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Abstract. Land use regression (LUR) models have been used
in epidemiology to determine the fine-scale spatial variation
in air pollutants such as nitrogen dioxide (NO2) in cities and
larger regions. However, they are often limited in their tem-
poral resolution, which may potentially be rectified by em-
ploying the synoptic coverage provided by satellite measure-
ments. In this work a mixed-effects LUR model is developed
to model daily surface NO2 concentrations over the Hong
Kong SAR during the period 2005–2015. In situ measure-
ments from the Hong Kong Air Quality Monitoring Network,
along with tropospheric vertical column density (VCD) data
from the OMI, GOME-2A, and SCIAMACHY satellite in-
struments were combined with fine-scale land use parame-
ters to provide the spatiotemporal information necessary to
predict daily surface concentrations. Cross-validation with
the in situ data shows that the mixed-effects LUR model us-
ing OMI data has a high predictive power (adj. R2

= 0.84),
especially when compared with surface concentrations de-
rived using the MACC-II reanalysis model dataset (adj.R2

=

0.11). Time series analysis shows no statistically significant
trend in NO2 concentrations during 2005–2015, despite a re-
ported decline in NOx emissions. This study demonstrates
the utility in combining satellite data with LUR models to
derive daily maps of ambient surface NO2 for use in expo-
sure studies.

1 Introduction

It has been shown (WHO, 2013) that ambient exposure to
outdoor nitrogen dioxide (NO2) has long-term health impacts
stemming from cardiovascular and respiratory illnesses. In
rapidly urbanizing countries such as China the cost of poor

air quality is especially high (e.g. Chen et al., 2012; Gu et al.,
2012). In particular, the Hong Kong Special Administrative
Region (SAR) has seen significant economic growth in re-
cent decades, which has resulted in the emergence of pho-
tochemical smog events caused by increased nitrogen ox-
ide (NOx) emissions. These effects have been further ex-
acerbated by transported emissions and pollution from the
nearby Pearl River Delta (PRD; Xue et al., 2014). It has
previously been estimated that air quality improvement from
the annual average to the lowest pollutant levels of better
visibility days, comparable to the World Health Organiza-
tion (WHO) air quality guidelines, would lead to 1335 fewer
deaths a year over this region, with a saving of over USD 240
million in both direct costs and productivity losses (Hedley
et al., 2008).

Reliable exposure assessment requires constructing accu-
rate maps of average pollutant concentrations. However, con-
centration data are often sourced from sparse in situ mea-
surements which are typically from regulatory monitoring
networks. Mapping pollutant exposure therefore requires the
spatial interpolation of these measurements over a fine scale,
taking into account known emission sources and sinks to es-
timate the true pollutant distribution. A possible technique to
achieve this interpolation is land use regression (LUR; Hoek
et al., 2008), in which concentrations measured by in situ
stations are correlated with predictor variables such as traffic
or population density using a geographic information system
(GIS). A multivariate linear regression model is constructed
based on significant covariates, which can then be used to
estimate the pollutant concentration elsewhere.

LUR models are considered to be advantageous, as unlike
dispersion modelling they do not require detailed informa-
tion about atmospheric conditions as input data. As they are
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based on linear regression, LUR models are computationally
inexpensive to run compared to dispersion modelling. Previ-
ously, LUR models have been used to model species such
as NOx and particulate matter over spatial scales ranging
from cities to countries (e.g. Beelen et al., 2013; Eeftens
et al., 2012; Chen et al., 2010; Meng et al., 2015). However,
most LUR models are limited by their temporal resolution,
and are typically used to determine seasonal or annual con-
centrations. Methods to improve the temporal resolution of
LUR models often involve rescaling temporally coarser mod-
els based on trends observed in regulatory monitoring data.

In addition to in situ networks, NO2 can also be mea-
sured from space by satellite instruments (Monks and Beirle,
2011). Satellite datasets have some advantages over in situ
networks, in that their long service life and revisit time can
provide long-term monitoring of major emission sources and
ambient atmospheric conditions, allowing for synoptic cov-
erage of both spatial and temporal variation over urban ar-
eas. However, these instruments are only capable of measur-
ing tropospheric vertical column densities (VCDs), and so
cannot be readily compared with in situ concentrations with-
out accurately modelling the NO2 vertical profile to sepa-
rate the above-ground contribution (e.g. Bechle et al., 2013).
Also, because of their coarse spatial resolution, satellites are
not capable of resolving fine-scale urban variation. For in-
stance, modelled NO2 VCDs at the same spatial footprint as
the Ozone Monitoring Instrument (OMI; Levelt et al., 2006)
over North American megacities were found to have a 20–
30 % negative bias when compared to fine-scale models (Kim
et al., 2016).

Data from satellites have previously been used in NO2
LUR models over large geographic regions. For instance, av-
erage surface concentrations derived from tropospheric NO2
VCDs measured by OMI have been used as predictor vari-
ables to estimate annual NO2 concentrations over the United
States (Novotny et al., 2011), Western Europe (Vienneau
et al., 2013), and Australia (Knibbs et al., 2014). OMI tro-
pospheric VCDs have also successfully been used directly
without deriving a surface concentration to model the annual
NO2 concentration over the Netherlands (Hoek et al., 2015).
In all cases the inclusion of OMI data as a predictor vari-
able resulted in good agreement with in situ measurements,
and improved predictive performance when compared with
equivalent LUR models which did not include OMI data.

The aforementioned examples can only provide time-
averaged concentrations – and so may be sensitive to daily
variations in NO2 caused by changes in local meteorology or
emission sources. Daily satellite measurements may contain
useful information about both of these effects, and so could
be applied to address this issue. Lee and Koutrakis (2014)
used a mixed-effects model to address this issue. In this LUR
model, the OMI tropospheric VCD was included with both a
fixed and random effects. Fixed effects representing param-
eters temperature and wind speed were also included, along
with land use terms such as population density and devel-

oped area. The LUR model was found to have high predic-
tive capability (R2

= 0.79) when used to estimate daily NO2
concentrations over the New England region of the USA.

A similar mixed-effects approach could potentially be
used to predict NO2 concentrations over China. Because of
limited data availability there have been few exposure assess-
ment studies of Chinese air quality. A LUR model would al-
low for daily high-resolution maps to be developed for such
studies. The objective of this work is to therefore create and
validate a LUR model for forecasting surface NO2 concen-
trations over Hong Kong, and to assess its utility.

2 Method

For this work surface NO2 concentrations were measured
and forecasted over the Hong Kong SAR between 2005 and
2015. This time period was chosen as a compromise between
ensuring adequate representation of seasonal cycles and the
availability and quality of the satellite data (see below).

2.1 In situ data

The LUR models used in this work were both calibrated
and validated by surface NO2 concentrations measured by
in situ stations from the Hong Kong Air Quality Network
(HK-AQN). These stations are maintained by the Hong Kong
Environmental Protection Department (HKEPD, 2007). Be-
tween 2005 and 2015 11 monitoring stations measuring am-
bient pollutant concentrations were in operation (see Fig. 1).
These stations provide hourly measurements of CO, SO2, O3,
NOx , NO2, and particulate matter. NO2 concentrations are
measured through a combination of chemiluminescence and
differential optical absorption spectroscopy (DOAS; Platt
and Stutz, 2006). These stations are placed on buildings,
away from traffic junctions, and so are thought to be rep-
resentative of ambient conditions. Of these stations, 10 are
located in developed regions while one (Tap Mun) is located
in the Sai Kung Country Park, and so can be considered a
rural background station. Throughout the study period, the
HKEPD have reported that the precision and accuracy of
the NO2 measurements have been within the ±20 % control
limit.

The number and spatial sampling of these in situ stations
is smaller than those typically chosen for LUR modelling
(Hoek et al., 2008). However, it is not entirely without prece-
dent, as Li et al. (2010) used 14 in situ stations from the local
regulatory monitoring network in their LUR model to pre-
dict NO2 concentrations over Jinan, China. Therefore, it may
be possible to model an equivalent Chinese megacity using a
similarly limited in situ network.

2.2 Satellite data

Between 2005 and 2015 there were three satellite instruments
measuring tropospheric NO2 VCDs: OMI, GOME-2A, and
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Figure 1. The in situ NO2 stations from the HK-AQN used in this work. The red line indicates the international boundary of the Hong Kong
SAR, which this work focuses on. The green rectangle represents the Kowloon district and Hong Kong Island, from which the time series in
Sect. 3.8 was derived.

SCIAMACHY. These instruments and their retrieval algo-
rithms are briefly summarized in this section. All retrieval
algorithms based on these instruments derive these VCDs
by first retrieving a total slant column density (SCD) from
the measured visible (400–500 nm) reflectance spectrum us-
ing the DOAS technique. The stratospheric component of
the total column is then separated, either by empirical esti-
mation based on unpolluted regions (e.g. Richter and Bur-
rows, 2002) or by model assimilation (e.g. Boersma et al.,
2004). In addition to this, the column is also weighted by an
air mass factor (AMF) (Palmer et al., 2001) calculated from a
priori information to account for biases resulting from scene-
specific features (e.g. viewing geometry, scene albedo, NO2
vertical profile).

Tropospheric NO2 VCDs from these instruments were
previously verified over China and Japan between 2006 and
2011 using ground-based multi-axis DOAS (MAX-DOAS)
measurements by Irie et al. (2012). It was found that the
biases between these instruments and the MAX-DOAS ob-
servations were small enough to be considered insignificant,
suggesting that data from these instruments could be com-
bined for use in air quality studies.

Because of their varying ground pixel sizes, all satellite
data products used in this work were reprojected onto a 0.01◦

grid. To avoid biases from cloud contamination, only ground
pixels where the reported cloud fraction was < 30 % were
used from all instruments. For scanning instruments, only
pixels observed during forward scans were used.

2.2.1 Ozone monitoring instrument (OMI)

The Dutch–Finnish Ozone Monitoring Instrument (OMI,
Levelt et al., 2006) has been in continuous operation since
2004. OMI offers daily global coverage, with a local equa-
torial overpass time of approximately 13:45. The instrument
images a 2600 km swath binned to 60 across-track pixels,
with a nadir ground pixel size of 13 km× 24 km. While this
pixel size allows for city-scale features to be resolved, the
pixel size increases considerably away from the nadir, as
OMI is a pushbroom spectrometer. To try and compensate
for this effect in this work, the ground pixels are weighted by
their size and cloud fraction when gridded using the method
detailed in Wenig et al. (2008).

Since 2007 OMI has also been affected by a partial block-
age of its entrance aperture. This obstruction has resulted
in the so-called “row anomaly”, in which the measured ra-
diances are systematically biased depending on the across-
track viewing angle, season, and latitude. At the time of this
work this anomaly affects roughly half of the 60 across-track
pixels, which are removed from the analysis.

For this work the OMI tropospheric VCDs were taken
from the NASA Standard Product (OMNO2, v 3.0; OMNO2
Team, 2016). In this product the global stratospheric NO2
field is estimated by interpolating over known unpolluted re-
gions and then subtracted from the total column (Bucsela
et al., 2013). Further information about the SCD fit and the
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AMF computation can be found in Marchenko et al. (2015)
and Bucsela et al. (2013).

2.2.2 Global Ozone Monitoring Experiment-2
(GOME-2A)

The Global Ozone Monitoring Experiment-2A (GOME-2A,
Callies et al., 2000) has offered near-global coverage of tro-
pospheric NO2 since 2007. GOME-2A has a local equato-
rial overpass time of roughly 09:30, and observes a 1920 km
swath using a scanning mirror. Because of this, the ground
pixel size during the forward-scan remains 80 km× 40 km
throughout the swath. From the launch of GOME-2B in 2013
the viewing configuration of GOME-2A was changed, such
that the swath width was reduced to 960 km. While this
has improved the spatial resolution to 40 km× 40 km, daily
global coverage is no longer possible from GOME-2A. Be-
cause of this change no data after 2012 are used in this work.

For this work the GOME-2A tropospheric VCDs were
taken from the TEMIS TM4NO2A product (v 2.3; Boersma
et al., 2004). In this product the total SCD is assimilated
into the TM4 chemical transport model (CTM) to obtain the
stratospheric column. Further information about the SCD fit
and the AMF computation can be found in TEMIS (2010).

2.2.3 SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY)

The SCanning Imaging Absorption spectroMeter for Atmo-
spheric CHartographY (SCIAMACHY, Bovensmann et al.,
1999) was in operation between 2002 and 2012. SCIA-
MACHY used both limb and nadir viewing geometries to
provide columnar and profile information. However, because
of this unique design global coverage was only achieved ev-
ery 6 days. SCIAMACHY had a local equatorial overpass
time of 10:00. Like GOME-2A, SCIAMACHY employed a
scanning mirror to image a 960 km swath, which allowed for
a constant ground pixel size of 60 km× 30 km.

For this work the SCIAMACHY tropospheric VCDs were
also taken from the TEMIS TM4NO2A product (v 2.3;
Boersma et al., 2004). This dataset was chosen so as to min-
imise potential biases between the satellite datasets caused
by differences in their retrieval algorithms.

2.3 Mixed effects land use regression model

LUR models are typically fixed effect models, in which the
concentration of a pollutant is expressed as the linear sum
of variables approximating the influence of various emission
sources and sinks. These variables are “fixed” in the sense
that they are temporally invariant, and apply to the mean at-
mospheric state over the entire observation period. As a re-
sult, traditional LUR models are sensitive to unobserved het-
erogeneity arising from temporal variability in emissions or
other ambient conditions. In this work, an additional variable
is required to cover time-dependent effects (so-called “ran-

dom” effects) in order to model daily NO2 concentrations.
In practice, time-dependent effects are modelled in linear re-
gression through the inclusion of a discrete “dummy” vari-
able to describe a property of the data, such as the in situ sta-
tion where particular measurement was made. These effects
are considered to be “random”, as the magnitude and/or sign
of the effect is not expected to be the same over all measure-
ments. A model combining both fixed and random effects
is therefore known as a “mixed-effects” model, in which the
concentration is expressed as the sum of fixed variables along
with other variables whose effects vary with time or other
properties classified by the dummy variables. In this work,
these models are fitted from the observation dataset using the
lme4 R software package (Bates et al., 2012).

The mixed-effects LUR models considered in this work
are similar to the one developed by Lee and Koutrakis (2014).
The daily ambient NO2 concentration at a location i on day j
is assumed to be a linear function of the gridded daily satel-
lite tropospheric NO2 VCD retrieved over the same location,
�ij :

NO2,ij = α+ uj +
(
β1+ vj

)
�ij +

∑
m

βmXijm+ εij
(
ujvj

)
∼N [(00) ,6] . (1)

This approach accounts for day-to-day variations in the
surface NO2/� ratio, while also reducing the influence of
days with insufficient in situ or satellite data.

In Eq. (1) α and uj are the fixed and random intercepts, re-
spectively, while β1 and vj are the fixed and random slopes
of �ij , respectively. The βm are the fixed slopes of addi-
tional predictor variablesXijm at point i and day j . The error
term of the model is represented by, εij (ujvj )∼N(0,σ 2),
while 6 represents the variance–covariance relationship for
the day-specific random effects.

The main source of spatiotemporal information in the
model is the NO2 ·� relationship derived from the in situ and
satellite measurements, while the other parameters are used
to give a local context for probable NOx emission sources
and sinks. The fixed terms in Eq. (1) represent the spatial av-
erage of the NO2 ·� relationship, while the random terms
model the day-specific variations. The day-specific relation-
ship may be the consequence of daily variations in the NO2
vertical profile caused by changes in boundary layer height,
emissions, or other influences. For this work the daily mean
NO2 concentration from each of the stations shown in Fig. 1
was used as the dependent variable in Eq. (1). These concen-
trations were log-transformed to ensure that the input dataset
was normally distributed.

As this is a purely empirical model, the modelled surface
NO2 concentration is primarily a function of the in situ and
satellite data used to train it. Therefore, surface concentra-
tions are only modelled for a particular day, j , if at least one
in situ station has ≥ 75 % of the expected hourly measure-
ments and a cloud-free satellite observation on that day.
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Table 1. The predictor variables (Xm) considered for the LUR model (Eq. 1) used in this work.

Physical property Variable Type of
variable

Data source
(resolution)

Preferred sign Reference

Vehicle emissions Road length (primary,
secondary, tertiary)

Buffered (sum) OpenStreetMap (n/a) Positive Haklay and Weber (2008)

Industrial emissions Urban area coverage Buffered (%) MODIS-based Global
Land Cover Climatol-
ogy (0.5 km)

Positive Broxton et al. (2014)

Residential emissions Population density Buffered (sum) WorldPop dataset
(1 km)

Positive Stevens et al. (2015)

Dry deposition Vegetation area
coverage

Buffered (%) MODIS-based Global
Land Cover Climatol-
ogy (0.5 km)

Negative Broxton et al. (2014)

Marine air influence Distance from coast Point OpenStreetMap (n/a) n/a Haklay and Weber (2008)

Surface elevation Surface elevation Point ASTER Global Digi-
tal Elevation Model V2
(30 m)

Negative Tachikawa et al. (2011)

Surface temperature Daily 2 m temperature Point ERA-Interim reanalysis
(0.125◦)

Negative Dee et al. (2011)

Wind advection Daily wind direction
and speed

Point ERA-Interim reanalysis
(0.125◦)

n/a Dee et al. (2011)

Location Latitude and longitude Point – n/a –

2.3.1 Spatial predictor variables

As in traditional LUR models, spatial predictor variables in
this work are selected from a number of proxies describing
the local meteorology and NO2 emission sources and sinks.
These are summarized in Table 1 and discussed herein. Vari-
ables describing sources and sinks at a given location were
also buffered using several circle radii: 100, 200, 300, 400,
500, 600, 700, 800, 1000, 1200, 1500, 1800, 2000, 2500,
3000, 3500, 4000, 5000, 6000, 7000, 8000, and 10 000 m. In
all, this gave a total of 139 distinct variables to be presented
to the model. Certain variables were also given fixed signs
that βm must have. For instance, terms representing emis-
sion sources must have positive βm terms to represent the
positive effect they have on the ambient NO2 concentration,
while variables such as vegetation cover and surface eleva-
tion would have a negative βm.

At the time of this work no traffic density information
for Hong Kong was available, so in order to estimate the
possible contribution from traffic emissions it was thought
that the total road length within a buffer radius would be
a viable substitute. Road lengths were calculated from the
OpenStreetMap dataset (Haklay and Weber, 2008). The road
lengths of primary, secondary, and tertiary roads were con-
sidered as separate variables to account for the average differ-
ence in traffic density experienced by these road types. The
coastline from the OpenStreetMap dataset was also used to
calculate the distance to the sea for a given point, in order to

simulate the possible influence of cleaner marine air and/or
shipping emissions on the ambient NO2 concentration.

Residential NO2 emissions were thought to scale linearly
with population density, which has been sourced from the
WorldPop 2010 population density dataset (Stevens et al.,
2015). The total population density within a buffer was cal-
culated for a given point.

Urban area coverage was also assumed to be a good indi-
cator of residential and industrial emissions. At the time of
this work the highest resolution land cover dataset available
over Hong Kong was the 0.5 km MODIS-based Global Land
Cover Climatology (Broxton et al., 2014). The total vegeta-
tion cover (i.e. land covered by any vegetation type) was also
used to simulate the effect of dry deposition on the ambient
NO2 concentration. Both vegetation and urban cover were
calculated as a percentage of the buffer area.

In addition to fixed spatial parameters Lee and Koutrakis
(2014) also suggested using meteorological data in the model
to further explain the spatiotemporal variation in the surface
NO2 field. For instance, surface temperature can be assumed
to be a proxy for the actinic flux, and so the photochemi-
cal rate of dissociation of NO2 into NO, while wind speed
can be used as a proxy for the effect of advection on local
concentrations. For this work the daily mean surface tem-
perature, wind speed, and wind direction sourced from the
ERA-Interim reanalysis dataset (Dee et al., 2011) were used
as predictor variables.
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Table 2. The LUR models considered in this work, showing the
time period and satellite instruments used. Note that model 9 is a
multiple linear regression model which does not include satellite
data or random effects.

Model
number

Time period Satellite instrument(s)

1 2005–2015 OMI
2 2005–2015:

winter (Nov–Apr)
summer (May–Oct)

OMI

3 2005–2012 SCIAMACHY
4 2007–2013 GOME-2A
5 2007–2012 GOME-2A + SCIAMACHY
6 2007–2013 GOME-2A + OMI
7 2005–2012 SCIAMACHY + OMI
8 2007–2012 GOME-2A + SCIAMACHY

+ OMI
9 2005–2015 n/a (reference)

2.3.2 Predictor variable selection

To determine the optimal combination of predictor variables
to be used in the LUR model, a robust stepwise regression ap-
proach similar to the one employed by Eeftens et al. (2012)
was used. First, univariate regression was applied to all pre-
dictor variables. The predictor variable with the highest ad-
justed R2 was included in Eq. (1) as the first Xm. The re-
maining variables are then consecutively added to the model,
and their effect on the model-adjusted R2 was noted. After
all other variables are considered, the predictor variable that
resulted in the largest increase in the adjusted R2 was kept,
provided that the following criteria are met: (1) the increase
in the model-adjusted R2 was greater than 1 %, (2) the sign
of the predictor variable coefficient conformed to the sign
shown in Table 1, and (3) the signs of the other predictor
variables already included in the model were not changed by
the inclusion of the considered predictor variable.

Predictor variables were added to the model until the
model-adjusted R2 no longer increased by > 1 %. The p-
values of each predictor variable were then calculated, with
statistically insignificant variables (i.e. p > 0.05) sequen-
tially removed from the model until all predictor variables
became statistically significant. The multicollinearity of the
remaining predictor variables was then assessed by calculat-
ing the variance inflation factor (VIF) for each one. Predictor
variables where VIF > 10 were sequentially removed from
the model to determine their influence on the model predic-
tive power.

The models developed for this work were also tested for
influential observations by calculating the Cook’s D for each
surface NO2 measurement. Observations where the Cook’s D
was > 1 would be removed from the analysis and their effect
on the model performance would have been assessed. How-

ever, in this work no such observations were detected over
any of the stations involved.

2.3.3 Model variants

Daily forecasts of surface NO2 will be affected by the di-
urnal and seasonal cycles that affect transport and produc-
tion. Because of their different revisit times, data from the
satellite instruments have previously been combined to yield
information about these cycles (e.g. Boersma et al., 2008;
Hilboll et al., 2013). Therefore, it may be possible to en-
hance the model predictive power by using observations by
multiple satellite instruments at the same time and location.
Equation (1) can therefore be adapted to include random and
fixed slopes and intercepts for each satellite instrument. For
instance, a model combining SCIAMACHY and OMI data
would be

NO2,ij = α+ uj,OMI+ uj,SCIA+
(
β1,OMI+ vj,OMI

)
�ij,OMI

+
(
β1,SCIA+ vj,SCIA

)
�ij,SCIA+

∑
m

βmXijm

+ εij
(
ujvj

)
∼N [(00) ,6] . (2)

In this case the fixed and random slopes of � now rep-
resent the average and day-specific NO2 ·� relationship as
observed by each instrument, which may allow for the di-
urnal cycle to be better represented in the model. As with
single-instrument models, only days with both in situ data
and cloud-free observations from both satellite instruments
can be modelled with this approach.

Additionally, previous studies (e.g. Beelen et al., 2013)
used separate LUR models to account for seasonality in sur-
face NO2 concentrations. While the use of daily satellite data
should help to account for this effect, over short timescales
the systematic difference between seasons may not be imme-
diately recognizable and may lead to a poor model fit.

For this work several models were developed to explore
these concepts, which are summarized in Table 2. Model 1 is
a reference against all other models are compared against, as
the OMI dataset is the temporally longest with minimal is-
sues from spatial sampling or cloud cover. Model 2 attempts
to account for the seasonal cycle by training two LUR models
looking at different months for all years: winter (November–
April) and summer (May–October). Several LUR models are
also trained to investigate the predictive utility of each satel-
lite instrument separately. In addition to this, several mod-
els based on Eq. (2) were assessed, trialling different com-
binations of satellite instruments in order to better account
for diurnal variations in NO2. Finally, a multiple linear re-
gression model without using satellite data or mixed effects,
while forcing temperature and wind speed as predictor vari-
ables, was also assessed as a reference to compare against the
other models.

Other models based on those listed in Table 2 were also
tested, but are not included in this work due to anomalous
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Figure 2. Comparison of the mean surface NO2 concentration estimated by Model 1 (left) and the mean tropospheric VCD measured by OMI
(right) during the period 2005–2015. Grey regions indicate regions beyond the scope of the model – oceans and areas where no cloud-free
satellite measurements were available during this period. Important areas are indicated.

results. A seasonal model similar to Model 2 was tested with
GOME-2A and SCIAMACHY data, but in both cases the
fixed satellite data slope was found to be statistically insignif-
icant in the winter season. It is likely that this result was due
to both instruments lacking an adequate number of winter
measurements over Hong Kong because of their compara-
tively large ground pixel size and limited coverage.

3 Results and discussion

The properties of each of the models (predictor variables, ad-
justed R2) discussed in Table 2 are summarized in Table 3.
Comparisons between these models may be biased by the
number of observations used to produce each model, owing
to the difference in mission lifetimes and ground pixel sizes.
Additionally, models combining OMI and SCIAMACHY
data always failed to converge, regardless of the predictor
variables included. This null result may be due to a lack of
cloud-free days when both instruments were coincident over
Hong Kong. Despite this, it is clear that models including
satellite data have superior predictive performance as com-
pared with the reference model.

Figure 2 shows the mean surface NO2 concentration dur-
ing 2005–2015 as predicted by Model 1, compared to the
mean OMI tropospheric NO2 VCD observed during the same

period. The Model 1 output shows clear enhancements over
known residential areas, with the densely populated districts
of Kowloon, Wai Chung, and Kwai Chung showing con-
centrations > 100 µgm−3. Additional enhancements are also
visible over Hong Kong International Airport, and industrial
parks such as Yantian. Conversely, unpopulated regions such
as the Plower Cove and Sai Kung Country Parks show very
low concentrations (∼ 5 µgm−3). The spatial distribution and
relative intensity of the polluted regions is visually similar to
the concentrations forecasted by the LUR model developed
by Lee et al. (2017), which did not incorporate satellite data
or random effects, but made use of far more in situ sites (95)
than the 11 used in this work. Outside of the Hong Kong
SAR, significant enhancements are also found over Shenzhen
and Bao’an, which likely reflect the high population density
and manufacturing industries located there.

By contrast, the raw OMI data do not adequately resolve
any of these features, showing only a single enhancement
over Bao’an which declines radially with distance. This dis-
crepancy is likely to be the consequence of poor spatial sam-
pling and the comparatively higher emissions from Shenzhen
dominating the observed NO2 column. The difference in de-
tail between these two datasets shows the potential utility
in downscaling coarse satellite data with mixed-effects LUR
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Table 3. Description of the LUR models shown in Table 2, showing the predictor variables (including buffer radii where applicable) and
adjusted R2. Models combining OMI and SCIAMACHY data failed to converge regardless of predictor variable, so no viable dataset was
produced for Model 7.

Model number Predictor variables (m) N Adjusted R2

1 Secondary (600) and tertiary (300, 7000) road
length, Longitude

1610 0.828

2 (winter) Primary road length (8000), Urban area (400),
longitude

7493 0.804

2 (summer) Secondary (500) and tertiary (300, 3500, 7000)
road length

8667 0.797

3 Secondary (1200) and tertiary (300, 7000) road
length, longitude

884 0.824

4 tertiary (300, 7000) road length, population
density (200), longitude

3777 0.854

5 Primary (6000) and tertiary (400) road length,
urban area (600), longitude

296 0.846

6 Tertiary (300, 7000) road length, population
density (200), longitude

3369 0.860

8 Primary (6000) and tertiary (500) road length,
urban area (1000), longitude

216 0.863

9 Tertiary (300, 500, 3500, 7000) road length,
longitude

39 159 0.419

models to better resolve emission sources and spatial distri-
bution.

3.1 Model intercomparison

Figure 3 shows the mean surface NO2 concentration pre-
dicted by all models between 2007 and 2012, which was a
time period common to all of them. Because of differences
in instrument spatial resolution and ground coverage, only
38 days in this time period were found to have cloud-free
measurements by all three satellite instruments. As a com-
promise, Fig. 3 shows the mean of all data predicted by each
model.

Over the Hong Kong SAR, all models show clear enhance-
ments over the areas already noted in Fig. 2. The models also
all predict a negative longitudinal gradient; concentrations
predicted by the models over Lantau South Country Park
(22.24◦ N, 113.93◦ E) were on average 2.6 times higher than
those over Sai Kung Country Park (22.40◦ N, 114.35◦ E).
This gradient may potentially be the result of in situ station
coverage; the most eastern station (Tap Mun) is situated in
the Sai Kung Country Park, while the most western station
(Tung Chung) is within a residential area and nearby Hong
Kong International Airport.

The distribution of elevated NO2 concentrations over the
Hong Kong SAR does not significantly change between
models, though the longitudinal gradient is more pronounced

in some models than others. In models 2–8 the gradient
is strong enough to result in mean surface NO2 concen-
trations predicted over Lantau South Country Park to be
∼ 40 µgm−3. These values seem unrealistic, as the MODIS
and WorldPop datasets suggest that the region is mostly unin-
habited and undeveloped compared to districts like Aberdeen
and Yantian, which show similar concentrations.

Outside of Hong Kong, the distribution of the Bao’an and
Shenzhen enhancements change considerably between mod-
els, depending on whether road networks or population den-
sity and urban area coverage were used. Because of a lack of
available surface concentration data from mainland China,
these regions cannot be validated in this work.

3.2 Seasonal variation

All models including satellite data were found to predict
higher surface NO2 concentrations during the winter than
in the summer, particularly over urban areas. This seasonal
dependence may be caused by lower boundary layer height
and longer NOx lifetime during winter, as well as increased
emissions from residential heating. Figure 4 shows this sea-
sonal gradient in the mean surface NO2 concentration during
2005–2015 predicted by models 1 and 2 over both seasons.

Both models in Fig. 4 are highly correlated in the sum-
mer (R2

= 0.97), as they are largely based on the same vari-
ables, though Model 2 does not feature a longitudinal gradi-
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Figure 3. The mean surface NO2 concentration predicted by each of the models listed in Table 2 for 2007–2012. Each plot also shows the
number of cloud-free days from which the models could be trained.

ent. However, in winter the models are much less correlated
(R2
= 0.78), with Model 2 showing a much stronger longi-

tudinal gradient than Model 1. As in Figure 3, this gradi-
ent leads to unphysically high concentrations being predicted
over uninhabited regions such as Lantau South Country Park,
making it unlikely that this is a realistic model of winter air
quality over Hong Kong.

From Table 3 it is clear that the winter model had over
1000 fewer observations to use compared to the summer
model. During winter there are fewer cloud-free observa-
tions, which would lead to the model overfitting the data
available. Despite having fewer observations to use the win-
ter model-adjusted R2 is higher than the summer model, sug-
gesting that overfitting has occurred. The spatial footprint
size of GOME-2A and SCIAMACHY are much larger than
OMI, which would result in fewer cloud-free observations
being available in the same time period, and so lead to the
null results observed when seasonal models involving these
datasets were attempted.

3.3 Cross-validation with in situ data

Based on the adjusted R2 values for each model shown in Ta-
ble 3, it appears that models 6 and 8 are the best performing
models, suggesting that using more than one satellite dataset
improves model prediction. However, the adjusted R2 statis-
tic may be artificially inflated by overfitting to the input data,

and so may be overly optimistic descriptors of model perfor-
mance. Ideally these models would be validated against ad-
ditional measured concentrations from stations independent
of the current dataset. However, in the absence of other sta-
tions measuring ambient NO2, the LUR models in this work
were validated using cross-validation (CV), in which subsets
of the data used to initially train the model are iteratively re-
moved from the training process and used to compare against
the model forecast.

LUR models are typically validated using two major CV
approaches: leave-one-out cross-validation (LOOCV) and k-
fold cross-validation. LOOCV involves data from a partic-
ular station being reserved from the model training process
and used to validate the model, such that data from any one
station are validated against a model trained using data from
every other station. Conversely, k-fold cross-validation in-
volves randomly partitioning the data into k equal-sized sub-
sets (i.e. from all stations), and then using each subset to
validate the model trained using the remaining k− 1 sub-
sets. Because of the limited number of stations available for
this work, removing entire stations from the training dataset
would remove significant information from the model train-
ing process, and so unfairly bias the validation results. The
limitations of LOOCV compared to k-fold cross-validation
when applied to LUR models based on limited in situ data
have previously been discussed in Wang et al. (2016) and
Johnson et al. (2010).

www.atmos-chem-phys.net/17/8211/2017/ Atmos. Chem. Phys., 17, 8211–8230, 2017



8220 J. S. Anand and P. S. Monks: Daily surface NO2 modelled over Hong Kong

Figure 4. The mean surface NO2 concentration predicted by models 1 and 2 during winter (November–April) and summer (May–October)
between 2005 and 2015.

Because of the limited number of in situ stations available,
this work used a 5-fold CV approach to validate the models,
in which 80 % of the available data is used to calculate the
coefficients and intercepts of each of the models shown in
Table 2. These models are then used to estimate the surface
concentrations of the remaining 20 % of the data. This pro-
cess is repeated until every data point has been estimated by
a model that has not been trained using it.

In this work the predictive performance of each model
is determined through comparing the cross-validated model
dataset against the original in situ measurements through lin-
ear regression. Agreement between the two datasets is quan-
tified by calculating the adjusted R2, gradient, intercept (re-
ferred to henceforth as the model bias), and root mean square
error (RMSE, µgm−3). Because the models developed in this
work are purely statistical, the CV gradient and bias against
the in situ data are considered to be the main measures of
model accuracy in this work. The RMSE of a model was cal-
culated as the square root of the mean of the squared errors.
Table 4 shows the results of the cross-validation on each of
the models considered in this work.

From considering the CV-adjusted R2 and RMSE, it is
clear that all the models including satellite data perform bet-
ter than Model 9, suggesting that there is some utility in in-
corporating satellite data in LUR models. Model 2 has the
highest CV-adjusted R2 and lowest RMSE, suggesting that
OMI data offered the best agreement with in situ measure-

ments, so long as seasonal effects are accounted for. Sources
of error reflected by the RMSE in models 1–8 may be from
coarse spatial sampling by the satellite instrument, or re-
trieval algorithm errors in the satellite dataset.

Models using only one satellite dataset also perform better
than those combining two or more datasets. A likely cause
behind this difference is that the models using more than one
satellite dataset had fewer cloud-free observations to use, be-
cause of complications arising from different spatial resolu-
tions and orbital coverage. A lack of available data would
have therefore resulted in these models overfitting the input
data available.

3.4 Spatial representivity

For all models in this work the CV dataset can be grouped by
station, which allows for side-by-side comparisons of model
performance over all regions to be made. Figure 5 shows the
CV-adjusted R2 and RMSE for each model over each station.
It is clear from the CV that with the exception of Tap Mun,
models 1–4 agree much better with the in situ data overall
compared to models 5–9. Figure 5 also shows that models
1–4 also on average have much lower RMSEs over most sta-
tions excluding Tap Mun, which suggests that they offer a
higher precision than models 5–9.

However, over Tap Mun almost all models (excluding
Model 2) perform poorly, with lower adjusted R2 values and
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Table 4. The results of the 5-fold cross-validation (CV) applied to all the LUR models described in Table 2. Surface concentrations estimated
using CV were compared against the original in situ measurements using linear regression, from which the adjusted R2, gradient, bias, and
RMSE (µgm−3) are derived. The standard error of the gradient and bias are also displayed, while the RMSE is also expressed as a percentage
of the mean concentration estimated by the model.

Model number CV-adjusted R2 CV gradient (error) CV bias (error) CV RMSE (%)

1 0.775 0.889 (0.00376) 5.14 (0.228) 13.2 (24.4)
2 0.838 0.840 (0.00290) 7.23 (0.176) 10.9 (20.1)
3 0.745 0.865 (0.0170) 7.24 (1.08) 13.1 (22.4)
4 0.808 0.844 (0.00670) 7.67 (0.428) 12.2 (21.1)
5 0.586 0.861 (0.0420) 9.25 (2.67) 18.1 (40.0)
6 0.480 0.583 (0.0104) 20.9 (0.665) 20.7 (36.1)
8 0.535 0.990 (0.0629) 1.89 (4.03) 23.5 (40.0)
9 0.419 0.447 (0.00266) 25.6 (0.153) 19.1 (36.9)

RMSE values that are higher than the mean of the other sta-
tions. This result suggests that the models all have poor spa-
tial representivity over unpopulated areas, which is because
such regions are largely unrepresented by the in situ stations.

Model 2 is somewhat of an outlier to this trend, as over
Tap Mun the CV-adjusted R2 is 0.73, which is comparable
to values retrieved over the other stations. Similarly, the CV
RMSE retrieved over Tap Mun is also lower than the value
retrieved by Model 1. This suggests that training a season-
specific model may better account for variability between ru-
ral and urban areas.

3.5 Temporal representivity

The CV datasets produced in this work can also be grouped
and validated by year to determine whether annual or decadal
changes in NO2 are successfully predicted by models trained
with all available data. The inclusion of satellite data as a pre-
dictor variable also raises the possibility of instrument degra-
dation affecting model performance. Unlike in situ stations,
satellite instruments can only be passively recalibrated over
their lifetime, leading to a possible drift in retrieval precision
that may progressively bias surface NO2 models (e.g. Dikty,
S. and Richter, A., 2011; Anand et al., 2015).

The LUR models are affected by the number of obser-
vations available, which in turn are also dependent on in-
strument degradation. One example of this is the OMI row
anomaly, which since 2007 has grown to affect half of the
instrument orbital coverage. Over time, this would lead to
fewer available observations, which may lead to biases in the
LUR models. The degradation in available measurements,
combined with the potential decrease in precision of the
DOAS fit over time, may result in a decline in the annual
CV-adjusted R2 and a corresponding rise in the CV RMSE
because of the increased uncertainty in the model.

Table 5 shows the annual CV-adjusted R2 and RMSE of
models 1 and 2 between 2005 and 2015. While no statis-
tically significant trend is observed in the CV-adjusted R2

values for either model, both models show a statistically sig-

nificant decline in RMSE over time (Model 1:−0.28 % yr−1;
Model 2:−0.11 % yr−1), which suggests that coverage losses
or instrument degradation are not significant influences on
model accuracy or precision. Table 5 also shows that on av-
erage the adjusted R2 of Model 2 is ∼ 8.0 % higher than
Model 1, while the RMSE is ∼ 23 % lower, suggesting that
the better performance Model 2 showed in Table 5 compared
to Model 1 was not the result of anomalously high correlation
with in situ measurements over certain years.

3.6 Influence of local meteorology

For models 1–8, the inclusion of temperature and wind speed
from ERA-Interim was not found to significantly improve the
adjusted R2 compared to the other considered variables. One
possible reason for this may be that the spatial resolution of
the ERA-Interim is too coarse to capture the true variation
in temperature and wind speed. Another possibility is that
the satellite data implicitly contain information about am-
bient atmospheric conditions observed as part of the VCD
measurement, so additional meteorological data may not be
needed in the LUR model.

In order to determine whether meteorological data sub-
stantially improve the LUR model, Model 1 was trained
again while forcing surface temperature and wind speed from
ERA-Interim as predictor variables. The training process
again selected the same variables shown in Table 3, with the
addition of the total tertiary road length within 400 m. Wind
speed and temperature were found to have a negative effect
on surface concentration; the ERA-Interim temperature may
represent the ambient actinic flux, while high wind speeds
would increase mixing and therefore act to lower concen-
trations. Figure 6 shows the seasonal average surface NO2
concentration predicted by Model 1 with and without meteo-
rological data for 2005–2015. The addition of meteorological
data causes a ∼ 17 % mean increase in surface NO2 concen-
trations across the region, though no new emission sources
are visible.
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Figure 5. The CV-adjusted R2 and RMSE for each of the HK-AQN stations used in this work, as reported by the models listed in Table 2.

As with the other models, this model variant can be vali-
dated against the in situ measurement data using 5-fold CV
and compared with the results in Table 4. When meteorolog-
ical data were forced the CV-adjusted R2 was 0.806, com-
pared with 0.775 before, suggesting that the inclusion im-
proves the model agreement. Similarly, the model CV RMSE
decreased to 12.0 µgm−3 (22.1 %) after including meteoro-
logical data. The CV gradient also decreased to 0.846, while
the CV bias became 7.17 µgm−3. The decrease in gradient
and increase in bias against in situ data suggests that the in-
clusion of ERA-Interim data does not adequately improve the
LUR model accuracy, though the increase in CV-adjusted R2

and decrease in RMSE shows that it does improve the preci-
sion of the model.

For this work it is thought that the effect of meteorologi-
cal data in the LUR model is limited by the spatial resolution
of the satellite instruments, or the ERA-Interim dataset. Pre-
vious LUR models incorporating daily meteorological data
(e.g. Su et al., 2008; Lee and Koutrakis, 2014) have typically
used measurements from weather stations either close to or
at the sites where the NO2 concentrations have been mea-
sured, with the ambient temperature and wind field therefore
interpolated from these fixed points. Because of the compara-
tively fewer number of NO2 stations available for this work,
it was thought that a harmonized dataset like ERA-Interim
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Table 5. The adjusted R2 and RMSE (µgm−3) determined from the 5-fold cross-validation (CV) applied to models 1 and 2 (see Tables 2
and 4), grouped by year.

Year Model 1 CV-adjusted R2 Model 2 CV-adjusted R2 Model 1 CV RMSE (%) Model 2 CV RMSE (%)

2005 0.742 0.838 14.4 (26.0) 10.2 (18.4)
2006 0.744 0.822 14.2 (25.4) 10.8 (19.3)
2007 0.783 0.839 12.7 (23.7) 9.86 (18.4)
2008 0.804 0.849 12.6 (22.5) 10.1 (17.9)
2009 0.779 0.840 12.4 (23.2) 9.80 (18.3)
2010 0.788 0.848 12.0 (22.8) 9.27 (17.6)
2011 0.793 0.841 11.9 (21.6) 9.58 (17.4)
2012 0.744 0.807 11.9 (22.2) 9.44 (17.7)
2013 0.791 0.845 13.3 (23.2) 10.2 (17.8)
2014 0.785 0.849 11.7 (23.6) 8.93 (18.1)

Figure 6. The mean surface NO2 concentration predicted by Model 1 and 2 during winter (November–April) and summer (May–October)
between 2005 and 2015, with and without the inclusion of wind speed and temperature from the ERA-Interim reanalysis dataset (Dee et al.,
2011).

would reduce the spatial uncertainty otherwise introduced
by discrete weather stations. Future iterations of this work
should investigate whether using in situ weather data would
provide a better outcome.

3.7 Validation using OMI and MACC-II reanalysis
data

An alternative technique to deriving surface NO2 concentra-
tions from satellite measurements is to use a chemical trans-
port model to estimate the vertical profile at the time of the

satellite overpass (Lamsal et al., 2008). The profile can then
be used to partition the tropospheric VCD into its surface and
free-tropospheric components, thereby estimating a scaling
factor that can be applied to the measured VCDs. This ap-
proach is advantageous in that it allows for surface NO2 con-
centrations to be mapped at a higher spatial resolution than
many CTM grids.

For this work a similar approach to Lamsal et al. (2008)
was used to infer surface NO2 concentrations from OMI data.
Daily mean NO2 vertical profiles over Hong Kong were sam-
pled from the MACC-II reanalysis dataset (Monitoring At-
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Figure 7. The mean surface NO2 concentration inferred from OMI tropospheric VCDs using MACC-II reanalysis data, between 2005 and
2012. Data is plotted for winter (left, November-April) and summer (right, May–October).

mospheric Composition and Climate; Inness et al., 2013) for
this purpose. For an OMI ground pixel O, the surface NO2
concentration SO is estimated from the OMI tropospheric
VCD, �O , using the following relation:

SO =
νSG

ν�G− (ν− 1)�FG
×�O . (3)

Here, the terms �G and SG are the tropospheric VCD and
the surface concentration derived from the MACC-II daily
average profile, for which the surface is defined as the lowest
layer of the profile (20 m). To obtain the tropospheric VCD
the profile is integrated up to the tropopause height taken
from the OMNO2 dataset. The modelled free-tropospheric
NO2 column, �FG, is taken to be horizontally invariant over
the MACC-II grid cell, in order to represent the longer NOx
lifetime in the free troposphere. As the spatial resolution
of the MACC-II dataset is much larger than the OMI nadir
resolution (1.125◦× 1.125◦), the S/� conversion factor is
weighted by an additional term, ν, which is defined as the
ratio of the local OMI tropospheric VCD to the mean OMI
field over the MACC-II grid cell.

MACC-inferred surface concentrations were calculated
for all cloud-free OMI pixels measured over Hong Kong be-
tween 2005 and 2012 and compared against the daily am-
bient NO2 concentrations recorded at the in situ stations.
Figure 7 shows the mean surface NO2 concentration esti-
mated using MACC-II and OMI data for winter and sum-

mer over Hong Kong. Compared to Fig. 4, it is clear that the
MACC-inferred concentrations are much lower and capture
much less spatial information than the LUR models, because
of limitations caused by the OMI spatial resolution. Over
both seasons, NO2 concentrations appear to peak north of
the Hong Kong SAR, potentially caused by emissions from
Shenzhen and Bao’an, or transported further north from the
Pearl River Delta.

Because of this lack of spatial detail, the MACC-II con-
centrations correlate very poorly with the in situ data (R2

=

0.11, RMSE= 41.9 µgm−3), with a linear gradient of ∼
0.58. This analysis was repeated with MACC-II profiles
modelled at 14:00 local time (the closest available time to
the daily OMI overpass), with similarly poor agreement.
As well as this, previous comparisons of tropospheric NO2
VCDs inferred from MACC-II profiles with SCIAMACHY
data over East Asia suggest that the dataset underestimates
tropospheric NO2 by a factor of 2 in winter (Inness et al.,
2013), which may also partially explain the lack of agree-
ment with the in situ data. It is clear from this result that the
mixed-effects LUR model offers better spatial resolution and
predictive capability than the MACC-II reanalysis over Hong
Kong.
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Figure 8. Top panel: time series analysis of the monthly mean surface NO2 between 2005 and 2015 predicted by Model 1 (see Table 2) over
the region covering Kowloon and Hong Kong Island shown in Fig. 1. The error bars represent the standard error of the mean for each month,
while the red line represents the linear trend and seasonal cycle modelled using Eq. (4). The linear trend is also shown separately as the
blue dashed line. Bottom panel: the annual total NOx emissions by Hong Kong, as estimated by the HKEPD bottom-up inventory (HKEPD,
2014).

3.8 Time series analysis

The Model 1 dataset covers a decade of near-continuous
measurements, from which it may be possible to determine
whether NO2 concentrations have significantly changed af-
ter accounting for noise and seasonal variation. To determine
whether a statistically significant trend can be observed from
this dataset, surface concentrations modelled over Kowloon
and Hong Kong Island (see Fig. 1) were binned to monthly
averages between 2005 and 2015. Following Hilboll et al.
(2013), a linear trend with a seasonal component was fitted to
this time series. The surface concentration at month t (Y (t),
where t = 0 is January 2005), was modelled as a combina-
tion of a fixed intercept µ and linear trend ω:

Y (t)= µ+ωt + (1+ ξ)×
4∑
j=1

( β1,j sin
(

2πjt
12

)

+β2,j cos
(

2πjt
12

)
)+N (t) . (4)

The time series may be subject to variations in the sea-
sonal component caused by changes in emissions and NOx
lifetime. To reflect this, an additional term, ξ , is introduced
to Eq. (4) to dampen or drive the seasonal oscillation over
time. The term N(t) represents the noise component (i.e. the

remaining signal in the time series that cannot be explained
by the model)

Equation (4) is first solved using nonlinear regression to
determine the values of µ, ω, and ξ that minimize N(t). The
seasonal components have a negligible impact on the estima-
tion of the other parameters in Eq. (4) (Weatherhead et al.,
1998), so these are subtracted from the time series. In addi-
tion to this, the autocorrelations are also accounted for using
a linear matrix transformation. Finally, linear regression is
applied to determine µ and ω (Mieruch et al., 2008).

In order to determine the linear trend error, it is assumed
that the noise N(t) is autoregressive with lag 1 (AR(1)). Fol-
lowing the approach defined by Mieruch et al. (2008), the
linear trend is considered to be statistically significant only if
the following condition is satisfied:

PH0

(∣∣ω̂ > 2σω̂
∣∣)= erf

( ∣∣ω̂∣∣
σω̂
√

2

)
> 95%, (5)

where erf(x) is the Gauss error function.
The monthly average time series and the fitted model are

shown in Fig. 8, along with an annual bottom-up NOx emis-
sion inventory estimated by the HKEPD (HKEPD, 2014).
The linear trend was estimated to be: −0.0208 µgm−3 yr−1

(−0.430 % yr−1 relative to the average 2005 concentra-
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tion). The seasonal dampening term ξ was estimated to
be: −0.0287 µgm−3 yr−1. However, the trend was found
to be statistically insignificant. This analysis was repeated
on the raw OMI tropospheric VCDs observed over the re-
gion, which resulted in a statistically insignificant trend of
−2.52 % yr−1. A similar result was found when analysing
satellite data between 1996 and 2012 over Hong Kong by
Hilboll et al. (2013), who also found that the signs of µ and
ξ were the same. Another investigation by Schneider et al.
(2015) using only SCIAMACHY data also found a statis-
tically insignificant negative trend, as well as a statistically
significant trend of −3.8 % yr−1 over Shenzhen.

A statistically insignificant negative trend was also esti-
mated when this analysis was repeated using data predicted
by Model 2 (−0.537 % yr−1), as well as the spatial mean
concentration reported by the in situ stations in this region
(−0.240 % yr−1). By contrast, the HKEPD inventory shows
a statistically significant trend of −1.60 % yr−1. A possible
reason behind this discrepancy could be influence from NOx
emissions transported from mainland China which may ob-
scure any decline in local emissions. The coarse OMI spatial
resolution can also cause a smoothing of sub-pixel plumes
over urban areas, and so the resulting retrieved column may
be an underestimate of the true value (Kim et al., 2016),
which would therefore result in a negative bias in the mod-
elled surface concentrations.

4 Conclusions

The Hong Kong SAR is subject to high ambient NO2 concen-
trations caused by a combination of local emissions and pol-
lution transported from elsewhere in the Pearl River Delta.
Exposure studies require the calculation of accurate surface
concentration maps, which could be enhanced by the synop-
tic coverage offered by satellite instruments. For this work
several mixed-effects LUR models were developed to ex-
plore this concept, which combined in situ NO2 measure-
ments with tropospheric VCDs measured by satellite in-
struments. Despite a limited number of in situ stations, the
mixed-effects models incorporating satellite data were found
to have superior predictive performance in estimating daily
ambient NO2 concentrations over the region compared to the
reference model, with an average CV-adjusted R2 of 0.681.

The LUR models used high spatial resolution datasets such
as road networks and MODIS land cover to simulate likely
emission sources. This allowed for distinct features to be vis-
ible over districts such as Kowloon, Yantian, and Wan Chai
(∼ 100 µgm−3). By contrast, local minima were observed
over uninhabited areas such as the Sai Kung and Plower Cove
Country Parks (∼ 5 µgm−3). One anomaly to this trend was
the Lantau South Country Park, which was modelled to have
ambient NO2 concentrations as high as 40 µgm−3. This en-
hancement may be the result of pollution from the nearby
Hong Kong International Airport, or an artefact caused by the

location of the Tung Chung station. The spatial features and
relative intensities of these polluted regions appear very sim-
ilar to the NO2 concentrations derived by Lee et al. (2017),
who used a LUR model based on a far greater number of
in situ measurements, but did not incorporate satellite data
or random effects. This similarity demonstrates that a viable
LUR model of a densely populated, heterogeneous landscape
can be derived from a small set of in situ stations using satel-
lite data. Very large features were also observed over Shen-
zhen and Bao’an, though validating these is beyond the scope
of this work due to insufficient station coverage.

For this work several models were developed to assess the
relative utility of OMI, SCIAMACHY, and GOME-2A data
as predictor variables. The quality of these datasets differs
significantly because of their temporal sampling and spatial
resolution. From 5-fold cross-validation with the in situ data
it was found that OMI data gave the best agreement with
the in situ data, so long as seasonal effects were accounted
for (CV-adjusted R2

= 0.838). OMI has the smallest ground
pixel size and the longest temporal range of the three instru-
ments, which allowed for local emissions and the seasonal
cycle to be better accounted for. Larger ground pixel sizes are
at risk of contamination by pollution transported from Shen-
zhen or elsewhere in the PRD, which may add a positive bias
to all inferred surface concentrations over Hong Kong.

It was thought that the models including more than one
satellite dataset would have improved sensitivity to diurnal
variation, and so predict daily average surface concentrations
better than models using a single dataset. However, as with
all statistical models, the LUR model performance is depen-
dent on the number of observations available, and can only
predict day-specific surface NO2 concentrations when both
satellite and in situ data are available on that day. As only
cloud-free satellite data can be used, the number of avail-
able observations is therefore heavily dependent on the sea-
son and the spatial resolution of the satellite instrument (Kri-
jger et al., 2007). Factoring diurnal changes in cloud cover,
this means that models using more than one satellite instru-
ment would be fitted using fewer observations than single
instrument models. Because of these issues and differences
in spatial resolution, it was difficult to determine whether di-
urnal cycle coverage was accounted for by these models.

By collating cross-validation model data by in situ station
and time it was possible to gauge the spatiotemporal repre-
sentivity of each model. For models using only OMI data no
significant negative trend in the CV-adjusted R2 was found
between 2005 and 2015, suggesting that these models can
account for the progressive loss of coverage caused by the
row anomaly, allowing for high temporal representivity over
the entire observation period.

The single-instrument models generally performed better
than the multiple-instrument and reference models over all
regions except for the rural Tap Mun station, where all mod-
els apart from the seasonal OMI model performed poorly.
Tap Mun is the only rural station in the HK-AQN, which may
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have resulted in the models being biased in favour of highly
polluting urban areas. One example of this bias is the longi-
tudinal gradient present in most of the models, which is espe-
cially notable in Fig. 4. The longitudinal gradient has resulted
in unrealistically high concentrations being reported over the
uninhabited Lantau South Country Park, which raises con-
cerns over the true spatial representivity of the models over
regions where no in situ data are available. Future iterations
of this work may require a more diverse in situ network
and/or higher resolution satellite data to better capture the
spatial gradient between polluted and unpolluted regions.

For this work temperature and wind information from the
ERA-Interim reanalysis dataset was provided in the model
training process, in order to simulate photochemical loss and
mixing. However, it was found that including these variables
did not significantly improve the model-adjusted R2 com-
pared with other parameters used in this work, and so were
not selected by the model training process. When temper-
ature and wind speed were forced into Model 1, the aver-
age NO2 concentration over the region increased by ∼ 17%,
though no new features were observed. Cross-validation with
the in situ data suggests that while including ERA-Interim
data improves model precision, the model accuracy falls. One
possible cause of this decrease in accuracy may be that the
spatial resolution of ERA-Interim was too coarse to fully
represent the true atmospheric state. The model performance
may potentially be improved if in situ measurements from a
dense network of weather stations could be used instead.

Time series analysis was applied to surface concentrations
predicted by the OMI-only models to determine whether a
trend in emissions over Kowloon and Hong Kong Island
could be determined between 2005 and 2015. Both mod-
els and the OMI data over this region reported a statis-
tically insignificant trend over this region (−0.430% yr−1

for Model 1). By contrast, the HKEPD annual bottom-up
NOx inventory suggests that a statistically significant trend of
−1.60% yr−1 should be observed during this period. Emis-
sions transported from elsewhere in the PRD may have off-
set any observable decline in local emissions, though this
would require accurate information of pollution outside of
Hong Kong to verify. That said, the influence of mainland
Chinese emissions on Hong Kong air quality has previously
been investigated and quantified by Wang et al. (2017) and
Xue et al. (2014) using more refined models, which supports
the conclusion reached in this work.

In the absence of additional in situ data, surface NO2 con-
centrations were also estimated from OMI data using pro-
files from the MACC-II reanalysis dataset. However, surface
concentration maps derived using this method had the same
spatial resolution as OMI, and so were dominated by pollu-
tion transported from Shenzhen or further afield. As well as
this, the MACC-II dataset has previously been shown to have
poor agreement with other satellite datasets over East Asia
(Inness et al., 2013), which may also affect the accuracy of
this method. Because of these issues, agreement with in situ

data was very poor (R2
= 0.111) compared with the models

used in this work. It is likely that better estimates could have
been achieved with higher spatial resolution CTMs, such as
the Models-3 Community Multiscale Air Quality (CMAQ;
Kuhlmann et al., 2015).

For the first time, this work has demonstrated the potential
in combining in situ data with satellite data with a mixed-
effects model to obtain better estimates of daily surface NO2
concentrations over a small, densely populated region. This
approach can be readily applied to other megacities so long
as a diverse in situ monitoring network exists to calibrate and
validate the model. Despite the limited number of in situ sta-
tions available for this work, the mixed-effects model pro-
duces reliable high-resolution mapping of surface NO2 that
remains robust over long timescales. As well as this, this
work also attempted for the first time to account for diurnal
variation using only observations and a statistical approach,
but was severely limited by differences in the spatiotemporal
resolution of the satellite datasets.

However, the spatial resolution of the satellite instrument
remains a source of error, which may lead to underestimating
the true surface concentration over megacities. In the future,
the performance of this model would be greatly improved by
the inclusion of higher resolution satellite data from forth-
coming missions such as Sentinel-5P (7× 7 km; Veefkind
et al., 2012). Accounting for diurnal cycle variability in daily
estimates may also still be possible by combining daily mea-
surements made by instruments with similar spatial resolu-
tions (e.g. Geostationary Environmental Monitoring Spec-
trometer, GEMS; Kim, 2012). Further improvements could
also be made by the inclusion of spatiotemporal emission
data, such as traffic volumes or emission inventories. How-
ever, such datasets would need to have a high spatial resolu-
tion comparable to the fixed parameters used in this work in
order to have a significant influence on the model.

Data availability. Monthly averages of the Model 1 data
are provided as netCDF files at http://emep.int/panda/wp2/
HongKongSAR.zip.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The research leading to these results has re-
ceived funding from the European Union Seventh Framework Pro-
gramme ([FP7/2007–2013]) under grant agreement no. 606719,
as part of the PArtnership with ChiNa on space DAta (PANDA)
project. Additional funding was also provided by the UK Na-
tional Environmental Research Council (NERC) under grant no.
NE/N006941/1, as part of An Integrated Study of AIR Pollution
PROcesses in Beijing (AIRPRO).

We acknowledge the use of OMI data made available
from the NASA MIRADOR service (http://disc.sci.gsfc.

www.atmos-chem-phys.net/17/8211/2017/ Atmos. Chem. Phys., 17, 8211–8230, 2017

http://emep.int/panda/wp2/HongKongSAR.zip
http://emep.int/panda/wp2/HongKongSAR.zip
http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI


8228 J. S. Anand and P. S. Monks: Daily surface NO2 modelled over Hong Kong

nasa.gov/Aura/data-holdings/OMI), as well as the use of
SCIAMACHY and GOME-2A data provided by the KNMI
TEMIS (http://www.temis.nl) service. The ERA-Interim and
MACC-II reanalysis datasets were provided by ECMWF
(http://www.ecmwf.int). The in situ NO2 measurements and NOx
emission inventory were provided by the Hong Kong Environmental
Protection Department (http://www.epd.gov.hk/epd/eindex.html).
OMI data gridding was made possible using software kindly pro-
vided by Gerrit Kuhlmann, available at https://github.com/gkuhl.
This research used the SPECTRE High Performance Computing
Facility at the University of Leicester.

Edited by: Anne Perring
Reviewed by: two anonymous referees

References

Anand, J. S., Monks, P. S., and Leigh, R. J.: An improved retrieval
of tropospheric NO2 from space over polluted regions using an
Earth radiance reference, Atmos. Meas. Tech., 8, 1519–1535,
https://doi.org/10.5194/amt-8-1519-2015, 2015.

Bates, D., Maechler, M., and Bolker, B.: lme4: Linear mixed-effects
models using S4 classes, r package version 0.999999-0, 2012.

Bechle, M. J., Millet, D. B., and Marshall, J. D.: Remote sens-
ing of exposure to NO2: Satellite versus ground-based mea-
surement in a large urban area, Atmos. Environ., 69, 345–353,
https://doi.org/10.1016/j.atmosenv.2012.11.046, 2013.

Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou,
K., Pedeli, X., Tsai, M.-Y., Künzli, N., Schikowski, T., Mar-
con, A., Eriksen, K. T., Raaschou-Nielsen, O., Stephanou, E.,
Patelarou, E., Lanki, T., Yli-Tuomi, T., Declercq, C., Falq,
G., Stempfelet, M., Birk, M., Cyrys, J., von Klot, S., Nádor,
G., Varro, M. J., Dedele, A., Grazuleviciene, R., Mölter, A.,
Lindley, S., Madsen, C., Cesaroni, G., Ranzi, A., Badaloni,
C., Hoffmann, B., Nonnemacher, M., Krämer, U., Kuhlbusch,
T., Cirach, M., de Nazelle, A., Nieuwenhuijsen, M., Bellan-
der, T., Korek, M., Olsson, D., Strömgren, M., Dons, E., Jer-
rett, M., Fischer, P., Wang, M., Brunekreef, B., and de Hoogh,
K.: Development of NO2 and NOx land use regression mod-
els for estimating air pollution exposure in 36 study areas in
Europe: The ESCAPE project, Atmos. Environ., 72, 10–23,
https://doi.org/10.1016/j.atmosenv.2013.02.037, 2013.

Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for
tropospheric NO2 retrieval from space, J. Geophys. Res.-Atmos.,
109, D04311, https://doi.org/10.1029/2003JD003962, 2004.

Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J.,
and van der A, R. J.: Intercomparison of SCIAMACHY and OMI
tropospheric NO2 columns: Observing the diurnal evolution of
chemistry and emissions from space, J. Geophys. Res.-Atmos.,
113, D16S26, https://doi.org/10.1029/2007JD008816, 2008.

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël,
S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.:
SCIAMACHY: Mission Objectives and Measurement Modes,
J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-
0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.

Broxton, P. D., Zeng, X., Sulla-Menashe, D., and Troch,
P. A.: A Global Land Cover Climatology Using MODIS

Data, J. Appl. Meteorol. Climatol., 53, 1593–1605,
https://doi.org/10.1175/JAMC-D-13-0270.1, 2014.

Bucsela, E. J., Krotkov, N. A., Celarier, E. A., Lamsal, L. N.,
Swartz, W. H., Bhartia, P. K., Boersma, K. F., Veefkind, J. P.,
Gleason, J. F., and Pickering, K. E.: A new stratospheric and
tropospheric NO2 retrieval algorithm for nadir-viewing satellite
instruments: applications to OMI, Atmos. Meas. Tech., 6, 2607–
2626, https://doi.org/10.5194/amt-6-2607-2013, 2013.

Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre,
A.: GOME-2-Metop’s second-generation sensor for operational
ozone monitoring, ESA Bulletin, 102, 28–36, 2000.

Chen, L., Bai, Z., Kong, S., Han, B., You, Y., Ding, X., Du, S.,
and Liu, A.: A land use regression for predicting NO2 and PM10
concentrations in different seasons in Tianjin region, China,
J. Environ. Sci., 22, 1364–1373, https://doi.org/10.1016/S1001-
0742(09)60263-1, 2010.

Chen, R., Samoli, E., Wong, C.-M., Huang, W., Wang, Z., Chen,
B., and Kan, H.: Associations between short-term exposure to
nitrogen dioxide and mortality in 17 Chinese cities: The China
Air Pollution and Health Effects Study (CAPES), Environ. Int.,
45, 32–38, https://doi.org/10.1016/j.envint.2012.04.008, 2012.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Dikty, S. and Richter, A.: GOME-2 on MetOp-A Support for Anal-
ysis of GOME-2 In-Orbit Degradation and Impacts on Level 2
Data Products, Tech. rep., University of Bremen, Bremen, Ger-
many, 2011.

Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G.,
Cirach, M., Declercq, C., Dedele, A., Dons, E., de Nazelle, A.,
Dimakopoulou, K., Eriksen, K., Falq, G., Fischer, P., Galassi, C.,
Grazuleviciene, R., Heinrich, J., Hoffmann, B., Jerrett, M., Kei-
del, D., Korek, M., Lanki, T., Lindley, S., Madsen, C., Mölter,
A., Nador, G., Nieuwenhuijsen, M., Nonnemacher, M., Pedeli,
X., Raaschou-Nielsen, O., Patelarou, E., Quass, U., Ranzi, A.,
Schindler, C., Stempfelet, M., Stephanou, E., Sugiri, D., Tsai,
M.-Y., Yli-Tuomi, T., Varro, M. J., Vienneau, D., Klot, S. v.,
Wolf, K., Brunekreef, B., and Hoek, G.: Development of Land
Use Regression Models for PM2.5, PM2.5 Absorbance, PM10
and PMcoarse in 20 European Study Areas; Results of the
ESCAPE Project, Environ. Sci. Technol., 46, 11195–11205,
https://doi.org/10.1021/es301948k, 2012.

Gu, B., Ge, Y., Ren, Y., Xu, B., Luo, W., Jiang, H., Gu, B., and
Chang, J.: Atmospheric Reactive Nitrogen in China: Sources,
Recent Trends, and Damage Costs, Environ. Sci. Technol., 46,
9420–9427, https://doi.org/10.1021/es301446g, 2012.

Haklay, M. and Weber, P.: OpenStreetMap: User-
Generated Street Maps, IEEE Pervas. Comput., 7, 12–18,
https://doi.org/10.1109/MPRV.2008.80, 2008.

Hedley, A. J., McGhee, S. M., Barron, B., Chau, P., Chau, J.,
Thach, T. Q., Wong, T.-W., Loh, C., and Wong, C.-M.: Air Pol-

Atmos. Chem. Phys., 17, 8211–8230, 2017 www.atmos-chem-phys.net/17/8211/2017/

http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI
http://www.temis.nl
http://www.ecmwf.int
http://www.epd.gov.hk/epd/eindex.html
https://github.com/gkuhl
https://doi.org/10.5194/amt-8-1519-2015
https://doi.org/10.1016/j.atmosenv.2012.11.046
https://doi.org/10.1016/j.atmosenv.2013.02.037
https://doi.org/10.1029/2003JD003962
https://doi.org/10.1029/2007JD008816
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
https://doi.org/10.1175/JAMC-D-13-0270.1
https://doi.org/10.5194/amt-6-2607-2013
https://doi.org/10.1016/S1001-0742(09)60263-1
https://doi.org/10.1016/S1001-0742(09)60263-1
https://doi.org/10.1016/j.envint.2012.04.008
https://doi.org/10.1002/qj.828
https://doi.org/10.1021/es301948k
https://doi.org/10.1021/es301446g
https://doi.org/10.1109/MPRV.2008.80


J. S. Anand and P. S. Monks: Daily surface NO2 modelled over Hong Kong 8229

lution: Costs and Paths to a Solution in Hong Kong – Under-
standing the Connections Among Visibility, Air Pollution, and
Health Costs in Pursuit of Accountability, Environmental Justice,
and Health Protection, JPN J. Tox. Env. Health, 71, 544–554,
https://doi.org/10.1080/15287390801997476, 2008.

Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes
of tropospheric NO2 over megacities derived from multiple
satellite instruments, Atmos. Chem. Phys., 13, 4145–4169,
https://doi.org/10.5194/acp-13-4145-2013, 2013.

HKEPD: A report on the results from the Air Quality Moni-
toring Network (AQMN) (2007) (EPD/TR 01/08), http://www.
aqhi.gov.hk/api_history/english/report/files/aqr07e.pdf, (last ac-
cess: October 2016), 2007.

HKEPD: Hong Kong Air Pollutant Emission Inventory – Nitrogen
Oxides, http://www.epd.gov.hk/epd/english/environmentinhk/
air/data/emission_inve.html, (last access: October 2016), 2014.

Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gul-
liver, J., Fischer, P., and Briggs, D.: A review of land-
use regression models to assess spatial variation of out-
door air pollution, Atmos. Environ., 42, 7561–7578,
https://doi.org/10.1016/j.atmosenv.2008.05.057, 2008.

Hoek, G., Eeftens, M., Beelen, R., Fischer, P., Brunekreef, B.,
Boersma, K. F., and Veefkind, P.: Satellite NO2 data improve
national land use regression models for ambient NO2 in a
small densely populated country, Atmos. Environ., 105, 173–
180, https://doi.org/10.1016/j.atmosenv.2015.01.053, 2015.

Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark,
H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flem-
ming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen,
V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J.,
Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G.,
Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V.,
Vrekoussis, M., Zerefos, C., and the MACC team: The MACC
reanalysis: an 8 yr data set of atmospheric composition, At-
mos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-
13-4073-2013, 2013.

Irie, H., Boersma, K. F., Kanaya, Y., Takashima, H., Pan, X., and
Wang, Z. F.: Quantitative bias estimates for tropospheric NO2
columns retrieved from SCIAMACHY, OMI, and GOME-2 us-
ing a common standard for East Asia, Atmos. Meas. Tech., 5,
2403–2411, https://doi.org/10.5194/amt-5-2403-2012, 2012.

Johnson, M., Isakov, V., Touma, J., Mukerjee, S., and Ã–zkaynak,
H.: Evaluation of land-use regression models used to predict
air quality concentrations in an urban area, Atmos. Environ.,
44, 3660–3668, https://doi.org/10.1016/j.atmosenv.2010.06.041,
2010.

Kim, H. C., Lee, P., Judd, L., Pan, L., and Lefer, B.: OMI NO2
column densities over North American urban cities: the effect of
satellite footprint resolution, Geosci. Model Dev., 9, 1111–1123,
https://doi.org/10.5194/gmd-9-1111-2016, 2016.

Kim, J.: GEMS(Geostationary Environment Monitoring Spectrom-
eter) onboard the GeoKOMPSAT to Monitor Air Quality in high
Temporal and Spatial Resolution over Asia-Pacific Region, in:
EGU General Assembly Conference Abstracts, vol. 14, p. 4051,
2012.

Knibbs, L. D., Hewson, M. G., Bechle, M. J., Marshall,
J. D., and Barnett, A. G.: A national satellite-based
land-use regression model for air pollution exposure as-

sessment in Australia, Environ. Res., 135, 204–211,
https://doi.org/10.1016/j.envres.2014.09.011, 2014.

Krijger, J. M., van Weele, M., Aben, I., and Frey, R.: Technical
Note: The effect of sensor resolution on the number of cloud-free
observations from space, Atmos. Chem. Phys., 7, 2881–2891,
https://doi.org/10.5194/acp-7-2881-2007, 2007.

Kuhlmann, G., Lam, Y. F., Cheung, H. M., Hartl, A., Fung, J.
C. H., Chan, P. W., and Wenig, M. O.: Development of a cus-
tom OMI NO2 data product for evaluating biases in a regional
chemistry transport model, Atmos. Chem. Phys., 15, 5627–5644,
https://doi.org/10.5194/acp-15-5627-2015, 2015.

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M.,
Celarier, E. A., Bucsela, E., Dunlea, E. J., and Pinto, J. P.:
Ground-level nitrogen dioxide concentrations inferred from the
satellite-borne Ozone Monitoring Instrument, J. Geophys. Res.-
Atmos., 113, D16308, https://doi.org/10.1029/2007JD009235,
2008.

Lee, H. J. and Koutrakis, P.: Daily Ambient NO2 Concentration
Predictions Using Satellite Ozone Monitoring Instrument NO2
Data and Land Use Regression, Environ. Sci. Technol., 48, 2305–
2311, https://doi.org/10.1021/es404845f, 2014.

Lee, M., Brauer, M., Wong, P., Tang, R., Tsui, T. H.,
Choi, C., Cheng, W., Lai, P.-C., Tian, L., Thach, T.-Q.,
Allen, R., and Barratt, B.: Land use regression modelling
of air pollution in high density high rise cities: A case
study in Hong Kong, Sci. Total Environ., 592, 306–315,
https://doi.org/10.1016/j.scitotenv.2017.03.094, 2017.

Levelt, P., Van den Oord, G. H. J., Dobber, M., Malkki, A., Visser,
H., de Vries, J., Stammes, P., Lundell, J., and Saari, H.: The
Ozone Monitoring Instrument, IEEE T. Geosci. Remote Sens.,
44, 1093–1101, 2006.

Li, C., Du, S.-y., Bai, Z.-p., Shao-fei, K., Yan, Y., Bin, H.,
Dao-wen, H., and Li, Z.-y.: Application of land use regres-
sion for estimating concentrations of major outdoor air pollu-
tants in Jinan, China, J. Zhejiang Univ.-Sc. A, 11, 857–867,
https://doi.org/10.1631/jzus.A1000092, 2010.

Marchenko, S., Krotkov, N. A., Lamsal, L. N., Celarier, E. A.,
Swartz, W. H., and Bucsela, E. J.: Revising the slant column den-
sity retrieval of nitrogen dioxide observed by the Ozone Mon-
itoring Instrument, J. Geophys. Res.-Atmos., 120, 5670–5692,
https://doi.org/10.1002/2014JD022913, 2015.

Meng, X., Chen, L., Cai, J., Zou, B., Wu, C.-F., Fu, Q., Zhang, Y.,
Liu, Y., and Kan, H.: A land use regression model for estimating
the NO2 concentration in Shanghai, China, Environ. Res., 137,
308–315, https://doi.org/10.1016/j.envres.2015.01.003, 2015.

Mieruch, S., Noël, S., Bovensmann, H., and Burrows, J. P.: Anal-
ysis of global water vapour trends from satellite measurements
in the visible spectral range, Atmos. Chem. Phys., 8, 491–504,
https://doi.org/10.5194/acp-8-491-2008, 2008.

Monks, P. S. and Beirle, S.: Applications of Satellite Observations
of Tropospheric Composition, 365–449, Springer Berlin Hei-
delberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-
14791-3_8, 2011.

Novotny, E. V., Bechle, M. J., Millet, D. B., and Marshall,
J. D.: National Satellite-Based Land-Use Regression: NO2
in the United States, Environ. Sci. Technol., 45, 4407–4414,
https://doi.org/10.1021/es103578x, 2011.

OMNO2 Team: OMNO2 README Document Data Prod-
uct Version 3.0, http://aura.gesdisc.eosdis.nasa.gov/data/Aura_

www.atmos-chem-phys.net/17/8211/2017/ Atmos. Chem. Phys., 17, 8211–8230, 2017

https://doi.org/10.1080/15287390801997476
https://doi.org/10.5194/acp-13-4145-2013
http://www.aqhi.gov.hk/api_history/english/report/files/aqr07e.pdf
http://www.aqhi.gov.hk/api_history/english/report/files/aqr07e.pdf
http://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission_inve.html
http://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission_inve.html
https://doi.org/10.1016/j.atmosenv.2008.05.057
https://doi.org/10.1016/j.atmosenv.2015.01.053
https://doi.org/10.5194/acp-13-4073-2013
https://doi.org/10.5194/acp-13-4073-2013
https://doi.org/10.5194/amt-5-2403-2012
https://doi.org/10.1016/j.atmosenv.2010.06.041
https://doi.org/10.5194/gmd-9-1111-2016
https://doi.org/10.1016/j.envres.2014.09.011
https://doi.org/10.5194/acp-7-2881-2007
https://doi.org/10.5194/acp-15-5627-2015
https://doi.org/10.1029/2007JD009235
https://doi.org/10.1021/es404845f
https://doi.org/10.1016/j.scitotenv.2017.03.094
https://doi.org/10.1631/jzus.A1000092
https://doi.org/10.1002/2014JD022913
https://doi.org/10.1016/j.envres.2015.01.003
https://doi.org/10.5194/acp-8-491-2008
https://doi.org/10.1007/978-3-642-14791-3_8
https://doi.org/10.1007/978-3-642-14791-3_8
https://doi.org/10.1021/es103578x
http://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMNO2.003/doc/README.OMNO2.pdf


8230 J. S. Anand and P. S. Monks: Daily surface NO2 modelled over Hong Kong

OMI_Level2/OMNO2.003/doc/README.OMNO2.pdf, last ac-
cess: October 2016.

Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr,
R. J. D., Kurosu, T. P., Bey, I., Yantosca, R., Fiore, A., and Li,
Q.: Air mass factor formulation for spectroscopic measurements
from satellites: Application to formaldehyde retrievals from the
Global Ozone Monitoring Experiment, J.Geophys. Res., 106, 14,
10.1029/2000JD900772, 2001.

Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy
(DOAS), Principle and Applications, Springer Verlag, 2006.

Richter, A. and Burrows, J.: Tropospheric NO2 from
GOME measurements, Adv. Space Res., 29, 1673–1683,
https://doi.org/10.1016/S0273-1177(02)00100-X, 2002.

Schneider, P., Lahoz, W. A., and van der A, R.: Recent satellite-
based trends of tropospheric nitrogen dioxide over large ur-
ban agglomerations worldwide, Atmos. Chem. Phys., 15, 1205–
1220, https://doi.org/10.5194/acp-15-1205-2015, 2015.

Stevens, F. R., Gaughan, A. E., Linard, C., and Tatem, A. J.: Disag-
gregating Census Data for Population Mapping Using Random
Forests with Remotely-Sensed and Ancillary Data, PLoS ONE,
10, 1–22, https://doi.org/10.1371/journal.pone.0107042, 2015.

Su, J. G., Brauer, M., Ainslie, B., Steyn, D., Larson, T., and
Buzzelli, M.: An innovative land use regression model incorpo-
rating meteorology for exposure analysis, Sci. Total Environ.,
390, 520–529, https://doi.org/10.1016/j.scitotenv.2007.10.032,
2008.

Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics
of ASTER GDEM version 2, Geoscience and Remote Sensing
Symposium (IGARSS), 2011 IEEE International, 3657–3660,
https://doi.org/10.1109/IGARSS.2011.6050017, 2011.

TEMIS: Algorithm Document Tropospheric NO2 (TEM/AD1/001),
http://temis.nl/docs/AD_NO2.pdf (last access: October 2016),
2010.

Veefkind, J., Aben, I., McMullan, K., Förster, H., de Vries,
J., Otter, G., Claas, J., Eskes, H., de Haan, J., Kleipool,
Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf,
J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B.,
Vink, R., Visser, H., and Levelt, P.: TROPOMI on the ESA
Sentinel-5 Precursor: A GMES mission for global observations
of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.

Vienneau, D., de Hoogh, K., Bechle, M. J., Beelen, R., van
Donkelaar, A., Martin, R. V., Millet, D. B., Hoek, G., and
Marshall, J. D.: Western European Land Use Regression
Incorporating Satellite- and Ground-Based Measurements of
NO2 and PM10, Environ. Sci. Technol., 47, 13555–13564,
https://doi.org/10.1021/es403089q, 2013.

Wang, M., Brunekreef, B., Gehring, U., Szpiro, A., Hoek,
G., and Beelen, R.: A New Technique for Evaluat-
ing Land-use Regression Models and Their Impact
on Health Effect Estimates, Epidemiology, 27, 51–56,
https://doi.org/10.1097/EDE.0000000000000404, 2016.

Wang, Y., Wang, H., Guo, H., Lyu, X., Cheng, H., Ling, Z., Louie,
P. K. K., Simpson, I. J., Meinardi, S., and Blake, D. R.: Long
term O3-precursor relationships in Hong Kong: Field obser-
vation and model simulation, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2017-235, in review, 2017.

Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X.-L., Choi,
D., Cheang, W.-K., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr,
J. B., Miller, A. J., Oltmans, S. J., and Frederick, J. E.: Factors af-
fecting the detection of trends: Statistical considerations and ap-
plications to environmental data, J. Geophys. Res.-Atmos., 103,
17149–17161, https://doi.org/10.1029/98JD00995, 1998.

Wenig, M. O., Cede, A. M., Bucsela, E. J., Celarier, E. A., Boersma,
K. F., Veefkind, J. P., Brinksma, E. J., Gleason, J. F., and Herman,
J. R.: Validation of OMI tropospheric NO2 column densities us-
ing direct-Sun mode Brewer measurements at NASA Goddard
Space Flight Center, J. Geophys. Res.-Atmos., 113, D16S45,
https://doi.org/10.1029/2007JD008988, 2008.

WHO: Review of evidence on health aspects of air pollution – RE-
VIHAAP Project, Tech. rep., World Health Organization, WHO
Regional Office for Europe, Copenhagen, Denmark, 2013.

Xue, L., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R.,
and Xu, Z.: Increasing External Effects Negate Local Efforts to
Control Ozone Air Pollution: A Case Study of Hong Kong and
Implications for Other Chinese Cities, Environ. Sci. Technol., 48,
10769–10775, https://doi.org/10.1021/es503278g, 2014.

Atmos. Chem. Phys., 17, 8211–8230, 2017 www.atmos-chem-phys.net/17/8211/2017/

http://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMNO2.003/doc/README.OMNO2.pdf
https://doi.org/10.1016/S0273-1177(02)00100-X
https://doi.org/10.5194/acp-15-1205-2015
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.1016/j.scitotenv.2007.10.032
https://doi.org/10.1109/IGARSS.2011.6050017
http://temis.nl/docs/AD_NO2.pdf
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1021/es403089q
https://doi.org/10.1097/EDE.0000000000000404
https://doi.org/10.5194/acp-2017-235
https://doi.org/10.1029/98JD00995
https://doi.org/10.1029/2007JD008988
https://doi.org/10.1021/es503278g

	Abstract
	Introduction
	Method
	In situ data
	Satellite data
	Ozone monitoring instrument (OMI)
	Global Ozone Monitoring Experiment-2 (GOME-2A)
	SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY)

	Mixed effects land use regression model
	Spatial predictor variables
	Predictor variable selection
	Model variants


	Results and discussion
	Model intercomparison
	Seasonal variation
	Cross-validation with in situ data
	Spatial representivity
	Temporal representivity
	Influence of local meteorology
	Validation using OMI and MACC-II reanalysis data
	Time series analysis

	Conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

