at finer scales were also observed in the S1 simula-
tion, but S1 tended to introduce higher positive biases rather
than better performances. This tendency was likely due to the
over-allocated urban emissions produced by the proxy-based
downscaling method. Compared to bottom-up inventories,
the use of proxy-based emissions produced similar modeling
results, with biases of 3–13 % in predicting surface concen-
trations of different pollutants at 36 km resolution. At 12 and
4 km, the major pollutants modeled by proxy-based invento-
ries were overestimated by 28–114 % and O3 was underesti-
mated by 17 % due to the enhanced titration effect caused by
concentrated NOx emissions. The finer-scale modeling us-
ing proxy-based emissions introduced additional 8–73 % bi-
ases compared with bottom-up inventories. This finding sug-
gested that urban-scale modeling efforts at ∼ 10 km cannot
achieve corresponding accuracies until factory-level inven-
tories are used. Regarding the emission spatial biases (see
Sect. 3.2), the proxy-based downscaled emissions were ap-
propriate for modeling at the global and regional scales (e.g.,
0.25–0.5◦ or 36 km in this case study), while they could cause
larger biases for finer resolutions on the urban scale.

Figure S1 in the Supplement presents the spatial distri-
bution of modeled surface concentrations for primary pol-
lutants. The S1 simulation predicted higher NO2 and SO2
in the south-central part of the province but lower concentra-
tions in the southwest. The densest cities in Hebei are located
in the former region, and the industrial district along the Tai-
hang Shan is located in the latter. The proxy-based down-
scaling method allocated more emissions to the populated
regions, resulting in higher estimates of air pollution levels
in the densest cities. Compared to bottom-up emissions, the
modeling surface concentrations of air pollutants in urban ar-
eas were approximately 20–50 % higher for the 36 km do-
main and were much higher at 12 and 4 km (see Fig. 7). The
bias level was influenced by the size of cities. The cities with
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Figure 5. Cumulative ratio of emissions by population density spanning the resolutions of (a) 0.05◦, (b) 0.1◦, (c) 0.5◦, and (d) 1.0◦. The
population is sorted according to descending numbers of people along the x axis.

Figure 6. Evaluations against in situ measurements for atmospheric modeling using MEIC and HB-EI inventories at 36, 12, and 4 km. The
air pollutants used for evaluation include (a) SO2, (b) NO2, (c) CO, (d) O3, (e) PM2.5, and (f) PM10.

large populations and industries tended to experience rapid
urbanization, with people gathering in the urban centers and
polluted industries moving outward. The modeling discrep-
ancies of the two largest cities in Hebei (i.e., Tangshan and
Shijiazhuang) were as large as 100–200 %. The small cities
presented scattered distributions for both populations and in-

dustries and exhibited smaller differences when using popu-
lation to distribute emissions.

Figure S2 in the Supplement presents the spatial distribu-
tion of modeled PM2.5 and O3 concentrations. The S1 sim-
ulation tended to predict an 18–55 % higher PM2.5 in the
densely populated regions but a 30–110 % lower PM2.5 in the
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Figure 7. Air pollution distributions and exposures by population density at 36, 12, and 4 km: (a) NO2, (b) SO2, (c) population-weighted
PM2.5, and (d) population-weighted SOMO35. Note that the SOMO35 is used to evaluate the health risk of O3 according to Amann et
al. (2008).

less dense regions. The differences were slightly smaller than
those found in the primary pollutants because of the non-
linear particle formation processes and long-range regional
transport. For O3, the enhanced titration by NO due to con-
centrated emissions resulted in negative biases. The S1 sim-
ulation predicted 12–30 % lower O3 in the dense regions but
16–35 % higher O3 in the less dense regions. When estimated
as population-weighted exposures and averaged within the
areas with a population density over 600 km−2 (see Fig. 7),
the PM2.5 exposures tended to be 10–20 % higher, whereas
the O3 exposures tended to be 10–15 % lower. In the urban
centers, the population exposures to PM2.5 and O3 were bi-
ased at rates as high as 50–100 %. The overestimated expo-
sures of PM2.5 associated with the underestimated exposures
of O3 suggested that more effort is needed to evaluate air
pollution health risks on the urban scale. The uncertainties
in gridded emissions comprised important uncertainties in
health risk assessment.

4 Discussion

4.1 Sensitivity to different proxies

The proxy-based spatial allocation method assumed linear
correlations between emission intensities and spatial proxy
densities within a given district. To investigate the sensitiv-
ity of the assumption to spatial proxies, we evaluated the
spatial correlations between the gridded emissions of HB-
EI and different spatial proxies (see Fig. 8). We concluded
that the spatial correlation was enhanced significantly with
increasing grid size, which was not sensitive to spatial proxy
type. The grid size of 0.25◦ roughly corresponded to the cor-
relation coefficient of 0.5. At coarse resolutions (grid size
larger than 0.25◦), good spatial correlations were found for
different proxies across all pollutants. However, the correla-
tion worsened when the spatial resolutions grew, except for
pollutants dominated by nonpoint sources that were corre-
lated with their allocating proxies (e.g., NH3 vs. rural popu-
lation). Due to the discrepancies in emission source compo-
sition, the air pollutants presented different distribution pat-
terns (see Fig. 8). Compared to nonpoint source emissions
(e.g., NH3, VOCs, OC), the pollutants dominated by point
sources (e.g., TSP, CO2, SO2) showed relatively poor cor-
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Figure 8. Spatial correlations between gridded emissions of HB-EI
and various spatial proxies at the resolutions of (a) 0.05◦, (b) 0.1◦,
(c) 0.25◦, (d) 0.5◦, and (e) 1.0◦. The pollutants are sorted ac-
cording to descending contribution of point-source emissions from
left to right. NL: nighttime light (http://ngdc.noaa.gov/eog/dmsp/
downloadV4composites.html), TP: total population, UP: urban pop-
ulation, RP: rural population (population data (Oak Ridge National
Laboratory, 2013) with urban–rural extents (Schneider et al., 2009),
RN: road network (Zheng et al., 2014).

relations with spatial proxies. This result was not very sen-
sitive to spatial proxy type. For example, changing alloca-
tors caused the correlation coefficient to vary only between
0.07 and 0.18 for TSP at 0.05◦. This pattern arose because
point sources have been increasingly sited away from urban
areas, a phenomenon that was difficult to represent by spatial
proxy distribution. In contrast, the pollutant distributions of
nonpoint sources were sensitive to spatial proxies at resolu-
tions finer than 0.25◦ because the pollutants allocated with
one proxy were clearly correlated with this proxy but un-
correlated with other proxies on fine scales. However, all the
proxies tended to present similar spatial distributions on large
scales, demonstrated by the correlation coefficient of almost
1 at resolutions coarser than 0.25◦. The findings above sug-
gest that the underlying assumption inherent in the proxy-
based emission allocation process is potentially valid on a
coarse scale but is highly suspect on scales finer than 0.25◦.

We evaluated the spatial correlations of HB-EI with dif-
ferent proxies by sector, as shown in Fig. 9. NOx is shown
as an example (the results for other pollutants are similar).
Because the locations of point sources were decoupled from
spatial proxies at fine resolutions, power plant and industrial
emissions presented poor correlations (R2 < 0.2) with vari-
ous spatial proxies when grid size was smaller than 0.5◦.
The decoupling effect was weakened when grids were aggre-
gated to 0.5◦ or higher, and consistent spatial patterns were
found between emissions from point sources and different
spatial proxies. The residential and transportation emissions

were sensitive to proxy selections on finer scales, which were
affected by the allocating proxies used by the two sectors.
When grids were aggregated to 0.25◦ or higher, these non-
point source emissions showed consistent spatial distribu-
tions regardless of spatial proxies. For total emissions, the
variation of spatial correlation between gridded emissions
and proxies was narrowed for grids larger than 0.25◦. There-
fore, the proxy-based downscaling method tended to intro-
duce large errors on scales finer than 0.25◦, where local pat-
terns in the distributed point sources dominated over diffuse
nonpoint sources, which have not yet been reproduced by any
spatial proxy on finer scales.

The findings above imply that spatial proxies should be
used with caution. When building regional and global grid-
ded emissions (typically larger than 0.25◦), the two proxies
of total population and nighttime light performed slightly
better than the other proxies did. These two proxies corre-
lated well with gridded emissions, while other proxies such
as urban population, rural population, and road network had
several limitations. Urban population tended to over-allocate
emissions to urban areas. Rural population had poor spatial
correlation with gridded emissions. The spatial distribution
patterns of road networks were not suitable for emission al-
location except for those from vehicles. When mapping emis-
sions at higher resolutions (e.g., finer than 0.25◦), the proxies
of total population and nighttime light were poorly correlated
with gridded emissions dominated by point sources, and
the spatial distributions of nonpoint source emissions were
very sensitive to spatial proxies. In this case, the bottom-up
method must be used instead of the proxy-based method to
improve the spatial representation of emission distributions.

4.2 Sensitivity to point sources

The bottom-up method estimated emissions for each individ-
ual facility as a point source to improve the accuracy of in-
ventory. The point source estimates constituted the main dif-
ference between MEIC and HB-EI, demonstrated by the dis-
crepancy in point source shares (Fig. 2). Compared to MEIC,
the distinct improvement of HB-EI was to treat all facilities
from the industry sector as point sources in addition to a mi-
nor improvement in province-to-county emission allocation.
These changes produced better agreements with in situ obser-
vations when used for urban-scale modeling. At 4 km resolu-
tion, the bottom-up inventory of HB-EI reduced biases by 8–
73 % in predicting the surface concentrations of different air
pollutants. To evaluate the sensitivity of fine-scale modeling
to point source estimates, we conducted a sensitivity anal-
ysis by slightly reducing the contributions of point sources,
an analysis denoted by S3 (see Sect. 2.2.2). The extent to
which fine-scale modeling influenced the modeling perfor-
mance highlighted the implications for point source esti-
mates and the role high-resolution emission mapping played
in fine-scale modeling.
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Figure 9. Sector-specific spatial correlation between NOx emissions from HB-EI and allocating proxies spanning resolutions from 30′′ to
1.0◦. (a) Total emissions, (b) power sector, (c) industry sector, (d) residential sector, and (e) transportation sector.

Table 3. Sensitivity analysis results.

Emissions by source type in MEIC, HB-EI, and adjusteda (Gg)

Source type TSP CO2 SO2 PM10 CO PM2.5 NOx BC VOCs OC NH3

MEIC Point 57 180 673 228 55 269 36 456 0 4 0 0
Nonpoint 2594 585 511 1136 1175 15 988 834 1008 127 1394 215 543

Mobile 26 61 011 9 26 578 24 522 13 113 4 4
HB-EI Point 2302 675 974 1102 920 11 659 602 1267 66 538 74 18

Nonpoint 349 90 210 262 310 4598 268 197 61 860 141 525
Mobile 26 61 011 9 26 578 24 522 13 113 4 4

Adjusted Point 1606 479 773 810 666 9933 447 675 41 257 50 11
Nonpoint 1045 286 411 554 564 6324 423 789 86 1141 165 532

Mobile 26 61 011 9 26 578 24 522 13 113 4 4

Model evaluationb of domain 3 for S1, S2, and S3c

Pollutants Obsd Simd MBd NMB (%)

/ S1 S2 S3 S1 S2 S3 S1 S2 S3

SO2 69.2 149.6 106 107.3 80.3 36.7 38 147.8 53 54.9
NO2 52.5 86.6 75.4 82.2 34.1 22.9 29.7 80.5 43.6 56.6
CO 1.9 2.4 1.5 1.4 0.5 −0.4 −0.5 18.1 −19.9 −24.2
O3 60.8 47.7 53.3 48.9 −13.2 −7.7 −12.1 −21.6 −12.6 −19.8
PM2.5 105.4 141 107.9 112.8 35.6 2.5 7.4 34 2.4 7
PM10 202.1 174.2 125.8 132.7 −28 −76.3 −69.4 −16 −37.7 −34.3

a Decrease point source shares by ∼ 20 % on the basis of the HB-EI inventory.
b The modeling evaluation is based on simulations from January, April, July, and October.
c S1 used MEIC emissions, S2 used HB-EI emissions, and S3 used adjusted emissions.
d The units for SO2, NO2, O3, PM2.5, and PM10 are µg m−3, and the unit for CO is mg m−3.

For S3, we converted small industrial boilers (≤ 24.5 MW)
in HB-EI to nonpoint sources for a sensitivity test by aggre-
gating the emissions into provincial totals and then distribut-
ing them into grid cells like MEIC. The emission shares of

point sources were reduced by ∼ 20 % for almost all pollu-
tants (Table 3). The modeling biases that used this adjusted
inventory (S3) fell between those from the MEIC-based sim-
ulation (S1) and HB-EI-based simulation (S2). The normal-
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ized mean biases of the criterion pollutants were approxi-
mately 5–15 % higher than those produced by S2 due to the
inclusion of ∼ 20 % fewer point sources, whereas they were
18–90 % lower than those produced by S1 due to the inclu-
sion of∼ 50 % more point sources. This difference suggested
that the spatial biases tended to decline significantly as more
point sources were included. The improvement of modeling
biases roughly corresponded to the increased contributions
of point sources to emissions.

5 Concluding remarks

In this study, we assessed the resolution dependence of
uncertainties in gridded emission inventories, using Hebei,
China, as a case. The inherent uncertainties involved in emis-
sion distributions caused systematic biases in both the emis-
sion flux patterns and subsequent chemical transport mod-
eling. A companion paper of this work also highlighted the
influence of allocating proxies on spatial representation of
gridded emissions (Geng et al., 2016). In the case of Hebei,
China, the proxy-based downscaling method tended to over-
allocate emissions to the urban center. For example, the NOx
emission fluxes from the 10 % most densely populated grids
tended to be overestimated by 46–140 % at 0.1 and 0.05◦ in
this case study. This effect was demonstrated by the model-
ing performance of the CMAQ model, in which the modeling
biases of different pollutants using a proxy-based inventory
were 8–73 % higher than using bottom-up inventories on a
fine scale (12 and 4 km). The modeling biases induced by un-
certainties in gridded emissions caused population exposures
of PM2.5 to be overestimated and O3 to be underestimated in
urban areas.

In the proxy-based inventory, the inherent assumption of
spatial correlation between emissions and allocating proxies
was highly suspect on an urban scale (grid sizes smaller than
0.25◦ in this case study). This lack of validity was caused
by polluted industries increasingly moving away from urban
centers, a phenomenon that resulted in a decoupling of emis-
sions from spatial proxies on finer scales. The gridded emis-
sions on a coarse scale tended to aggregate urban, suburban,
and rural areas and smooth emission distributions. They also
tended to weaken the decoupling effect. Extensive use of
point sources could improve the accuracy of gridded emis-
sions, demonstrated by the improvement of modeling per-
formance as the contribution of point sources increased. We
concluded that proxy-based inventories are capable of sup-
porting regional and global models (larger than 0.25◦ in this
case study); however, to support urban-scale models with ac-
curate emission inputs, bottom-up inventories with exact lo-
cations of emitting facilities should be developed instead.

6 Data availability

Research data are available upon request to the correspond-
ing author Qiang Zhang (qiangzhang@tsinghua.edu.cn).

The Supplement related to this article is available online
at doi:10.5194/acp-17-921-2017-supplement.
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