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Abstract. The response of surface ozone (O3) concentrations
to basin-scale warming and cooling of Northern Hemisphere
oceans is investigated using the Community Earth System
Model (CESM). Idealized, spatially uniform sea surface tem-
perature (SST) anomalies of ±1 ◦C are individually super-
imposed onto the North Pacific, North Atlantic, and North
Indian oceans. Our simulations suggest large seasonal and
regional variability in surface O3 in response to SST anoma-
lies, especially in the boreal summer. The responses of sur-
face O3 associated with basin-scale SST warming and cool-
ing have similar magnitude but are opposite in sign. Increas-
ing the SST by 1 ◦C in one of the oceans generally decreases
the surface O3 concentrations from 1 to 5 ppbv. With fixed
emissions, SST increases in a specific ocean basin in the
Northern Hemisphere tend to increase the summertime sur-
face O3 concentrations over upwind regions, accompanied by
a widespread reduction over downwind continents. We im-
plement the integrated process rate (IPR) analysis in CESM
and find that meteorological O3 transport in response to SST
changes is the key process causing surface O3 perturbations
in most cases. During the boreal summer, basin-scale SST
warming facilitates the vertical transport of O3 to the sur-
face over upwind regions while significantly reducing the
vertical transport over downwind continents. This process,
as confirmed by tagged CO-like tracers, indicates a consid-
erable suppression of intercontinental O3 transport due to in-
creased tropospheric stability at lower midlatitudes induced
by SST changes. Conversely, the responses of chemical O3

production to regional SST warming can exert positive ef-
fects on surface O3 levels over highly polluted continents, ex-
cept South Asia, where intensified cloud loading in response
to North Indian SST warming depresses both the surface air
temperature and solar radiation, and thus photochemical O3
production. Our findings indicate a robust linkage between
basin-scale SST variability and continental surface O3 pollu-
tion, which should be considered in regional air quality man-
agement.

1 Introduction

High ground-level ozone (O3) concentrations adversely im-
pact human health by inducing respiratory diseases and
threaten food security by lowering crop yields (Brown and
Bowman, 2013; WHO, 2013; Chuwah et al., 2015). Consid-
ering the ecotoxicity of O3, understanding the physical and
chemical mechanisms that control atmospheric O3 concen-
trations is of great importance. Surface O3 is produced in the
atmosphere via photochemical processing of multiple pre-
cursors including volatile organic compounds (VOCs), car-
bon monoxide (CO) and nitrogen oxides (NO, NO2). These
precursors originate from both natural and anthropogenic
sources (Vingarzan, 2004; Simon et al., 2014; Jiang et al.,
2016). In addition to local production, transport of O3 and its
precursors from upwind regions and the upper atmosphere
can also influence surface O3 abundance. Stratospheric in-
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trusion events, which lead to vertical downmixing of ozone-
rich air, can significantly elevate surface O3 during spring
(Grewe, 2006; Lin et al., 2012b; Zhang et al., 2014). The
long-range transport of O3 and its precursors has been exten-
sively studied, and their intercontinental impacts have been
evaluated using measurements and model simulations (Par-
rish et al., 1993; Fehsenfeld et al., 1996; Wild and Akimoto,
2001; Creilson et al., 2003; Simmonds et al., 2004; Fiore et
al., 2009; Brown-Steiner and Hess, 2011; Lin et al., 2012a,
2014).

Both photochemistry and dynamic transport collectively
affect surface O3 levels. Important meteorological factors
that can impact both photochemistry and transport include at-
mospheric circulations, solar radiation, air temperature, and
relative humidity. Atmospheric circulation considerably de-
termines the timescale and pathway of O3 transport (Bron-
nimann et al., 2000; Auvray and Bey, 2005; Hess and Ma-
howald, 2009). The efficiency of O3 transport varies con-
currently with atmospheric circulations on different scales.
Knowland et al. (2015) demonstrated the important role of
midlatitude storms in redistributing O3 concentrations dur-
ing springtime. The North Atlantic Oscillation (NAO) sig-
nificantly affects surface and tropospheric O3 concentra-
tions over most of Europe by influencing the interconti-
nental transport of air masses (Creilson et al., 2003; Chris-
toudias et al., 2012; Pausata et al., 2012). Lamarque and
Hess (2004) indicated that the Arctic Oscillation (AO) can
modulate springtime tropospheric O3 burdens over North
America. The shift in the position of the jet stream associ-
ated with climate change was found to strongly affect sum-
mertime surface O3 variability over eastern North America
(Barnes and Fiore, 2013). Increases in solar radiation and air
temperature can increase the rate of the chemical production
of O3 and modulate the biogenic emissions of O3 precursors
(Guenther, 1993; Sillman and Samson, 1995; Peñuelas and
Llusià, 2001), especially over highly polluted regions (Or-
dónez et al., 2005; Rasmussen et al., 2012; Pusede et al.,
2015). Increases in humidity can enhance the chemical de-
struction of O3 and shorten its atmospheric lifetime (John-
son et al., 1999; Camalier et al., 2007). Therefore, changes
in meteorological conditions on various spatial and temporal
scales play key roles in determining the surface O3 distri-
bution. Understanding the mechanisms and feedbacks of the
interactions between O3 and climate has received increasing
attention and will be essential for future surface O3 mitiga-
tion (Jacob and Winner, 2009; Doherty et al., 2013).

Sea surface temperature (SST) is an important indicator
that characterizes the state of the climate system. Its vari-
ations strongly perturb the mass and energy exchange be-
tween the ocean and atmosphere (Small et al., 2008; Gulev
et al., 2013), which influence atmospheric circulation, at-
mospheric temperature, and specific humidity (Sutton and
Hodson, 2005; Frankignoul and Sennéchael, 2007; Li et al.,
2008) from regional to global scales (Glantz et al., 1991;
Wang et al., 2000; Goswami et al., 2006). It also affects cloud

formation and consequently influences incoming solar radi-
ation (Deser et al., 1993; Fallmann et al., 2017). Numerous
studies have shown that SST changes over different oceans
and at different latitudes lead to significantly different me-
teorological and climate responses (Webster, 1981; Lau and
Nath, 1994; Lau, 1997; Sutton and Hodson, 2007; Sabeerali
et al., 2012; Ueda et al., 2015). Details on the SST–climate
relationships over individual oceanic regions are summarized
in Kushnir et al. (2002).

The Intergovernmental Panel on Climate Change Fifth As-
sessment Report (IPCC, 2013) provides strong evidences
in Chapter 2 that global SSTs are generally increasing due
to the impacts of anthropogenic forcings on global climate
change. In addition, regional SST exhibits natural periodic
or irregular oscillations with timescales ranging from months
to decades. The El Niño–Southern Oscillation (ENSO) is the
most influential natural SST variability that originates in the
tropical Pacific and has worldwide climate impacts (Philan-
der, 1983; Wang et al., 2012). The Pacific Decadal Oscilla-
tion (PDO), defined by ocean temperature anomalies in the
northeast and tropical Pacific Ocean, is another long-lived,
El Niño-like pattern that persists for several decades (Man-
tua and Hare, 2002). Over the Indian Ocean, SST anomalies
feature a seesaw structure between the western and eastern
equatorial regions, known as the Indian Ocean Dipole (IOD)
mode (Saji et al., 1999). The North Atlantic Ocean exhibits
various modes of low-frequency SST variability (Kushnir,
1994; Wu and Liu, 2005; Fan and Schneider, 2012; Taboada
and Anadon, 2012). The mechanisms responsible for SST
variability include ocean circulation variability, wind stress,
and ocean–atmosphere feedbacks (Frankignoul, 1985; Deser
et al., 2010). Aerosols and greenhouse gases (GHGs) emitted
from anthropogenic and natural sources also contribute to re-
gional SST variability through modulation of the solar radi-
ation received by the ocean surface (Rotstayn and Lohmann,
2002; Wu and Kinter, 2011; Hsieh et al., 2013; Ding et al.,
2014; Meehl et al., 2015).

Considering the distinct roles of regional SST variability
in modulating regional climate systems, the impact of re-
gional SST changes on the surface O3 distribution needs to
be explored. Lin et al. (2015) found that more frequent deep
stratospheric intrusions appear over the western US during
strong La Niña springs because of the meandering of the po-
lar jet towards this region. This process can remarkably in-
crease surface O3 levels in the western US. The La Niña-like
decadal cooling of the eastern equatorial Pacific Ocean in the
2000s weakened the long-range transport of O3-rich air from
Eurasia towards Hawaii during spring (Lin et al., 2014). Liu
et al. (2005) revealed that El Niño winters are associated with
stronger transpacific pollutant transport, which also has im-
plications for the long-range transport of O3. Except for the
ENSO impacts, very few studies to date have directly ad-
dressed the linkage between SST and O3. Therefore, a com-
prehensive understanding of the response of surface O3 to
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SST changes in individual ocean basins is lacking and nec-
essary.

To fill this gap, this study focuses on examining the sensi-
tivity of O3 evolution over four polluted continental regions
in the Northern Hemisphere (i.e., North America (NA, 15–
55◦ N, 60–125◦W), Europe (EU, 25–65◦ N, 10◦W–50◦ E),
East Asia (EA, 15–50◦ N, 95–160◦ E) and South Asia (SA,
5–35◦ N, 50–95◦ E), defined in Fiore et al., 2009) with re-
spect to nearby basin-scale SST changes. We describe the
design of numerical experiments and model configuration in
Sect. 2. Surface O3 responses to regional SST changes are
given in Sect. 3. Relevant mechanisms governing the SST–O3
relationships are discussed in Sect. 4. The impact of basin-
scale SST changes on intercontinental transport of O3 is de-
scribed in Sect. 5. Conclusions are drawn in Sect. 6.

2 Methodology

2.1 Model description and configuration

The Community Earth System Model (CESM, v1.2.2) de-
veloped by the National Center for Atmospheric Research
(NCAR) is used in this study, configured with the Commu-
nity Atmosphere Model version 5.0 (CAM5) and the Com-
munity Land Model version 4.0 (CLM4). The ocean and
sea ice components are prescribed with climatological SST
and sea ice distributions. Moist turbulence is parameterized
following the Bretherton and Park (2009) scheme. Shallow
convection is parameterized using the Park and Brether-
ton (2009) scheme. The parameterization of deep convec-
tion is based on Zhang and McFarlane (1995) with modifi-
cations following Richter and Rasch (2008), Raymond and
Blyth (1986), and Raymond and Blyth (1992). The cloud
microphysical parameterization is following a two-moment
scheme described in Morrison and Gettelman (2008) and
Gettelman et al. (2008). The microphysical effect of aerosols
on clouds are simulated following Ghan et al. (2012). The
parameterization of cloud macrophysics follows Conley et
al. (2012).

The chemistry coupled in the CAM5 (i.e., CAM5-chem)
is primarily based on the Model for O3 and Related chemi-
cal Tracers, version 4 (MOZART-4), which resolves 85 gas-
phase species and 196 gas-phase reactions (Emmons et al.,
2010; Lamarque et al., 2012). A three-mode (i.e., Aitkin,
accumulation, and course) aerosol scheme for black carbon
(BC), primary organic matter (POM), second organic aerosol
(SOA), sea salt, dust, and sulfate was used in our simula-
tions following Liu et al. (2012). The lightning parameteri-
zation is modified according to Price et al. (1997) and tropo-
spheric photolysis rates are calculated interactively following
Tie et al. (2005). Gaseous dry deposition is calculated us-
ing the resistance-based parameterization of Wesely (1989),
Walmsley and Wesely (1996), and Wesely and Hicks (2000).
The parameterizations of in-cloud scavenging and below-

cloud washout for soluble species are described in detail by
Giorgi and Chameides (1985) and Brasseur et al. (1998),
respectively. Anthropogenic emissions of chemical species
are from the IPCC AR5 emission datasets (Lamarque et al.,
2010), whose injection heights and particle size distributions
follow the AEROCOM protocols (Dentener et al., 2006). The
emissions of natural aerosols and precursor gases are pre-
scribed from the MOZART-2 (Horowitz et al., 2003) and
MOZART-4 (Emmons et al., 2010) datasets. All emission
datasets are available from the CESM data inventory (https://
svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/). The per-
formance of CESM in simulating tropospheric O3 has been
validated by comparing with ozonesondes and satellite obser-
vations (Tilmes et al., 2015). The deviations between model
and observations are within the range of about 25 %. In gen-
eral, the model can capture the surface ozone distribution and
variability well but may overestimate O3 over the eastern US
and western Europe in the summer (Tilmes et al., 2015).

2.2 Numerical experiments

We first conduct a control simulation, hereafter referred to
as CTRL, with prescribed climatological monthly SSTs av-
eraged from 1981 to 2010 (see Hurrell et al., 2008). We
then conduct six perturbation simulations with monthly SSTs
that are uniformly increased or decreased by 1 ◦C in three
ocean basins in the Northern Hemisphere: the North Pa-
cific (15–65◦ N, 100◦ E–90◦W), North Atlantic (15–65◦ N,
100◦W–20◦ E), and North Indian oceans (5–30◦ N, 30–
100◦ E; here 5◦ N is used to attain a relatively larger domain
size). The simulations are denoted as Pacific-W, Atlantic-
W, and Indian-W for the three warming cases and Pacific-C,
Atlantic-C, and Indian-C for the three cooling cases. We de-
fined the latitudinal and longitudinal ranges of these ocean
basins mainly based on their geographical features. The
boundaries of the prescribed SST anomalies generally align
with the edge of the ocean basins, except along the south-
ern side. In each perturbation simulation, we linearly smooth
the southern boundaries of these SST anomalies towards
the equator to remove the sharp SST anomaly gradients at
the edge, following a previous approach (e.g., Taschetto et
al., 2016; Seager and Henderson, 2016). We further conduct
two sensitivity tests with 1 ◦C SST warming and 1 ◦C SST
cooling superimposed onto all three ocean basins (i.e., the
North Pacific, North Atlantic, and North Indian Ocean) in the
Northern Hemisphere, denoted as All-W and All-C, respec-
tively. Air pollution emissions, including biogenic emissions
of VOCs, are fixed to distinguish the impacts of SST varia-
tion on O3 transport and photochemistry. All simulations are
run for 21 years with the first year used for model spin-up.

To explore the impacts of SST changes on intercontinen-
tal transport, an explicit emission tagging technique is used
in our simulations following previous studies (Shindell et al.,
2008; Doherty et al., 2013). Artificial CO-like tracers emitted
from four continental regions, i.e., North America (NA, 15–
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55◦ N, 60–125◦W), Europe (EU, 25–65◦ N, 10◦W–50◦ E),
East Asia (EA, 15–50◦ N, 95–160◦ E), and South Asia (SA,
5–35◦ N, 50–95◦ E), are tracked individually. These tracers
are idealized with a first-order decay lifetime of 50 days,
which is similar to O3 (Doherty et al., 2013) and used to sin-
gle out changes in O3 transport induced by SST anomalies.

2.3 Integrated process rate (IPR) analysis

To provide a process-level explanation for the response of
surface O3 to regional SST changes, the integrated process
rate (IPR) method is applied. This method calculates the ac-
cumulated contributions of individual processes (e.g., chem-
ical production and loss, advection, vertical diffusion, dry
deposition) to O3 predictions during the model simulation
and has been widely used for air pollution diagnostics (Li
et al., 2012; Zhang and Wu, 2013; Tao et al., 2015). In this
study, we added the IPR scheme to the CESM framework to
track the contribution of six physicochemical processes (i.e.,
gas-phase chemistry, CHEM; advection, ADVE; vertical dif-
fusion, VDIF; dry deposition, DRYD; shallow convection,
SHAL; and deep convection, DEEP) to O3 concentrations
in every grid box. Wet deposition and aqueous-phase chem-
istry are ignored here due to the low solubility and negligible
chemical production of O3 in water (Jacob, 1999). Therefore,
CHEM represents the net production (production minus loss)
rate of O3 due to gas-phase photochemistry. DRYD repre-
sents the dry deposition fluxes of O3, which are an important
sink for O3. The other IPR terms (i.e., ADVE, VDIF, SHAL,
and DEEP) represent contributions from different transport
processes. The IPR scheme tracks and archives the O3 flux
in each grid from every process during each model time step.
The sum of the O3 fluxes from these six processes matches
the change in the O3 concentration. The IPR method has been
widely used in air quality studies to examine the cause of
pollution episodes (Wang et al., 2010; Li et al., 2012). When
applied in climate sensitivity analysis (usually measuring the
difference between two equilibriums), the net change in all
IPRs approaches zero. Typically, the positive changes in IPRs
are mainly responsible for the increase in surface O3, which
may further induce O3 removal to balance this forcing in a
new equilibrium. Therefore, here, the IPR analysis is used
not to budget the SST-induced O3 concentration changes but
rather to help examine the relative importance of different
transport and chemical processes in driving the sensitivity of
O3 to SST forcing. Its performance is verified by comparing
the predicted hourly O3 changes with the sum of the individ-
ual fluxes from the six processes. As shown in Fig. S1 in the
Supplement, the hourly surface O3 changes are well repre-
sented by the sum of these fluxes in the model.

3 Response of surface O3 concentrations to SST
changes

Seasonally and regionally averaged surface O3 changes in
each SST perturbation simulation for the four highly popu-
lated continental regions and three ocean basins defined in
our study are given in Tables 1 and S1 in the Supplement,
respectively. The responses of the surface O3 concentrations
to basin-scale SST changes (i.e., ±1 ◦C) are mainly below
3 ppbv in the Northern Hemisphere (Tables 1 and S1), though
larger anomalies (i.e., up to 5 ppbv) are also observed over
the eastern coast of China, the Indian subcontinent, and cer-
tain oceanic areas (Figs. 1 and S2). This SST–O3 sensitivity
is comparable to previous findings. For instance, Bloomer
et al. (2009) reported a positive O3–temperature relation-
ship of 2.2–3.2 ppbv ◦C−1 across the rural eastern US. Wu et
al. (2008) found that summertime surface O3 may increase
by 2–5 ppbv over the northeastern US in the 2050s. Addi-
tionally, Fiore et al. (2009) demonstrated an intercontinen-
tal decrease in surface O3 of no more than 1 ppbv in re-
sponse to 20 % reductions in anthropogenic emissions within
a continental region. Our study indicates that basin-scale SST
changes alone may exert significant effects on the surface O3
above a specific ocean basin and its surrounding continents.

As shown in Fig. 1, seasonal changes of up to 5 ppbv in
the mean surface O3 concentration are observed during bo-
real summers, mainly in coastal regions and remote oceans.
Surface O3 changes in response to positive and negative SST
anomalies generally exhibit a consistent spatial pattern but
are opposite in sign, suggesting robust relationships between
surface O3 levels and SST anomalies (Fig. 1). An increase
in summertime SST over a specific ocean basin tends to in-
crease the surface O3 concentration over the upwind regions
but reduce this concentration over downwind continents. For
instance, a 1 ◦C warming over the North Pacific leads to a
widespread decrease of approximately 1 ppbv in surface O3
over the North Pacific, North America, and the North At-
lantic (Table S1) but may enhance the surface O3 by nearly
3 ppbv over southern China. Similarly, the SST warming
over the North Atlantic decreases the surface O3 levels by
1–2 ppbv over the North Atlantic and Europe but increases
(∼ 1 ppbv) those over North America and the North Pacific.
For the North Indian Ocean, positive SST anomalies tend to
increase the surface O3 over the Indian Ocean and Africa but
decrease the surface O3 over South and East Asia (Fig. 1).
During the boreal winter, a widespread decrease in surface
O3 associated with the warming of different oceans is ob-
served. Significant changes (e.g., up to 5 ppbv) mainly occur
over remote ocean areas. Over populated continents, the re-
sponse of the surface O3 to basin-scale SST changes is typi-
cally insignificant. Details are shown in Fig. S2.

Our simulations reveal that different oceans can exert dis-
tinct region-specific effects on the O3 distribution. The ef-
fects of three individual warming–cooling cases (i.e., Pacific-
W, Atlantic-W, and Indian-W and Pacific-C, Atlantic-C, and
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Table 1. Seasonally (i.e., DJF: December, January, and February; MAM: March, April, and May; JJA: June, July, and August; and SON:
September, October, and November) and regionally averaged (only land grid boxes are included) changes in surface O3 concentrations (ppbv)
for basin-scale SST perturbation cases relative to the control simulation. Positive changes that are significant at the 0.05 level evaluated using
the Student’s t test are marked in bold.

Ozone (ppbv) DJF MAM JJA SON

N
or

th
Pa

ci
fic

+1 ◦C North America −0.27∗ −0.42∗ −0.92∗ −1.03∗

Europe −0.50∗ −0.26 0.10 −0.29
East Asia −0.88∗ −0.71∗ 0.20 0.17
South Asia −1.00∗ 0.30 0.43 0.43∗

−1 ◦C North America 0.00 0.57∗ 0.55∗ 0.82∗
Europe 0.19 0.15 −0.47∗ 0.47∗

East Asia 0.30 −0.17 −0.22 −0.67∗

South Asia 0.04 −0.24 0.03 −0.40

N
or

th
A

tla
nt

ic

+1 ◦C North America 0.03 0.49 0.50∗ 0.53∗
Europe 0.30∗ 0.06 −1.61∗ −0.89∗

East Asia −0.52∗ −0.68∗ −0.62∗ −0.25
South Asia −0.20 −1.46∗ −1.28∗ −0.82∗

−1 ◦C North America −0.07 −0.10 0.10 −0.17
Europe 0.00 0.00 0.07 0.06
East Asia 0.16 −0.08 0.80∗ −0.60∗

South Asia −0.20 −0.40 0.30 −0.10

N
or

th
In

di
a

+1 ◦C North America −0.25 −0.04 −0.16 −0.10
Europe −0.30 0.08 −0.12 0.19
East Asia −0.53∗ −0.77∗ −0.28 −1.78∗

South Asia −1.00∗ 0.14 −1.67∗ −2.75∗

−1 ◦C North America 0.04 0.17 0.04 0.25
Europe 0.05 −0.07 −0.13 −0.24
East Asia −0.06 0.15 0.55∗ 0.33
South Asia −0.03 0.57 1.70∗ 1.31∗

∗ Significant at the 0.05 level using the Student’s t test and 20 years of model results.

Indian-C) on surface O3 distributions are further summed
up to compare with the combined warming–cooling cases
(i.e., ALL-W and ALL-C). The responses of surface O3 to
a hemispheric SST anomaly generally resemble the sum of
responses to individual regional SST changes (see Figs. S3
and S4). This indicates that the effect of a generalized SST
warming on surface O3 can be decomposed into individual
regional SST forcings. We now analyze the processes that
impact the dependence of SST on the O3 distribution using
simulations that increase the SST.

4 Mechanism of SST-induced surface O3 changes

4.1 Process-level response to SST changes

In this study, IPR analysis is used to evaluate the contribu-
tion of different physicochemical processes to O3 evolution.
The SST-induced, process-level O3 changes are spatially av-
eraged over four populated continental regions (i.e., NA, EU,
EA, and SA; Fig. 2) and three ocean basins (i.e., the North

Pacific, North Atlantic, and North Indian oceans; Fig. S5). In
most cases, VDIF and DRYD are the key processes control-
ling the O3 variation. The downward transport of O3 through
diffusion (VDIF) is an important source of surface O3, while
DRYD acts as a sink. Both processes are simultaneously de-
termined by the strength of turbulence. Here, we define a new
term TURB as the sum of DRYD and VDIF, and it can cap-
ture the overall effect of turbulence changes on surface O3
concentrations. In addition, we merge SHAL and DEEP as
CONV to represent the total contribution of convective trans-
port to surface O3 (Figs. 2 and S5). More detailed IPR results
are shown in Figs. S6 and S7.

In the Pacific-W case, a 1 ◦C SST warming over the North
Pacific increases VDIF over eastern China in JJA (Fig. S8),
which is insignificant if averaged over the whole East Asian
region. Meanwhile, this Pacific warming considerably re-
duces VDIF over North America (Fig. S6). The correspond-
ing decrease in TURB over North America mainly deter-
mines the surface O3 reduction in JJA and SON, while the
reduction in CONV exerts an additional negative impact
(Fig. 2). In the Atlantic-W case, increases in VDIF are also
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Figure 1. Changes in the summertime (June–August) surface O3 concentrations (ppbv) in the Northern Hemisphere induced by 1 ◦C warm-
ing (a, b, c) and 1 ◦C cooling (d, e, f) in the North Pacific Ocean (a, d), North Atlantic Ocean (b, e), and North Indian Ocean (c, f) relative
to the CTRL. The four major regions of interest (i.e., NA: 15–55◦ N, 60–125◦W; EU: 25–65◦ N, 10◦W–50◦ E; EA: 15–50◦ N, 95–160◦ E;
and SA: 5–35◦ N, 50–95◦ E) are marked with red polygons. The + symbols denote areas in which results are significant at the 0.05 level,
evaluated using the Student’s t test and 20 years of data.

observed over the upwind regions (i.e., North America) in
JJA. However, these increases are accompanied by com-
mensurate decreases in DRYD, resulting in an insignificant
overall change in TURB (Fig. 2). Therefore, the increase
in CHEM is mainly responsible for the surface O3 increase
over North America in JJA. TURB is more relatively impor-
tant over Europe (only in JJA and SON), leading to reduced
surface O3 abundance. In the Indian-W case, both CHEM
and CONV are reduced over South Asia in JJA, leading to
overall reductions in surface O3 over the Indian subcontinent
(Fig. 2). The IPR analysis over the ocean basins shows that
the warming of the North Pacific or North Atlantic induces
reductions in VDIF and CHEM, which are responsible for
the significant decrease in surface O3 above these regions in
JJA (Fig. S7). Conversely, North Indian Ocean warming en-
hances DEEP and VDIF, leading to a local increase in surface
O3 in JJA.

The IPR analysis indicates that, in general, an SST in-
crease in the North Pacific or North Atlantic is more likely
to enhance the vertical diffusion of O3 over upwind regions
(i.e., East Asia or North America, respectively) but suppress

this diffusion over the ocean basin as well as downwind con-
tinents in JJA (Fig. S8). These opposite changes in VDIF
over upwind and downwind regions lead to distinct surface
O3 responses. Changes in CHEM enhance surface O3 for-
mation in most cases. An exception is in South Asia, where
CHEM and DEEP dominate the reduction in surface O3 over
the region in JJA associated with the North Indian Ocean
warming. In the following subsections, the mechanisms of
the SST–O3 relationship for the four polluted continents are
further explored. Here we focus on boreal summers since the
surface O3 response to SST changes is more robust during
this period than other seasons.

4.2 Response of photochemical O3 production to SST
increases

Changes in the net production rate (i.e., chemical produc-
tion rate minus loss rate) of O3 at the surface in JJA asso-
ciated with basin-scale SST increases are shown in Fig. 3.
The peak changes are mainly confined to regions where O3
precursors are abundant (e.g., South and East Asia and North
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Figure 2. Seasonally averaged changes in the IPR contributions (bars, ppbv h−1, left scale) and surface O3 concentrations (hollow circles,
ppbv, right scale) for Pacific-W (a, d, g, j), Atlantic-W (b, e, h, k), and Indian-W (c, f, i, l) relative to the CTRL. Values are regionally
averaged over NA (a, b, c), EU (d, e, f), EA (g, h, i), and SA (j, k, l). TURB is defined as the sum of VDIF and DRYD. CONV is the sum of
DEEP and SHAL. IPR contributions from the four processes (i.e., TURB, ADVE, CHEM, and CONV) are represented by different colors.
A more detailed IPR result is shown in Fig. S6.

America). For example, a warmer North Pacific SST exerts a
positive (negative) impact on net O3 production in the north-
ern (southern) regions of East Asia. Similarly, the warming
of the North Atlantic promotes a dipole impact on the sur-
face O3 production over North America, while the warming
of the North Indian Ocean significantly decreases the net O3
production rate over South Asia.

As emissions are fixed in all simulations, the change in
net O3 production is driven by SST-induced meteorological
changes (e.g., air temperature, air humidity, and solar radia-
tion). An increase in SST of 1 ◦C in any ocean basin leads
to a widespread enhancement of the surface air temperature
(i.e., the air temperature at 2 m) over most continental areas
(Fig. 4). An exception is the North Indian Ocean, where an
increase in SST tends to cool the Indian subcontinent by 1–
2 ◦C. This temperature decrease is not only limited to the sur-
face but also spreads to 600 hPa (Fig. S9). Associated with

this temperature decrease is a remarkable reduction in the
solar radiation received at the surface (more than 15 W m−2,
Fig. S10). Previous studies have indicated that moist con-
vection is more sensitive to the SST changes in the tropical
oceans than in mid- or high-latitude oceans (Lau and Nath,
1994; Lau et al., 1997; Hartmann, 2015). The SST increase
over the North Indian Ocean tends to strengthen the moist
convection that eventually facilitates cloud formation in the
upper troposphere (Roxy et al., 2015; Xi et al., 2015; Chaud-
hari et al., 2016). The latent heat released from convective ac-
tivities significantly warms the air temperature over the upper
troposphere (Sabeerali et al., 2012; Xi et al., 2015). Mean-
while, the corresponding increase in cloud cover reduces the
solar radiation reaching the surface of the Indian subconti-
nent and thus the air temperature of the lower troposphere in
that region. These processes lead to opposite air temperature
changes between the upper and lower troposphere over South
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Figure 3. Perturbations of the surface net O3 production rate (1× 106 molecules cm−3 s−1) for (a) Pacific-W, (b) Atlantic-W, and (c) Indian-
W relative to the CTRL in the boreal summer. The + symbols denote areas in which the results are significant at the 0.05 level, evaluated
using the Student’s t test and 20 years of data.

Figure 4. Changes in the surface air temperature (◦C) for (a) Pacific-W, (b) Atlantic-W, and (c) Indian-W relative to CTRL in the Northern
Hemisphere in the boreal summer. The + symbols denote areas in which the results are significant at the 0.05 level, evaluated using the
Student’s t test and 20 years of data.

Asia in response to the North Indian warming (as shown in
Fig. S9), which may further suppress the development of
deep convection over the Indian subcontinent.

Previous studies have indicated that air temperature posi-
tively affects both O3 production and destruction rates (Zeng
et al., 2008; Pusede et al., 2015). As shown in Fig. S11,
changes in the net O3 production rate are mainly domi-
nated by O3 production over continents but by O3 destruc-
tion over oceans. An increase in SST leads to a widespread
enhancement of the air temperature, resulting in a positive
change in the net O3 production over most continental re-
gions (Fig. 3). However, a warmer SST also increases the

air humidity (Fig. S12), which enhances O3 destruction over
most coastal and oceanic areas. In addition, over South Asia,
a warming of the North Indian Ocean decreases solar radia-
tion and air temperature and simultaneously increases air hu-
midity, which jointly exert negative effects on O3 production
in that region.

4.3 Response of physical O3 transport to SST increases

In Sect. 4.1, our IPR analysis highlights multiple physical
processes (i.e., vertical diffusion, convection, and advection)
that are important in modulating surface O3 concentrations.
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Figure 5. Changes in the surface pressure (color contours, Pa) and 850 hPa wind (arrows, m s−1) for (a) Pacific-W, (b) Atlantic-W, and
(c) Indian-W relative to the CTRL in the boreal summer.

However, the role and relative importance of each process
exhibit large spatial heterogeneity. In this section, we explore
the key factors controlling physical O3 transport in response
to basin-scale SST changes.

The changes in the surface pressure and wind pattern in-
duced by a basin-wide SST increase are shown in Fig. 5.
Generally, a warming of any ocean basin will lead to a low-
pressure anomaly centered to its west at low latitudes, which
is caused by SST-induced convective activity. Additionally,
the warming of the Indian Ocean induces an anticyclonic
anomaly over the subtropical western Pacific, which has been
documented in previous studies (Yang et al., 2007; Li et al.,
2008). As shown in Fig. 6, the surface pressure reduction in-
duced by SST warming in any ocean basin is closely associ-
ated with enhanced upward motions, suggesting a substantial
enhancement in deep convection over tropical oceans. Previ-
ous studies have identified an SST threshold (approximately
26–28 ◦C) to generating deep convection (Graham and Bar-
nett, 1987; Johnson and Xie, 2010). Therefore, the sensitivity
of deep convection to an SST anomaly is strongly dependent

on the distribution of base SST. The enhanced upward mo-
tion in response to a uniform increase in basin-scale SST
mainly occurs over regions with high climatological SST
(Fig. 6). Regions with a low climatological SST have little
effect on the vertical movement of air masses.

Strengthened deep convection will trigger large-scale sub-
sidence over nearby regions through the modulation of large-
scale circulation patterns, which may suppress convective
transport (Lau et al., 1997; Roxy et al., 2015; Ueda et al.,
2015). This effect is verified by the decreases in upward
velocity at 500 hPa. As depicted in Fig. 6, significant de-
creases in upward velocity occur over regions adjacent to
the strengthened deep convection. Similar effects are also
observed over higher latitudes or remote oceans (Fig. S13).
Meanwhile, the air temperature increase in response to re-
gional SST warming is more significant above the lower tro-
posphere, which leads to a decrease in the vertical temper-
ature gradient (Fig. S9). These factors tend to restrain the
vertical exchange of air pollutants at midlatitudes, which fa-
cilitates surface O3 accumulation over polluted continental
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Figure 6. Spatial pattern of vertical velocity changes at 500 hPa (color contours, 1× 10−2 Pa s−1) for (a) Pacific-W, (b) Atlantic-W, and
(c) Indian-W relative to the CTRL in the boreal summer. Positive values indicate upward motion. Red polygons denote the regions where the
surface pressure responses to SST anomalies are significant (see Fig. 5a–c). The+ symbols indicate areas in which the results are significant
at the 0.05 level, evaluated using the Student’s t test and 20 years of data.

regions in JJA but may weaken the intrusion of O3 from the
upper troposphere to the surface in most unpolluted areas.
This process helps to explain the widespread decrease in sur-
face O3 over unpolluted regions associated with an SST in-
crease, as described in Sect. 3, and can be further verified by
the widespread reduction in VDIF shown in Fig. S8.

The surface pressure anomalies induced by SST changes
can play a dominant role in modulating surface O3 trans-
port at specific locations. For example, the low-pressure
anomaly centered over the subtropical northwestern Pacific
in the Pacific-W case causes the convergence of wind in the
lower troposphere (Fig. 5a). Consequently, surface O3 pollu-
tion is enhanced in southern China due to an increase in O3
transport from more polluted northern China (Fig. 7a). The
vertical distribution of the corresponding O3 changes also
shows that the increase in O3 over southern China occurs
below 700 hPa, accompanied by noticeable decreases above
700 hPa as well as over nearby northern China (Fig. 7d). The
IPR analysis also indicates that the increases in advective

transport and downward turbulent transport are mainly re-
sponsible for the surface O3 increase in southern China.

In the Atlantic-W case, the SST warming-induced surface
pressure anomalies lead to substantial O3 redistribution, es-
pecially over the North Atlantic Ocean (Fig. 7b). For North
America, the changes in horizontal O3 fluxes have no signif-
icant effect on the O3 concentration increase. In addition, O3
changes are observed to be larger in the upper troposphere
than at the surface (Fig. 7e). As demonstrated in Sect. 4.1,
the response of lower-altitude O3 over North America to the
North Atlantic warming is mainly caused by enhanced chem-
ical production rather than physical transport.

The North Indian SST warming leads to a low-pressure
anomaly centered over the Arabian Sea (Fig. 5c). The warm-
ing of the North Indian Ocean strengthens the upward motion
of air at low latitudes and further induces a convergence of
highly polluted air over the Indian Ocean. The effects of this
process on O3 concentrations are observed to be more sig-
nificant in the upper troposphere (Fig. 7f). According to the
IPR analysis, the surface O3 increase over the Indian Ocean
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Figure 7. Top three rows: changes in O3 concentrations (color contours, ppbv) and horizontal fluxes (arrows, mol cm−2 s−1) at the surface
level for (a) Pacific-W, (b) Atlantic-W, and (c) Indian-W relative to the CTRL in the boreal summer. Bottom row: zonal average of the tropo-
spheric O3 changes (color contours, ppbv), wind fluxes in CTRL (red arrows, m s−1), and the wind flux perturbation (black arrows, m s−1)

in (d) Pacific-W, (e) Atlantic-W, and (f) Indian-W relative to the CTRL in the boreal summer. The red rectangles in (a), (b), and (c) denote
the longitudinal range used for the zonal averages in (d), (e), and (f), respectively. The vertical wind velocity is amplified 1000 times to make
it comparable to the horizontal wind velocity.

is mainly caused by the enhanced vertical transport of O3
to the surface through deep convection and vertical diffusion
processes (Fig. S7). However, over the nearby Indian subcon-
tinent, the suppressed convection tends to decrease surface
O3 in that region (Fig. 2).

5 Implications for O3 long-range transport

The findings above indicate that, in general, a basin-scale
SST increase in the Northern Hemisphere is more likely to
enhance atmospheric stability at midlatitudes, which may
suppress air pollutants from lofting to the free troposphere.
This process potentially has large effects on O3 interconti-

nental transport. Following previous work (e.g., Doherty et
al., 2013; Fang et al., 2011), we use passive CO-like tracers to
demonstrate the potential effect of regional SST changes on
long-range O3 transport. A warming of North Pacific SSTs
by 1 ◦C tends to increase the East Asian CO tracer concentra-
tions by nearly 6 % at the surface (Fig. 8b), which is accom-
panied by a significant reduction (∼ 4 %) in eastward trans-
port to North America. Similarly, for the North American
tracer, a warming of North Atlantic SSTs by 1 ◦C increases
(∼ 1 %) the concentrations in North America but decreases
(3–4 %) the concentrations over downwind Europe (Fig. 8d).
The response of the South Asian CO tracer to North In-
dian Ocean warming also shows a decreasing tendency over
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Figure 8. Panels (a, c, e): difference in the surface concentration (ppbv) of a CO-like tracer emitted from (a) East Asia for Pacific-W, (c) North
America for Atlantic-W, and (e) the South Asia for Indian-W relative to the CTRL in the boreal summer. Panels (b, d, f): the percentage
changes in the surface concentration of a CO-like tracer emitted from (b) East Asia for Pacific-W, (d) North America for Atlantic-W, and
(f) South Asia for Indian-W relative to the CTRL in the boreal summer. Red polygons denote the region where the CO-like tracer is emitted
from. The + symbol denotes areas in which the results are significant at the 0.05 level, evaluated using the Student’s t test and 20 years of
data.

downwind regions, but the patterns are more complicated
over the source region in this case (Fig. 8e). Because the
CO-like tracers added in the simulation have a fixed decay
lifetime, their concentration changes are completely caused
by the SST-induced transport anomalies. The decrease in CO
tracer concentrations over downwind regions suggests that
the warming of basin-scale SST tends to suppress the long-
range transport of air pollutants. Additionally, in the Pacific-
W case, changes in the East Asian CO tracer (Fig. 8a) gen-
erally resemble the changes in surface O3 over East Asia
(Fig. 7a), indicating the dominant effect of physical transport
on the O3 distribution over East Asia. Regarding the North
American CO tracer in response to the North Atlantic warm-
ing or the South Asian CO tracer in response to the North
Indian Ocean warming, their concentration changes are spa-
tially inconsistent with those of O3 (see Figs. 7 and 8). This
further indicates the distinct roles that different basin-scale
SSTs play in nearby air quality.

Further investigations of zonal wind suggest that an in-
crease in SST over different oceans consistently decreases
the westerly winds at lower midlatitudes (25–45◦ N) in the
Northern Hemisphere but increases these winds at higher

latitudes (Fig. 9). In general, increases in the geopotential
height induced by basin-scale SST warming are more sig-
nificant at midlatitudes than at other latitudes, which is con-
sistent with the air temperature changes. Consequently, the
meridional geopotential height gradient decreases at lower
latitudes but increases at higher latitudes, leading to corre-
sponding changes in the westerly winds. The latitude band at
25–45◦ N covers many polluted regions (i.e., North America
and East Asia). A weakened westerly wind may reduce long-
range O3 transport. As demonstrated in Sect. 4.3, the basin-
scale SST increases also exert negative effects on the upward
transport of air masses at midlatitudes. Therefore, the de-
creases in CO tracer concentrations over downwind regions
(Fig. 8a and c) can be explained by both suppressed verti-
cal transport and weakened westerly winds. In the Indian-
W case, the SST increase over North India leads to a low-
pressure anomaly above the Arabian Sea due to the enhanced
deep convection (as discussed in Sect. 4.3). The correspond-
ing anomalous cyclonic circulation may be responsible for
the dipole of the South Asian CO tracer changes over the
source region depicted in Fig. 8e.
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Figure 9. Zonally averaged changes in zonal wind (color contour, m s−1) and geopotential height (contour, m) for (a) Pacific-W, (b) Atlantic-
W, and (c) Indian-W relative to the CTRL in the boreal summer. Solid and dashed black lines in the contours indicate positive and negative
geopotential height anomalies, respectively (contour interval: 5 m). The + symbol denotes areas in which the zonal wind changes are signif-
icant at the 0.05 level, evaluated using the Student’s t test and 20 years of data.

In addition, we also find a hemispheric-scale decrease
in peroxyacetyl nitrate (PAN), a reservoir of O3 precursors
(NOx and HOx) that facilitate the long-range transport of O3,
during the warming of different oceans (Fig. S14). This de-
crease is likely caused by the increase in the thermal decom-
position of PAN in response to the air temperature increase
(Jacob and Winner, 2009; Doherty et al., 2013).

Thus, it is reasonable to infer that, in general, the increased
thermal decomposition of PAN, the weakened midlatitude
westerlies, and the reduced vertical air transport may exert
a joint reduction effect on the intercontinental transport of
O3 during basin-scale SST increases.

6 Summary

In this paper, we investigate the responses of surface O3 to
basin-scale SST anomalies in the Northern Hemisphere. The
latest version of CESM (version 1.2.2) is used in our simula-
tion, forced with climatological and stationary SST anoma-
lies (±1 ◦C) in the North Pacific, North Atlantic, and North
Indian oceans, respectively. The responses of surface O3 as-
sociated with these SST changes are evaluated. Results of
similar magnitude but opposite sign are observed for the SST
warming versus cooling simulations for each ocean basin,
suggesting robust connections between the SST anomalies
and surface O3 changes. The regionally and seasonally aver-
aged surface O3 changes over four continental regions (i.e.,
NA, EU, EA, and SA) produce wide seasonal and regional
variability (varying from 1 to 3 ppbv). The warming of the
North Pacific leads to nearly 3 ppbv increases in the surface
O3 over southern China in summer, with corresponding de-
creases over North America (∼ 1 ppbv). Similarly, the North
Atlantic SST warming elevates the surface O3 pollution over

North America while reducing the surface O3 (nearly 1–
2 ppbv) over Europe. Changes in the North Indian SST ex-
ert significant impacts (1–3 ppbv) over South and East Asia
during the entire year.

Process analysis indicates that dry deposition and verti-
cal diffusion are two major processes governing the surface
O3 balance. The increase in SST in different ocean basins
tends to increase the contributions of vertical diffusion to
surface O3 over upwind regions while greatly restraining
those over downwind continents. These processes generally
lead to widespread decreases in surface O3, which are par-
tially offset by increases in air-temperature-dependent chem-
ical production rates. Specifically, the chemical production
changes are mainly responsible for the surface O3 increases
over North America in response to the North Atlantic SST
warming but exert a negative effect on South Asia in response
to the North Indian SST warming. Decreases in the convec-
tive transport of O3 to the surface associated with North In-
dian warming are significant over South Asia and exert a neg-
ative impact on surface O3 concentrations. Advective trans-
port has a positive effect on surface O3 in southern China in
the Pacific-W case.

We further show that air temperature is an important fac-
tor controlling the surface O3 responses to SST anomalies.
Reductions in the surface O3 chemical production in South
Asia associated with North Indian SST warming can be
explained by the corresponding SST-induced decreases in
ground-level air temperature and solar radiation. Meanwhile,
the widespread increase in air temperature associated with
basin-scale SST warming is more likely to promote O3 pro-
duction over other highly polluted regions.

Conversely, SST increases at low latitudes over different
oceans enhance deep convection in summer, which promotes
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convergence at the surface, as well as upward motions at low
latitudes. The corresponding surface pressure anomalies cen-
tered over the east coast of East Asia associated with the
North Pacific warming and over the Arabian Sea associated
with the North Indian warming tend to increase the surface
O3 above through exchanges with the surrounding highly
polluted air. The basin-scale SST increases in the Northern
Hemisphere reduce the tropospheric temperature gradient at
midlatitudes that restrains vertical transport of O3 over conti-
nents and weakens the westerlies at lower midlatitudes. The
response of the CO tracer also suggests that these factors may
jointly exert a negative effect on the intercontinental transport
of O3.

This study highlights the sensitivity of O3 evolution to
basin-wide SST changes in the Northern Hemisphere and
identifies the key chemical or dynamical factors that control
this evolution. Idealized and spatially uniform SST anoma-
lies are used to explore the general mechanisms govern-
ing SST–O3 relationships. We find that the SST changes
over tropical regions exert considerable impacts on sur-
face O3 levels. The increase in tropical SST over different
ocean basins enhances deep convection, which further trig-
gers large-scale subsidence over nearby and remote regions.
These enhanced convective activities also tend to release
more latent heat over the upper troposphere and significantly
increase the air temperature there. These processes influence
large-scale circulation patterns and lead to opposite surface
O3 responses over upwind and downwind regions related to a
specific ocean basin. This finding provides valuable implica-
tions for the potential surface O3 change in response to future
warming or cooling of individual oceans.

Additionally, the sensitivity tests with 1 ◦C SST warming
and cooling superimposed onto all three ocean basins further
show in general that the SST forcing on O3 distribution is
geographically additive. A number of studies have used the
decomposed SST anomalies for different regions to identify
their relevant roles in a particular climate response (e.g., Sut-
ton and Hodson, 2005; Camargo et al., 2013; Ueda et al.,
2015). A linear assumption that the influence of large-scale
SST anomaly pattern on the atmosphere can be generally
constructed by the linear combination of the influences of in-
dividual SST patches has been verified by previous studies,
especially for the tropical regions where the signal-to-noise
ratio is higher (e.g., Fan et al., 2016; Seager and Hender-
son, 2016). Therefore, our study also helps to understand the
roles different ocean basins in the Northern Hemisphere play
in modulating surface O3 distributions in a global-wide SST
warming condition associated with climate change.

Overall, this study may guide the management of regional
O3 pollution by considering the influence of specific SST
variability. However, cautions should be taken in interpret-
ing our results in the real world since observed surface O3
variabilities are induced by various factors including O3 pre-
cursor emissions and atmospheric conditions. Realistic SST
anomalies over different oceans are more complicated (usu-

ally not uniformly distributed) and often intercorrelated with
each other (Fan et al., 2016). They may exert joint effects on
modulating surface O3 distributions. To provide more precise
understanding about the SST–O3 relationship over a specific
region, additional sensitivity tests regarding smaller patches
of SST variability are necessary.
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