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Abstract. Global surface emissions of nitrogen oxides
(NOx) over a 10-year period (2005–2014) are estimated
from an assimilation of multiple satellite data sets: tropo-
spheric NO2 columns from Ozone Monitoring Instrument
(OMI), Global Ozone Monitoring Experiment-2 (GOME-
2), and Scanning Imaging Absorption Spectrometer for At-
mospheric Chartography (SCIAMACHY), O3 profiles from
Tropospheric Emission Spectrometer (TES), CO profiles
from Measurement of Pollution in the Troposphere (MO-
PITT), and O3 and HNO3 profiles from Microwave Limb
Sounder (MLS) using an ensemble Kalman filter technique.
Chemical concentrations of various species and emission
sources of several precursors are simultaneously optimized.
This is expected to improve the emission inversion because
the emission estimates are influenced by biases in the mod-
elled tropospheric chemistry, which can be partly corrected
by also optimizing the concentrations. We present detailed
distributions of the estimated emission distributions for all
major regions, the diurnal and seasonal variability, and the
evolution of these emissions over the 10-year period. The es-
timated regional total emissions show a strong positive trend
over India (+29 % decade−1), China (+26 % decade−1),
and the Middle East (+20 % decade−1), and a negative
trend over the USA (−38 % decade−1), southern Africa
(−8.2 % decade−1), and western Europe (−8.8 % decade−1).
The negative trends in the USA and western Europe are
larger during 2005–2010 relative to 2011–2014, whereas the
trend in China becomes negative after 2011. The data as-
similation also suggests a large uncertainty in anthropogenic

and fire-related emission factors and an important underes-
timation of soil NOx sources in the emission inventories.
Despite the large trends observed for individual regions,
the global total emission is almost constant between 2005
(47.9 Tg N yr−1) and 2014 (47.5 Tg N yr−1).

1 Introduction

Nitrogen oxides (NOx =NO+NO2) play an important role
in air quality, tropospheric chemistry, and climate. Tropo-
spheric NOx concentrations are highly variable in both space
and time, reflecting its short chemical lifetime in the at-
mosphere and the heterogeneous distribution of its sources
and sinks. Emission sources are important in determining
the amount and distribution of NOx . Natural NOx sources
include biogenic emissions from bacteria in soils, biomass
burning, and lightning. Anthropogenic NOx sources include
fossil fuel and biofuel combustion, emissions from vehicle
transport, and industrial emissions. Bottom-up inventories
from different sources and regions contain large uncertain-
ties, which result from inaccurate emission factors and ac-
tivity rates for each source category. Examples include traf-
fic rush hours, economic activity, biomass-burning activity,
wintertime heating of buildings, and rain-induced emission
pulses of NOx (e.g. Velders et al., 2001; Jaeglé et al., 2005;
Wang et al., 2007; Xiao et al., 2010; Streets et al., 2013;
Castellanos et al., 2014; Reuter et al., 2014; Vinken et al.,
2014; Oikawa et al., 2015). As a result, bottom-up inventories
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are generally poor at representing the spatial and temporal
variability at multiple scales (i.e. diurnal, daily, seasonal, and
interannual). Large uncertainties in biomass-burning emis-
sions mainly reflect a relative lack of observations when char-
acterizing the large spatial and temporal variations of burn-
ing conditions (Castellanos et al., 2014). The wide range of
soil NOx emission estimates in previous studies reflect in-
complete knowledge of the emission factors and processes
driving these emissions (Oikawa et al., 2015). Recent stud-
ies (e.g. Steinkamp and Lawrence, 2011; Hudman et al.,
2012; Vinken et al., 2014) suggest that soil NOx emissions
are likely around 10 Tg N yr−1, a considerable increase rel-
ative to earlier studies that assumed about 5 Tg N yr−1 soil
NOx emissions (Yienger and Levy, 1995). Large uncertain-
ties are also in lightning NOx (LNOx) source estimates.
Schumann and Huntrieser (2007) provided a best estimate
of 5± 3 Tg N yr−1 for the annual global LNOx source. More
recently, Murray et al. (2013), Stavrakou et al. (2013), and
Miyazaki et al. (2014) estimated at 6± 0.5, 3.3–5.9, and
6.3± 1.4 Tg N yr−1, respectively.

Tropospheric NO2 columns retrieved from satellite mea-
surements, including the Global Ozone Monitoring Exper-
iment (GOME), Scanning Imaging Absorption Spectrome-
ter for Atmospheric Chartography (SCIAMACHY), GOME-
2, and the Ozone Monitoring Instrument (OMI), have been
used to infer NOx emissions using top-down approaches
(e.g. Martin et al., 2003; Richter, 2004; Jaeglé et al., 2005;
van der A et al., 2006, 2008; Zhang et al., 2007; Boersma
et al., 2008a; Stavrakou et al., 2008; Kurokawa et al., 2009;
Zhao and Wang, 2009; Lamsal et al., 2010; Lin et al., 2010;
Miyazaki et al., 2012a; Gu et al., 2013; Mijling et al., 2013;
Vinken et al., 2014; Ding et al., 2015; Lu et al., 2015). Long-
term tropospheric NO2 column records have allowed us to
investigate changes in the atmospheric environment over the
past decade as a result of economic growth and emission con-
trols over major polluted regions (Castellanos and Boersma,
2012; Hilboll et al., 2013; Cui et al., 2016; Lelieveld et al.,
2015; Wang et al., 2015; Duncan et al., 2016; Krotkov et al.,
2016).

Advanced data assimilation techniques such as four-
dimensional variational assimilation (4D-VAR) (Müller and
Stavrakou, 2005; Kurokawa et al., 2009; Chai et al.,
2009) and ensemble Kalman filter (EnKF) (Miyazaki et al.,
2012a, b, 2014, 2015) have been employed to take full ad-
vantage of the chemical transport model (CTM) and satellite
retrievals in top-down emission estimates. These advanced
techniques consider flow-dependent forecast error covari-
ance and take errors from both the model and retrievals into
account. These advantages are considered essential for im-
proving long-term global emission estimates, since dominant
atmospheric processes, the emission–concentration relation-
ships, and observational sampling and errors must be incor-
porated into the analysis. These advanced methodologies can
readily assimilate multiple species. The additional observa-
tions of O3 and CO constrain surface NOx emissions through

their indirect impact on NO2 concentrations through tropo-
spheric chemistry. These species directly influence OH con-
centrations, which control the NOx variability and lifetime,
and indirectly the accuracy of the emission estimates. Chem-
ically consistent, multi-constituent assimilation is an advance
over conventional approaches, which assume NO2 observa-
tions are uniquely controlled by NOx emissions.

Various sources of error in current CTMs impact the sim-
ulated NOx lifetime and the accuracy of NOx emission in-
versions (Lin, 2012; Miyazaki et al., 2012a; Stavrakou et al.,
2013). Stavrakou et al. (2013) showed the strong effect of
chemical NOx loss uncertainties on top-down NOx source in-
versions. OH is the main radical responsible for the removal
of atmospheric pollution and for determining the lifetime
of many chemicals including NOx (Levy, 1971; Logan et
al., 1981; Thompson, 1992), but its concentrations in CTMs
are considered to have large uncertainties (Naik et al., 2013;
Miyazaki et al., 2015; Patra et al., 2014). Meanwhile, repre-
sentations of LNOx sources are essential for realistic repre-
sentations of tropospheric NO2 columns, but current param-
eterizations contain large uncertainties (Martin et al., 2007;
Schumann and Huntrieser, 2007; Miyazaki et al., 2014). Er-
rors in representing these natural sources of NO2 can directly
propagate into surface NOx emissions estimates.

Increasing attention has been paid to combining obser-
vations of multiple species to improve the analysis of tro-
pospheric chemistry, including for NOx emission estimates.
Measurements of species other than NO2 (e.g. O3 and
HNO3) could improve the representation of NOx in models
through their chemical interactions with NOx (e.g. Hamer
et al., 2015). Advanced data assimilation techniques such
as 4D-VAR and EnKF propagate observational information
from a limited number of observed species to a wide range
of chemical components. Miyazaki et al. (2012b, 2014, 2015)
and Miyazaki and Eskes (2013) demonstrated that the assim-
ilation of multiple-species observations, taking their complex
chemical interactions into account using an EnKF technique,
can provide comprehensive constraints on both concentration
and emissions. This approach has the potential to improve
emission inversions by accounting for confounding factors in
the relationship between NOx emissions and NO2 concentra-
tions. Because of the simultaneous assimilation of multiple-
species data with optimization of both the concentrations
and emission fields, the global distribution of OH was mod-
ified considerably, decreasing the OH gradient between the
Northern Hemisphere (NH) and Southern Hemisphere (SH)
(Miyazaki et al., 2015). The changes in OH are the important
chemical pathway for propagating observational information
between various species and for modulating the chemical
lifetimes among these species.

In this study, we estimate global surface NOx emissions
between 2005 and 2014 using the assimilation of multiple-
species data from OMI NO2, GOME-2 NO2, SCIAMACHY
NO2, Tropospheric Emission Spectrometer (TES) O3, Mea-
surement of Pollution in the Troposphere (MOPITT) CO, and
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Microwave Limb Sounder (MLS) O3 and HNO3 retrievals
using an EnKF technique. We attempted to optimize the di-
urnal variations in surface NOx emissions, while updating
daily, seasonal, and interannual emission variations, based on
a combination of three NO2 retrievals obtained at different
overpass times. The assimilation of multiple chemical data
sets with different vertical sensitivity profiles provides com-
prehensive constraints on the global NOx emissions while
improving the representations of the entire chemical sys-
tem affecting tropospheric NO2 column variations, including
LNOx sources. Based on the EnKF estimations, this study
presents detailed distributions of the surface NOx emissions
for all major regions, the diurnal and seasonal variability, and
the development over the 10-year period.

2 Methodology

The data assimilation system is constructed based on the
global CTM MIROC-Chem (Watanabe et al., 2011) and
on a variance of the EnKF technique. The basic frame-
work is similar to the system used to produce tropo-
spheric chemistry reanalysis data (http://www.jamstec.go.
jp_res_ress_kmiyazaki_reanalysis_) in our previous study
(Miyazaki et al., 2015); however, some updates to the data
assimilation framework have been made and the calculation
has been extended to cover the 10 years from 2005 to 2014,
as described below.

2.1 MIROC-Chem model and a priori emissions

The original forecast model used in our previous study
(Chemical atmospheric general circulation model (AGCM)
for study of atmospheric environment and radiative forc-
ing, CHASER; Sudo et al., 2002) is replaced by the newer
Model for Interdisciplinary Research on Climate (MIROC)-
Chem model (Watanabe et al., 2011). MIROC-Chem rep-
resents the chemistry part of the MIROC-ESM Earth sys-
tem model. It considers detailed photochemistry in the tro-
posphere and stratosphere by simulating tracer transport, wet
and dry deposition, and emissions, and calculates the con-
centrations of 92 chemical species and 262 chemical reac-
tions (58 photolytic, 183 kinetic, and 21 heterogeneous re-
actions). Its tropospheric chemistry was developed based on
the CHASER model, with many updates to chemical re-
actions and emissions, considering the fundamental chem-
ical cycle of Ox-NOx-HOx-CH4-CO along with oxidation
of NMVOCs (ethane, ethane, propane, propene, butane, ace-
tone, methanol, isoprene, and terpenes) to properly represent
ozone chemistry in the troposphere. Its stratospheric chem-
istry was developed based on the CCSR/NIES stratospheric
chemistry model (Akiyoshi et al., 2004), which calculates
chlorine- and bromine-containing compounds, CFCs, HFCs,
OCS, N2O, and the formation of PSCs and associated het-
erogeneous reactions on their surfaces.

MIROC-Chem has a T42 horizontal resolution (approx-
imately 2.8◦× 2.8◦) and uses the hybrid terrain-following
pressure vertical coordinate system with 32 vertical levels
from the surface to 4.4 hPa. It is coupled to the atmospheric
general circulation model MIROC-AGCM version 4 (Watan-
abe et al., 2011). The radiative transfer scheme considers
absorption within 37 bands, scattering by gases, aerosols,
and clouds, and the effect of surface albedo. Detailed radi-
ation calculations are used for photolysis calculation. The
MIROC-AGCM fields were nudged toward the 6-hourly
ERA-Interim (Dee et al., 2011) at every model time step to
reproduce past meteorological fields and to simulate short-
term (i.e. less than 6 h) meteorological variability and sub-
grid scale transport effects.

The forecast model update from CHASER to MIROC-
Chem improved the simulated profiles of various tropo-
spheric species (not shown). The inclusion of stratospheric
chemistry in MIROC-Chem allowed us to provide reasonable
estimates of a priori profiles and their ensemble spread in the
stratosphere. Since TES O3 and MOPITT CO retrievals in
the troposphere, together with MLS retrievals, have sensitiv-
ity to the lower stratospheric concentration to some degree,
the improved representation of background error covariance
in the stratosphere, as estimated from ensemble model simu-
lations, meant that satellite retrievals are more effectively as-
similated into the updated system throughout the troposphere
and stratosphere through the use of the observation operator
(see Sect. 2.3).

The a priori values for surface emissions of NOx and
CO were obtained from bottom-up emission inventories. An-
nual total anthropogenic NOx and CO emissions were ob-
tained from the Emission Database for Global Atmospheric
Research (EDGAR) version 4.2 (EC-JRC/PBL, 2012)
for 2005–2008. Emissions from biomass burning were based
on the monthly Global Fire Emissions Database (GFED) ver-
sion 3.1 (van der Werf et al., 2010) for 2005–2011. Emis-
sions from soils were based on monthly mean Global Emis-
sions Inventory Activity (GEIA) (Yienger and Levy, 1995).
To cover data limitations during 2005–2014, EDGAR emis-
sions for 2008 were used in the calculations for 2009–2014,
and GFED emissions averaged over 2005–2011 were used
in the 2012–2014 calculation. The global total a priori NOx

emissions averaged over the 2005–2014 period from anthro-
pogenic sources, biomass burning, and soils are 28.7, 4.3,
and 5.4 Tg N yr−1, respectively. The total aircraft NOx emis-
sion is 0.55 Tg N yr−1, which is obtained from the EDGAR
inventory.

Following the settings of Lotos-Euros (Schaap et al., 2008)
and Boersma et al. (2008b), we applied anthropogenic-type
diurnal variations for total emissions with maxima in the
morning and in the evening with a factor of about 1.5 (black
dotted line in Fig. 1, for which the daily mean hourly emis-
sion value is 1) in Europe, eastern China, South Korea, Japan,
India, and North America; biomass-burning-type variations
with a rapid increase in the morning and maximal emissions
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Figure 1. Schematic diagram of the correction scheme for the emis-
sion diurnal variation for a case with Etc=−0.3. The black dotted
time represents the a priori emission diurnal variability function (Et)
for anthropogenic emissions. The black solid line represents the a
posteriori emission variation after applying the daily emission scal-
ing factor (Et×Es). The blue line represents the correction factor
for the emission diurnal variability (Etc). The red line represents
the a posteriori emission variation after applying the daily emis-
sion scaling factor and the correction factor for the emission diurnal
variability (Et×Es−Etc for 07:30–10:30 LT and Et×Es+Etc for
10:30–13:30 LT).

at midday with a maximum factor of about 4 in northern
and central Africa, South-east Asia, and northern and central
South America; and soil-type diurnal variations with maxi-
mal emissions in the afternoon with a factor of about 1.2 in
Australia, Sahara, western China, and Mongolia.

LNOx sources in MIROC-Chem were calculated in con-
junction with the convection scheme of MIROC-AGCM. The
global distribution of the flash rate was parameterized for
convective clouds based on the relationship between light-
ning activity and cloud top height (Price and Rind, 1992).
The vertical profiles of the LNOx sources are determined
on the basis of the C-shaped profile given by Pickering
et al. (1998). The mean yearly global flash rate obtained
for 2005–2014 was 42.4 flashes s−1, which is close to clima-
tological estimates of 46 flashes s−1 derived from the Light-
ning Imaging Sensor (LIS) and Optical Transient Detec-
tor (OTD) measurements (Cecil et al., 2014). The LNOx

sources were optimized in the data assimilation runs, follow-
ing the method of Miyazaki et al. (2014).

2.2 Emission estimates from EnKF data assimilation

Data assimilation is based on an ensemble square root fil-
ter (SRF) EnKF approach (i.e. a local ensemble transform
Kalman filter; LETKF; Hunt et al., 2007). As in other EnKF
approaches, the background error covariance is estimated
from ensemble model forecasts based on the assumption that
background ensemble perturbations sample the forecast er-
rors. Using the covariance matrices of observation error and
background error, the data assimilation determines the rel-

ative weights given to the observation and the background,
and then transforms a background ensemble into an analysis
ensemble. Unlike standard EnKF analyses, the LETKF anal-
ysis is performed locally in space and time, which reduces
sampling errors caused by limited ensemble size. Further-
more, the analysis is performed independently for different
grid points, which reduces the computational cost through
parallel computations. More details on the data assimilation
technique are given in Miyazaki et al. (2015).

The emission estimation is based on a state augmenta-
tion technique, which was employed in our previous studies
(Miyazaki et al., 2012a, b, 2014, 2015; Miyazaki and Eskes,
2013). In this approach, the background error correlations,
estimated from the ensemble model simulations at each anal-
ysis step, determine the relationship between the concentra-
tions and emissions of related species for each grid point.
This approach allows us to reflect temporal and geographical
variations in transport and chemical reactions in the emis-
sion estimates. The state vector in this study is optimized fol-
lowing Miyazaki et al. (2015), which includes several emis-
sion sources (surface emissions of NOx and CO, and LNOx

sources) as well as the concentrations of 35 chemical species.
In order to improve the filter performance, the covariance
among non-related or weakly related variables in the state
vector is set to zero, as in Miyazaki et al. (2012b, 2015).
The emissions in the state vector are represented by scaling
factors for each surface grid cell for the total NOx and CO
emissions, and for each production rate profile of the LNOx

sources. For surface NOx emissions, only the combined total
emission is optimized in data assimilation. This is to reduce
the degree of freedom in the analysis and to avoid the dif-
ficulty associated with estimating spatio-temporal variations
in background errors for each category source separately.

In the MIROC-Chem simulations, an emission diurnal
variability function (Et (t = 1, . . . , 24)) was applied follow-
ing the approach of Miyazaki et al. (2012a). Its application
generally improved the model simulation performance; how-
ever, because Et was constructed based on simple assump-
tions, and because it does not change with season and loca-
tion within an area of the same dominant category, its appli-
cation can cause large uncertainties in simulated NO2 varia-
tions. Multiple satellite NO2 retrievals obtained at different
overpass times have a potential to constrain diurnal emis-
sion variability (e.g. Lin et al., 2010), although differences
between the different NO2 retrievals and errors in model
processes could introduce artificial corrections (see also
Sect. 5.2). Note that the retrievals from different instruments
are all based on the same retrieval method (DOMINO v2,
TM4NO2A v2) and largely consistent ancillary data, which
limits the discrepancies between the data sets to a large de-
gree (Boersma et al., 2008a) (see Sect. 2.3.1). We also ac-
knowledge that differences between the surface reflectivity
and cloud data may lead to some structural uncertainty be-
tween the morning and afternoon sensors, although numer-
ous validation studies pointed out that the three NO2 column
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retrievals agree well with independent reference data (e.g.
Irie et al., 2012; Ma et al., 2013).

We attempt to optimize Et using data assimilation of OMI,
SCIAMACHY, and GOME-2 retrievals, with local equator
overpass times of 13:45, 10:00, and 09:30, in order to im-
prove the representation of diurnal emission variability. In
our approach, a correction factor for emission diurnal vari-
ability (Etc) and an emission scaling factor (Es) for surface
NOx emissions are simultaneously optimized in the analy-
sis step using multiple NO2 retrievals, by adding them to
the state vector together with other variables such as pre-
dicted concentrations. The background error correlation be-
tween Es and Etc is not considered; the two emission param-
eters are independently optimized using measurements from
instruments with different overpass times. As in Miyazaki
et al. (2012a), we apply covariance inflation to the emission
factors to prevent covariance underestimation caused by the
application of a persistent forecast model, by inflating the
spread to a minimum predefined value (i.e. 30 % of the initial
standard deviation) at each analysis step for both Es and Etc.
The initial error is set to 40 % for both Es and Etc. For con-
centrations, multiplication factors (5 %) are applied to pre-
vent an underestimation of background error covariance. The
emission factors are analysed and updated at every analysis
step (i.e. 2 h). Because of the lack of any applicable model,
a persistent forecast model is used for the emission factors.
When there is no observational information available in the
analysis step, previously analysed emission factors are used
in the next forecast step.

Figure 1 depicts a schematic diagram of the emission cor-
rection scheme for anthropogenic emissions. First, we ob-
tain optimal values of Es and Etc from the data assimilation
analysis. Second, Es is applied to scale up/down daily to-
tal emissions while maintaining the a priori diurnal variabil-
ity shape (black solid line). Third, optimized Etc is applied
to modify the diurnal variability shape (red line). Consider-
ing the overpass time of the satellite retrievals and the typi-
cal daytime lifetime of NOx (i.e. 2–3 h), a square-wave with
amplitude of Etc and a wavelength of 6 h was applied. This
assumes that GOME-2 and SCIAMACHY measurements
constrain emissions in the 07:30–10:30 window, and OMI
measurements constrain the 10:30–13:30 window. Conse-
quently, an analysis of the emission diurnal variability func-
tion is obtained as Eta =Etb×Es−Etc for 07:30–10:30, and
Eta =Etb×Es+Etc for 10:30–13:30), where a and b repre-
sent the analysis and background states, respectively. Etc is
set to zero (i.e. Eta =Etb×Es) from 13:30 to 07:30. The op-
timized emission factors are used as initial conditions in the
next forecast step of ensemble model simulations.

2.3 Measurements used in the assimilation

Trace gas concentrations were obtained from OMI, SCIA-
MACHY, and GOME-2 satellite measurements of NO2, from
TES of O3, from MOPITT measurements of CO, and from

MLS of O3 and HNO3. The retrieved concentration and ob-
servation error information were obtained for each retrieval,
where the observation error included contributions from
smoothing errors, model parameter errors, forward model er-
rors, geophysical noise, and instrument errors. These com-
bined errors, together with a representativeness error for su-
per observations (Miyazaki et al., 2012a), were considered in
the observation error matrix (R) for data assimilation.

For the assimilation of the satellite retrievals, observation
operators (H ) were developed, consisting of the spatial in-
terpolation operator (S), a priori profile in the satellite re-
trievals (xapriori), and an averaging kernel (A). This operator
mapped the model fields (xb

i ) into retrieval space (yb
i ), as fol-

lows:

yb
i =H

(
xb

i

)
= xapriori+A

(
S

(
xb

i

)
− xapriori

)
, (1)

where i indicates the ensemble member. The use of the aver-
aging kernel A removes the dependence of the analysis or of
the relative model retrieval comparison (yb

i − yo)/yb
i on the

retrieval a priori profile (Eskes and Boersma, 2003; Jones et
al., 2003).

We employed the super-observation approach to produce
representative data with a horizontal resolution of MIROC-
Chem (T42) for OMI, SCIAMACHY, GOME-2, and MO-
PITT observations. Super observations were generated by
averaging all data located within a super-observation grid
cell, following the approach of Miyazaki et al. (2012a). The
super-observation measurement error was estimated by con-
sidering an error correlation of 15 % in the data, although
there is no evidence for this value. The representativeness er-
ror was introduced when the super-observation grid was not
fully covered by observation pixels. The super-observation
approach generally provided more representative data with
reduced random error and resulted in a more stable anal-
ysis increments than the individual observations (Miyazaki
et al., 2012a). Another popular approach in data assimila-
tion is to apply data thinning. However, individual observa-
tions are much nosier than super observations, and the rep-
resentativity error is large. Note that, in our previous studies
(Miyazaki et al., 2012a, b, 2014, 2015; Miyazaki and Eskes,
2013), the super observation was produced with a resolution
of 2.5◦× 2.5◦, which was similar but not equivalent to the
model grid size (T42). In this study, the super observation
was set to be equivalent to the model grid size (T42), which
generally led to larger adjustments in the estimated emissions
over industrial areas, and resulted in better data assimilation
performance for most cases (e.g. reduced OmF).
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2.3.1 Tropospheric NO2 columns from OMI,
SCIAMACHY, and GOME-2

The tropospheric NO2 column retrievals used are from the
version-2 DOMINO data product for OMI (Boersma et
al., 2011) and version 2.3 TM4NO2A data products for
SCIAMACHY and GOME-2 (Boersma et al., 2004) ob-
tained through the TEMIS website (http://www.temis.nl).
The ground pixel size of the OMI retrievals is 13–24 km
with daily global coverage. Since December 2009, approx-
imately half of the pixels have been compromised by the
so-called row anomaly, which reduced the daily coverage
of the instrument. GOME-2 retrievals have 80 km× 40 km
ground pixel size with a global coverage within 1.5 days.
SCIAMACHY retrievals have 60 km× 30 km ground pixel
size with a global coverage once every 6 days. OMI mea-
surements were assimilated throughout the analysis period
during 2005–2014. In contrast, because of the data lim-
itations, SCIAMACHY retrievals were assimilated before
February 2012, and the GOME-2 measurements were assim-
ilated after January 2007. Low-quality data were excluded
before assimilation following the recommendations of the
products’ specification document (Boersma et al., 2011). We
employed clear-sky data for surface NOx emission estima-
tions and both clear-sky data and cloud-scene data for LNOx

estimations, following the method of Miyazaki et al. (2014).
The analysis increments in the assimilation of the NO2 re-
trievals were limited to adjusting only the surface emissions
of NOx , LNOx sources, and concentrations of NOy species
using the estimated interspecies error correlations.

Boersma et al. (2011) summarized the general error char-
acteristics of tropospheric NO2 retrievals. More recently,
Maasakkers (2013) presented the possibility for improving
the tropospheric NO2 column retrievals algorithm. For ex-
ample, in the a priori profiles, the effective surface pressure
calculation, and in the cloud retrieval. Maasakkers (2013)
presented an improved error parameterization for the tropo-
spheric NO2 column, which reduced errors in high tropo-
spheric columns by up to 41 % and in the mean global er-
ror by 13 %. Following this result, we modified the version-
2 DOMINO and version 2.3 TM4NO2A data products
(Boersma et al., 2004, 2011) used in data assimilation. We
reduced retrieval errors of individual NO2 retrievals by 30 %
over polluted areas (for columns > 1.1× 1015 molec cm−2)
before producing super observation for all the NO2 retrievals.
The assimilation of NO2 retrievals with reduced error in-
creased the effective use of observational information (i.e.
larger emission adjustments) and improved the chi-square
statistics (not shown). The obtained super-observation error
is typically about 20–50, 30–60, and 25–50 % of the NO2
columns over polluted areas for OMI, SCIAMACHY, and
GOME-2 retrievals, respectively (Fig. S1 in the Supplement).
The differences between the instruments mainly reflect the
differences in coverage and pixel size.

2.3.2 TES O3

The Tropospheric Emission Spectrometer (TES) is a Fourier
transform spectrometer (FTS) that measures spectrally re-
solved outgoing longwave radiation of the Earth’s surface
and atmosphere. The TES O3 data used are version 6 level 2
nadir data obtained from the global survey mode (Herman
and Kulawik, 2013). This data set consists of 16 daily or-
bits with a spatial resolution of 5–8 km along the orbit track,
with equator crossing times of 13:40 and 02:29 local mean
solar time. Retrievals of atmospheric parameters and their er-
ror characterization are based upon optimal estimation (Wor-
den et al., 2004; Bowman et al., 2006; Kulawik et al., 2006),
which provide the diagnostics (a priori, averaging kernels,
and error covariances) needed to construct the observation
operator. The standard quality flags were used to exclude
low-quality data. The data assimilation of the TES O3 re-
trievals was performed based on the logarithm of the mixing
ratio following the retrieval product specification (Bowman
et al., 2006).

2.3.3 MLS O3 and HNO3

The MLS data used are the version 4.2 O3 and HNO3
level 2 products (Livesey et al., 2011). We excluded low
quality data, following the recommendations of Livesey et
al. (2011). We used data for pressures of less than 215 hPa
for O3 and 150 hPa for HNO3. The accuracy and precision
of the measurement error, described in Livesey et al. (2011),
were included as the diagonal element of the observation er-
ror covariance matrix.

2.3.4 MOPITT CO

The MOPITT CO data used are version 6 level 2 TIR prod-
ucts (Deeter et al., 2013). The MOPITT instrument is mainly
sensitive to free-tropospheric CO, especially in the middle
troposphere, with degrees of freedom for signals (DOFs) typ-
ically much larger than 0.5. Owing to data quality problems,
we excluded data poleward of 65◦ and night-time data. Data
at 700 hPa were used for constraining surface CO emissions.

2.4 Measurements used in the validation

We use vertical NO2 profiles observed from in-situ and air-
craft measurements to validate the simulated NO2 distribu-
tions. The model simulation and assimilation fields were in-
terpolated to the time and location of each measurement, and
then compared with the measurements.

2.4.1 DANDELIONS

Vertical NO2 profiles were measured using the Nether-
lands National Institute for Public Health and the Environ-
ment (RIVM) NO2 lidar during the Dutch Aerosol and Nitro-
gen Dioxide Experiments for Validation of OMI and SCIA-
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MACHY (DANDELIONS) campaign in September 2006
(Volten et al., 2009). The lidar data have a spatial represen-
tation of 2 km in the viewing direction and approximately
12 km in the direction of the wind, which is much finer
than the model resolution (approximately 2.8◦). The model
grid points used for the interpolation around Cabauw are
located in Belgium, the north-eastern Netherlands, western
Germany, and on the North Sea. Boundary layer conditions
are different for different grid points, especially between the
land and ocean. To avoid a potentially large error of represen-
tativeness in the validation, particularly under the different
boundary layer condition, the profiles obtained in the morn-
ing (before 12:00 LT) were used because the differences be-
tween land and sea mixing layer depths are then still rela-
tively small, following Miyazaki et al. (2012a).

2.4.2 INTEX-B

During the Intercontinental Chemical Transport Experiment
Phase B (INTEX-B) campaign, vertical NO2 profiles were
obtained using the UC Berkeley Laser-Induced Fluorescence
(TD-LIF) instrument on a DC-8 over the Gulf of Mexico in
March 2006 (Singh et al., 2009). We removed data collected
over highly polluted areas over Mexico City and Houston
from the comparison to avoid a serious spatial representa-
tiveness error, as applied in Miyazaki et al. (2015).

2.4.3 ARCTAS

The Arctic Research of the Composition of the Troposphere
from Aircraft and Satellites (ARCTAS) campaign (Jacob et
al., 2010) was conducted over Alaska (between 60–90◦ N)
in April 2008 (ARCTAS-A) and over western Canada (be-
tween 50–70◦ N) in June–July 2008 (ARCTAS-B). Since the
data assimilation impact is limited in polar regions, the pro-
file data obtained during ARCTAS-B were used in the com-
parison. Note that Browne et al. (2011) investigated whether
the observed NO2 concentrations were too high in the upper
troposphere.

2.4.4 DC3

The Deep Convective Clouds and Chemistry (DC3) experi-
ment field campaign was conducted over north-eastern Col-
orado, western Texas to central Oklahoma, and northern Al-
abama during May and June 2012 (Barth et al., 2015). The
observations obtained from the DC-8 by the UC Berkeley
measurement were used in the validation.

2.4.5 SEAC4RS

The Studies of Emissions and Atmospheric Composi-
tion, Clouds and Climate Coupling by Regional Surveys
(SEAC4RS) aircraft campaign was conducted over the south-
east USA in August–September 2013 (Travis et al., 2016).

The observations obtained from the DC-8 by the UC Berke-
ley measurement were used in the validation.

3 Simulated and retrieved tropospheric NO2 columns

Tropospheric NO2 columns obtained from data assimilation
and model simulation (without any assimilation) are com-
pared with satellite observations. For these comparisons,
concentrations were interpolated for the retrieval pixels to the
overpass time of the satellite, while applying the averaging
kernel of each retrieval, and both the retrieved and simulated
concentrations were mapped onto the horizontal grid of the
super observation (i.e. T42).

3.1 Global distribution

Figure 2 compares global distributions of annual mean tro-
pospheric NO2 columns obtained from the three satellite re-
trievals (OMI for 2005–2014, SCIAMACHY for 2005–2011,
and GOME-2 for 2007–2014), the MIROC-chem simulation,
and the data assimilation. The three satellite measurements
commonly reveal high tropospheric NO2 concentrations over
large industrial regions: eastern China, Europe, and the USA.
High concentrations are also found over southern and cen-
tral Africa, India, the Middle East, Japan, South Korea, and
South-east Asia. Tropospheric NO2 concentrations are gen-
erally lower in OMI retrievals compared to GOME-2 and
SCIAMACHY retrievals over polluted areas, reflecting the
diurnal cycle of emissions and chemistry, with faster chem-
ical loss of NO2 at noon compared to early morning (e.g.
Boersma et al., 2009). All of the retrievals are produced using
the same retrieval approach (Boersma et al., 2011). There-
fore, the differences in overpass time and also in pixel size
could be the main cause of the differences between the three
different satellite retrievals, although the use of super obser-
vations for all the sensors reduces the influence of different
pixel sizes.

The MIROC model reproduces the general features of ob-
served tropospheric NO2, with a global spatial correlation
of 0.86–0.94 for the annual mean concentration during the
10-year period between 2005–2014 (Fig. 2 and Table 1).
However, the simulated regional mean tropospheric NO2
columns are generally too low over most industrial areas and
major biomass-burning areas and too high over remote areas.
In the global mean, the model is negatively biased relative
to the three retrievals (i.e.−0.04 –−0.18× 1015 molec cm−2

compared with the three retrievals). Data assimilation im-
proves agreements with the satellite retrievals for most
industrial and biomass-burning areas mainly because of
the optimized surface NOx emissions, with great reduc-
tions in the 10-year global mean negative bias (i.e. −0.02–
+0.03× 1015 molec cm−2) (Table 1). Improvements can also
be found in the improved spatial correlation (from 0.86–0.94
to 0.95–0.98) and the reduced global root mean square error
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Figure 2. Global distributions of the tropospheric NO2 columns (in 1015 molec cm−2). The results are shown for OMI (left columns, sam-
pling time ≈ 13:00 LT) for 2005–2014, SCIAMACHY (middle columns, 10:00 LT) for 2005–2011, and GOME-2 (right columns, 09:30 LT)
for 2007–2014. Upper row shows the tropospheric NO2 columns obtained from the satellite retrievals (OBS), centre row shows the difference
between the model simulation and the satellite retrievals (Model–OBS); and lower row shows the difference between the data assimilation
and the satellite retrievals (Assim–OBS).

Table 1. Comparisons of tropospheric NO2 columns between data
assimilation and satellite retrievals: OMI for the period 2005–
2014, SCIAMACHY for the period 2005–2011, and GOME-2
for the period 2007–2014. Shown are the global spatial correla-
tion (S-Corr), the mean bias (BIAS: the data assimilation minus
the satellite retrievals) and the root-mean-square error (RMSE) in
1015 molec cm−2. The model simulation results (without data as-
similation) are also shown in brackets.

OMI SCIAMACHY GOME-2

S-Corr 0.98 0.95 0.95
(0.94) (0.86) (0.87)

BIAS +0.00 +0.03 −0.02
(−0.08) (−0.04) (−0.18)

RMSE 0.23 0.52 0.46
(0.38) (0.75) (0.91)

(RMSE was reduced by about 40, 30, and 50 % compared
with OMI, SCIAMACHY, and GOME-2, respectively). The
annual mean analysis–observation differences show similar
spatial distributions between SCIAMACHY and GOME-2

(r = 0.93) and differed somewhat between OMI and other
sensors (r = 0.55–0.60).

3.2 Regional distribution

The regional mean tropospheric NO2 columns are compared
in Table 2. The data assimilation reduced the 10-year mean
negative bias of the model by 40–62 % over China and 48–
50 % over the USA compared to the three retrievals. The
data assimilation also reduced the almost constant negative
bias over Australia by 20–76 %, over India by 57–60 %, and
over southern Africa by 35–64 %. The error reduction over
China and southern Africa is generally smaller for the SCIA-
MACHY and GOME-2 retrievals compared with the OMI
retrievals.

Improvements are also found over biomass-burning areas.
The 10-year mean negative model bias over South-east Asia
is reduced by 57–77 %, which is mainly attributed to the posi-
tive adjustments in the biomass-burning season (i.e. in boreal
winter–spring). The persistent negative biases throughout the
year over central and northern Africa are also reduced, with
10-year mean reductions of 66–80 and 78–86 %. These im-
provements over the tropical regions are mostly commonly
found in comparisons with the three retrievals. Considering
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Table 2. The monthly mean bias and temporal correlation of regional mean tropospheric NO2 columns: the data assimilation minus the
satellite retrievals from OMI for the period 2005–2014, SCIAMACHY for the period 2005–2011, and GOME-2 for the period 2007–2014 in
1015 molec cm−2. The results of the model simulation (without data assimilation) are also shown in brackets.

Bias Temporal correlation

OMI SCIAMACHY GOME-2 OMI SCIAMACHY GOME-2

China −0.75 −2.60 −1.68 0.99 0.96 0.95
(−1.98) (−4.33) (−3.46) (0.94) (0.91) (0.85)

Europe −0.45 −0.11 −0.23 0.95 0.93 0.90
(−0.45) (−0.06) (−0.23) (0.89) (0.64) (0.70)

USA −0.16 −0.11 −0.14 0.95 0.88 0.77
(−0.31) (−0.22) (−0.27) (0.83) (0.56) (0.54)

S America 0.00 0.06 −0.16 0.98 0.96 0.88
(−0.12) (−0.10) (−0.44) (0.83) (0.84) (0.79)

N Africa −0.06 −0.03 −0.07 0.98 0.94 0.82
(−0.27) (−0.22) (−0.33) (0.84) (0.82) (0.72)

C Africa −0.07 −0.14 −0.14 0.99 0.98 0.94
(−0.35) (−0.41) (−0.48) (0.96) (0.94) (0.90)

S Africa −0.28 −1.04 −1.15 0.98 0.90 0.90
(−0.78) (−1.60) (−1.83) (0.92) (0.84) (0.76)

SE Asia −0.20 −0.05 −0.14 0.98 0.93 0.88
(−0.38) (−0.22) (−0.39) (0.83) (0.74) (0.67)

Australia 0.03 0.05 −0.05 0.96 0.92 0.87
(−0.11) (−0.06) (−0.21) (0.81) (0.73) (0.64)

India −0.12 −0.02 −0.01 0.95 0.92 0.76
(−0.28) (−0.15) (−0.25) (0.06) (−0.47) (−0.40)

the short lifetime and rapid diurnal variation of biomass-
burning activity at low latitudes, these improvements suggest
that the assimilation of multiple species and multiple NO2
measurements effectively corrected the temporal changes in
the tropospheric NO2 column between the different overpass
times.

Despite the general improvement by data assimilation, dis-
agreements remain between the simulated and observed NO2
concentrations over polluted regions, such as Europe, south-
ern Africa, and China. The inadequacies of the improvements
can be partly attributed to the small number of observations
and large observation errors for highly polluted cases. The
quality and abundance of the retrievals varies largely with
season and area (Fig. S1), reflecting observation conditions
(e.g. clouds, aerosols, and surface albedo), which have great
impacts on the magnitude of data assimilation improvement.
For instance, over Europe in winter, the number of observa-
tions is relatively small, and the observation error is relatively
large. The remaining errors may also result from model er-
rors such as too-short lifetime of NOx through processes such
as the NO2+OH reactions and the reactive uptake of NO2
and N2O5 by aerosols (e.g. Lin et al., 2012; Stavrakou et al.,
2013). This will further be discussed in Sect. 5.3.

3.3 Seasonal and interannual variation

The underestimation in the simulated concentrations is most
obvious in winter over most of the industrial regions, such as

China, Europe, the USA, and southern Africa. Data assimila-
tion greatly reduced the wintertime low bias by 50–70 % over
China, by about 50–90 % over the USA, and by 50–70 % over
southern Africa, as summarized in Table 2. Over Europe, the
model’s negative bias is reduced by about 10–80 % in sum-
mer, but the negative bias compared with the OMI retrievals
mostly remains in winter (see Sect. 5.3). Despite the per-
sistent wintertime bias over Europe, the improved temporal
correlation (from 0.64–0.89 in the model simulation to 0.90–
0.95 in the data assimilation) confirms improved seasonal-
ity and year-to-year variation. Over India, the NO2 columns
in the model simulation do not reveal clear seasonal varia-
tion, whereas a significant seasonal variation is introduced by
data assimilation, reflecting the observed high concentration
in boreal winter–spring. The temporal correlation is largely
improved over India (from −0.47–0.06 in the model simula-
tion to 0.76–0.95 in the data assimilation).

The observed concentrations reveal large year-to-year
variations over the industrial regions, which are generally un-
derestimated in the model simulation (Fig. 3). Over China,
the difference between the model simulation and the obser-
vations becomes significant after 2010, suggesting a larger
underestimation in the a priori inventories in that time period,
relative to the period before 2010. The observed concentra-
tions reveal positive trends over China, with an exceptional
decrease in 2009, followed by a rapid increase in 2010, and
a decrease in 2014, as found by Cui et al. (2016), Duncan
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et al. (2016), and Krotkov et al. (2016). The data assimila-
tion better captures the observed variations, as indicated by
the better agreement in the linear trend (+40 % decade−1 in
the OMI observation, +13 % decade−1 in the model simula-
tion, and +28 % decade−1 in the data assimilation) and by
the improved temporal correlation (from 0.85–0.94 to 0.95–
0.99). Over the USA, the data assimilation removes most
of the model’s negative bias in 2005–2007 and reproduces
the observed downward trend for the 10-year periods. These
improved agreements suggest that the a posteriori emis-
sions from data assimilation capture the actual anthropogenic
emission variability.

The seasonal and year-to-year variations over South-east
Asia, and northern and central Africa are associated with
changes in biomass-burning activity. Data assimilation im-
proves the temporal variability, as confirmed by the improved
temporal correlations (by 0.10–0.14 over northern Africa, by
0.03–0.04 over central Africa, and by 0.15–0.21 over South-
east Asia). Over South-east Asia, the negative bias in the
biomass-burning season is largely removed by data assim-
ilation. The systematic adjustments for northern and central
Africa throughout the year suggest that the a priori emissions
reasonably represent the seasonality of biomass-burning ac-
tivity, but emission factors might be underestimated in the a
priori setting, as discussed in Sect. 4.

3.4 Vertical profiles

Figure 4 compares the vertical profiles with the aircraft
observations during the INTEX-B, ARCTAS, DC3, and
SEAC4RS campaigns and with the ground-based lidar obser-
vations obtained during the DANDELIONS campaign. For
all the profiles, the observed NO2 concentrations are high
in the boundary layer and decrease with height above the
boundary layer in the troposphere. Both the model simula-
tion and data assimilation reproduced these observed general
features.

For the ARCTAS profile, the data assimilation has only
a small effect on the lower and middle tropospheric NO2
profiles, because of the large observational error of the NO2
measurements at high latitudes. In contrast, the data assimila-
tion mostly removed the model negative bias in the upper tro-
posphere and lower stratosphere, mainly because of the MLS
O3 and HNO3 data assimilation and through the use of the in-
terspecies correlation that was determined using background
error covariances estimated from ensemble model simula-
tions (see Sect. 2.2). An estimated interspecies correlation
is demonstrated in Miyazaki et al. (2012b) in Fig. 3, which
shows a strong positive correlation between the concentra-
tions of NO2 with those of O3 and HNO3, reflecting com-
plex tropospheric chemical processes. The data assimilation
widely influences the NOx and NOy species in both analy-
sis and forecast steps. This improvement cannot be achieved
using the NO2 measurements only.

Compared with the INTEX-B and DC3 profiles, both the
model and assimilation are too low in the middle/upper tro-
posphere, whereas in the lower troposphere they are too high
compared with the DC3 profile and too low compared with
the INTEX-B profile. Compared with the SEAC4RS profile,
both the model and assimilation are too high in the lower tro-
posphere. Because of the coarse-model resolution (approx-
imately 2.8◦), the model has difficulty in representing the
spatial footprint of the measurement, and this could cause
large differences near the surface for comparisons at urban
sites. The near-surface concentration will be sensitive to the
model resolution owing to fine-scale emission distribution
and transport, as well as non-linear chemical processes, as
discussed in Valin et al. (2011) and Miyazaki et al. (2012a).
The coarse model resolution may also make the improve-
ments by data assimilation obscure.

During the DANDELIONS and aircraft campaigns, large
variations in individual measurements along the flights were
observed. Therefore we evaluate the variability as well as
mean profiles using scatter plots. The right four panels in
Fig. 4 show the scatter plots for an INTEX-B profile on
9 March in 2006 as an example and for the DANDELIONS
measurements. For the INTEX-B profile, the data assimila-
tion improves the agreement (i.e. the correlation and slope)
with the observations in the lower and middle troposphere,
except within the boundary layer (i.e. below 900 hPa). The
correlation (from 0.324 to 0.455) and the slope (from 0.26
to 0.53) increased in the lower troposphere (900–750 hPa)
by data assimilation. The improvements are also found for
higher levels (750–600 hPa) and for other flights (not shown).
The assimilation does not obviously change the model profile
in the upper troposphere (600–300 hPa); the remaining nega-
tive bias could be attributed to errors in the model, such as in
the chemical loss, NOy species partitioning, and atmospheric
transport. For the DANDELIONS profiles, the data assimila-
tion improves the agreement in the lower troposphere (e.g.
the correlation and slope are increased from 0.14 to 0.46 and
from 0.11 to 0.90, respectively, for 150–500 m), except near
the surface (i.e. below 150 m).

4 Estimated surface NOx emissions

The a posteriori emissions were compared to the a pri-
ori emissions for the 2005–2014 period and to an in-
dependent emission inventory from EDGAR-HTAP v2
(Janssens-Maenhout et al., 2015) for the years 2008
and 2010. EDGAR-HTAP v2 was produced using na-
tionally reported emissions combined with regional sci-
entific inventories from the European Monitoring and
Evaluation Programme (EMEP), Environmental Protection
Agency (EPA), Greenhouse Gas-Air Pollution Interactions
and Synergies (GAINS), and Regional Emission Inventory in
Asia (REAS). For the comparison with EDGAR-HTAP v2,
emissions from biomass burning and soils were obtained
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Figure 3. Time series of regional monthly mean tropospheric NO2 columns (in 1015 molec cm−2) averaged over China (110–123◦ E, 30–
40◦ N), Europe (10◦W–30◦ E, 35–60◦ N), the USA (70–125◦W, 28–50◦ N), South America (50–70◦W, 20◦ S–Equator), northern Africa
(20◦W–40◦ E, Equator–20◦ N), central Africa (10–40◦ E, Equator–20◦ S), southern Africa (25–34◦ E, 22–31◦ S), South-east Asia (96–
105◦ E, 10–20◦ N), Australia (113–155◦ E, 11–44◦ S), and India (68–89◦ E, 8–33◦ N) obtained from the satellite retrievals (black), model
simulation (blue), and the data assimilation (red). The model simulation and data assimilation results were obtained at the local overpass
time of the retrievals by applying the averaging kernel.
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Figure 4. Left panels: mean vertical NO2 profiles obtained during the ARCTAS campaign in June–July 2009, the ARCTAS campaign in
June–July 2006; the DC3 campaign in May 2012, and the SEAC4RS campaign in August–September 2013. The black line represents the
observation, the blue line represents the model simulation, and the red line represents the data assimilation. The error bars represent the
standard deviation. Right panels: scatter plots of NO2 concentrations for the data assimilation (top panels) and the model simulation (bottom
panels) during the DANDELIONS campaign (µg m−3) in September 2006 and during the INTEX-B campaign (in pptv) on 9 March 2006.
The straight lines represent linear regression lines for each level. Each line represents a linear fit to the points of the same colour, and the
colours represent the altitude level.

based on GFED version 3.1 and GEIA inventories and used
in the a priori emissions.

4.1 Top-down vs. a priori global surface NOx emissions

The global distributions of the estimated emission sources
are depicted in Fig. 5. As summarized in Table 3, the 10-year
mean global total surface NOx emissions after data assim-
ilation is 48.4 Tg N yr−1, which is about 26 % higher than
the a priori emissions (38.4 Tg N yr−1). The positive analysis
increment in global total emissions is attributable to an ap-
proximate +21 % increment in the NH (20–90◦ N), a +35 %
increment in the tropics (20◦ S–20◦ N), and a 42 % incre-
ment in the SH (20′′). Strong positive increments are found
over China (+39 %), the USA (+10 %), India (+22 %),
and southern Africa (+50 %). There are also positive incre-
ments in emissions over the biomass-burning areas of Central
Africa (+53 %) and South-east Asia (+39 %). The a posteri-
ori regional total emissions are clearly closer to the EDGAR-
HTAP v2 emissions than the a priori emissions over China,
the USA, and India. Since the same biomass burning and soil
emission inventories are used in producing the total a pri-
ori and EDGAR-HTAP v2 emission data sets in this study,
the emissions are similar for the two data sets over biomass
burning and remote areas.

Figure 6 depicts the global distribution of the linear trend
during the 10-year period. The trend is negative over most of
the USA, Europe, some parts of eastern China, South Korea,
Japan, central and southern Africa, northern South America,
with strong negative trends over the eastern USA, some parts
of Europe (e.g. north-western Europe, Po Valley, and north-
ern Spain), and Japan. Strong positive trends are found over
China, India, Middle East, around Sao Paulo in Brazil, and
around Jakarta in Indonesia.

Data assimilation reveals significant temporal variations
(Fig. 7), including seasonal (Fig. 8) and interannual (Fig. 9)
variations, in the emissions over major polluted regions. In
northern midlatitudes, the emissions are strongly enhanced in
summer, and the timing of the summertime peak from data
assimilation is earlier by 1–2 months over North America,
Europe, and China (Fig. 8), as similarly found in our previ-
ous study (Miyazaki and Eskes, 2013). Applying the ratio of
different emission categories within the a priori emissions for
each grid point to the estimated emissions after data assimi-
lation (only the total emission is optimized in our estimates),
global total NOx emissions from soils are 7.9 Tg N yr−1 for
the a posteriori emissions in contrast to 5.4 Tg N yr−1 for the
a priori emissions. In line with recent studies by Hudman et
al. (2012) and Vinken et al. (2014), our results suggest that
the a priori emissions underestimate those by soils and mis-
represent the seasonality.
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Table 3. The regional 10-year mean NOx emissions (in Tg N yr−1) obtained from the a priori emissions, a posteriori emissions, and the
relative difference between these two emissions (in %) for the period 2005–2014 (left columns). The results are also shown for EDGAR-
HTAP v2 emissions (as a reference) averaged over the years 2008 and 2010, the a posteriori emissions (the same results as in the left columns,
but averaged over the years 2008 and 2010), and the relative difference between these two estimates (in %) (central columns), and for their
difference from 2008 to 2010 (right columns). The results are also shown for the Northern Hemisphere (NH, 20–90◦ N), the tropics (TR,
20◦ S–20◦ N), the Southern Hemisphere (SH, 90–20◦ S), and the globe (GL, 90◦ S–90◦ N).

2005–2014 average 2008 and 2010 average 2010 minus 2008

A priori A posteriori Difference EDGAR-HTAP v2 A posteriori Difference EDGAR-HTAP v2 A posteriori
(%) (%)

China 4.47 6.21 38.9 6.25 6.19 −0.9 0.49 0.73
Europe 4.07 4.23 3.9 3.36 3.92 16.7 −0.07 0.26
USA 5.23 5.73 9.6 4.84 5.26 8.7 −0.51 −0.34
S America 1.00 1.04 4.0 1.14 1.12 −1.8 0.89 0.14
N Africa 2.07 2.90 40.1 2.01 2.96 47.3 −0.09 −0.82
C Africa 1.68 2.57 53.0 1.70 2.68 57.6 0.09 −0.62
S Africa 0.46 0.60 50.0 0.37 0.72 94.6 0.01 −0.09
SE Asia 0.47 0.68 44.7 0.41 0.65 58.5 0.11 0.03
Australia 1.07 1.49 39.3 0.85 1.37 61.2 −0.09 −0.31
India 2.60 3.18 22.3 3.37 3.00 11.0 0.24 0.09

NH 24.90 30.06 20.7 26.40 28.95 9.7 0.32 1.38
TR 10.89 14.66 34.6 11.15 14.55 30.5 1.23 −1.84
SH 2.60 3.69 41.9 2.16 3.69 70.8 −0.08 −0.27
GL 38.38 48.41 26.1 39.71 47.19 18.8 1.48 −0.74

Over biomass-burning areas, the time of the peak emis-
sions does not change for most cases, suggesting that the a
priori emissions describe the seasonality reasonably, but the
systematic adjustment indicates large uncertainties in emis-
sion factors and biomass burnt estimates used in the invento-
ries. The weak year-to-year variations in the a priori emis-
sions are partly attributable to the use of climatology af-
ter 2011 (see Sect. 2.1).

Despite the large year-to-year variations over many re-
gions (see Figs. 6 and 7), the global total emission is
almost constant between 2005 (47.9 Tg N yr−1) and 2014
(47.5 Tg N yr−1), with a maximum in 2012 (50.9 Tg N yr−1)
and a minimum in 2008 (46.7 Tg N yr−1). Over the 10-year
period, the large increases in emission over China, India, and
the Middle East mostly compensate for the large decreases in
emission over the USA, western Europe, and Japan.

4.2 Top-down vs. a priori regional surface NOx

emissions and their trends

4.2.1 East Asia

Data assimilation adjusts the total annual emissions
from 4.47 to 6.21 Tg N yr−1 over China for the 2005–
2014 period (Table 3), whereas the a posteriori emissions
show good agreement with the EDGAR-HTAP v2 emis-
sions (6.19 Tg N yr−1 in the a posteriori emissions and
6.25 Tg N yr−1 in the EDGAR-HTAP v2 for 2008 and 2010).
Our a priori inventory is too low over China, by about 40 %.
The seasonal variation is largely corrected by data assimila-

tion (Fig. 8), exhibiting maximum emissions in January and
June.

At the grid scale, the estimated emissions are higher than
the a priori emissions over northern and eastern China, such
as Beijing (+58 % at the nearest grid point), Tianjin (+97 %),
Nanjing (+30 %), and around Guangzhou (+78 %), whereas
they are lower around Chengdu and Chongqing (Fig. 10).
In terms of the regional mean, the EDGAR-HTAP v2 is
closer to the a posteriori emissions for China. However, there
are disagreements at grid scale around large cities, such
as Shanghai (the a posteriori minus EDGAR-HTAP v2 is
−25 %), Guangzhou (+46 %), and Chongqing (−19 %), also
in South Korea around Seoul (+37 %), and in Japan around
Tokyo (+13 %).

Our estimate of 12.5 Tg N for July 2007 over East
Asia (80-150◦ E, 10–50◦ N) is slightly larger than that
of 11.0 Tg N estimated using OMI observations (Zhao
and Wang, 2009). The 6.6 Tg N (8.0 Tg N) estimated for
July 2008 (January 2009) over east China (103.75–
123.75◦ E, 19–45◦ N) from OMI and GOME-2 observations
by Lin and McElroy (2010) is slightly smaller than (larger
than) our estimates of 7.4 Tg N (7.4 Tg N). We emphasize
that the estimated emissions are strongly constrained by the
assimilation of non-NO2 measurements in our estimates.
The estimated emissions for July 2008 over eastern China
for the above-mentioned case from a NO2-only assimilation
(8.2 Tg N) is 11 % larger than the estimate using multiple
species (7.4 Tg N). The importance of multiple-species as-
similation is further discussed in Sect. 5.1.
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Figure 5. Global distributions of surface NOx emissions (in
10−13 kg m−2 s−1) averaged over 2005–2014. The a priori emis-
sions (top panel), a posteriori emissions from the data assimila-
tion run (middle panel), and analysis increment (bottom panel) are
shown.

The estimated emission for China does not follow a sim-
ple linear increase, but rather increases from 2005 to 2011
with a slightly negative trend afterwards, as shown by Figs. 9
and 11. The 10-year linear trend slope is estimated at
+26 % decade−1 (Table 4). The difference in the estimated
emission trend between the two time periods (2005–2010
and 2011–2014) are most commonly found across the coun-
try, which can be attributed to the competing influences of

Figure 6. Global distribution of linear trend of the a posteriori sur-
face NOx emissions (in 10−12 kg m−2 s−1 per decade) for the pe-
riod 2005–2014. The red (blue) colour indicates positive (negative)
trends.

economic growth and emission controls (Cui et al., 2016).
The temporal strong decrease in the estimated emissions in
2008 summer (Fig. 7) could be associated with the Bei-
jing Olympic games, as suggested by Mijling et al. (2009),
Witte et al. (2009), and Worden et al. (2012). The trend
for 2005–2010 over China is +3.0 % yr−1 in our estimate,
which is slightly smaller than the +4.0 % yr−1 estimate us-
ing OMI measurements by Gu et al. (2013). The increase
from 2008 to 2010 for China is larger in the a posteri-
ori emissions (+0.73 Tg N yr−1) than in EDGAR-HTAP v2
(+0.49 Tg N yr−1).

As shown by Fig. 12, strong positive trends are found
over large cities such as Wuhan (+42 % decade−1), Nan-
jing (+35 % decade−1), Tianjin (+35 % decade−1), Chengdu
(+56 % decade−1), and over eastern China. A larger rela-
tive positive trend occurs over western China, especially
over north-western China (around 88–110◦ E, 37–48◦ N),
where the rate of increase reaches +50–+110 % decade−1

at grid scale. Despite the general large positive trend for
the 10-year period, the three largest cities in China show a
net reduction or a small increase during 2005–2014: Bei-
jing at −0.6 % decade−1, Shanghai at −6.2 % decade−1, and
Guangzhou at +4.5 % decade−1, as commonly found in the
observed NO2 concentrations (Wang et al., 2015). In East
Asia, the estimated emissions also show strong negative
trends over major cities in Japan and South Korea: Tokyo
at −48 % decade−1, Osaka at −38 % decade−1, and Seoul at
−11 % decade−1.

4.2.2 Europe

The total emissions for Europe are about 5 % higher in the
a posteriori than in the a priori emissions (Table 3), which
is attributed to positive increments over some parts of west-
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Figure 7. Time series of monthly total regional surface NOx emissions (in Tg N yr−1) obtained from the a priori emissions (black lines) and
the a posteriori emissions (red lines) for the period 2005–2014. The results are also shown for EDGAR-HTAP v2 emissions (green lines) for
the years 2008 and 2010.

ern Europe, such as Belgium (+67 %), western Germany
(+23 %), northern Italy (+62 %), and Istanbul (+40.3 %)
(Fig. 10). The a posteriori emissions for Europe are higher
than the EDGAR-HTAP v2 inventory by 17 % for 2008
and 2010, and the differences are large at the grid scale
around London (+27 %), Belgium (+87 %), western Ger-
many (+84 %), Paris (+27 %), Madrid (+55 %), northern
Italy (+90 %), and Istanbul (+56 %). Both the a priori and
EDGAR-HTAP v2 emission inventories show maximum
emissions in summer (i.e. July), whereas the timing of the
peak emission moves forward by 1 month after data assim-
ilation (Fig. 8). The estimated seasonal amplitude is larger
over eastern Europe than over western Europe by about 40 %,
which suggests the possibility of more active summertime

emissions from soil in eastern Europe, as consistently re-
vealed by Vinken et al. (2014).

The estimated emissions for Europe show a slightly
negative trend during 2005–2014, with a sharp decrease
from 2009 to 2010 (Fig. 9). The estimated linear de-
crease for the 10-year period is small (−0.1 % decade−1)
for Europe (10◦W–30◦ E, 35–60◦ N), but is much larger
(−8.8 % decade−1) over western Europe (10◦W–17◦ E, 36–
54◦ N), as summarized in Table 4. At the grid scale
(Fig. 12), strong negative trends occur over large cities
in western Europe; Paris (−10 % decade−1), north-western
France (−57 % decade−1), London (−11 % decade−1), Bel-
gium (−24 % decade−1), Athens (−22 % decade−1), and
over a region with many power plants in northern Spain
(−45 % decade−1) and Po Valley (−52 % decade−1). These
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Figure 8. Seasonal variations of the regional surface NOx emissions (in Tg N yr−1) obtained from the a priori emissions (black line) and the
a posteriori emissions (red line) averaged over the period 2005–2014. The results are also shown for the a posteriori emissions for individual
years during 2005–2014 (yellow lines).

variations are considered to be the result of the global
economic recession and emission controls, as pointed out
by Castellanos and Boersma (2012). The negative trends
are stronger during 2005–2010 than during 2011–2014
over some parts of western and southern Europe such as
over northern Spain, northern Italy, and western Germany
(Fig. 12). Strong negative emission trends over these regions
were similarly found by Curier et al. (2014) for 2005–2010.
Zhou et al. (2012) revealed that NOx emissions from Span-
ish power plants have been strongly reduced for the 2004–
2009 period because of emission abatement strategies, which
is consistent with our estimates.

4.2.3 North America

The 10-year mean a posteriori emissions are higher
than both the a priori (5.73 Tg N yr−1 vs. 5.23 Tg N yr−1

for 2005–2014) and EDGAR-HTAP v2 (5.26 Tg N yr−1

vs. 4.84 Tg N yr−1 for 2008 and 2010) emissions over the
USA (Table 3). Positive increments are found over most re-
mote areas and around the South-eastern USA (e.g. +23 %
near Atlanta) and most of the western USA (e.g. +26 % near
Denver), whereas negative increments are found around large
cities such as New York (−28 %), Toronto (−17 %), Mon-
treal (−19 %), Houston (−19 %), and Los Angeles (−5 %)
(Fig. 10). Despite the small adjustment for the 10-year mean
regional total emissions, the data assimilation analysis in-

Atmos. Chem. Phys., 17, 807–837, 2017 www.atmos-chem-phys.net/17/807/2017/



K. Miyazaki et al.: Surface NOx emissions 2005–2014 823

NOx emissions

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

-20

0

20

40

D
iff

er
en

ce
 fr

om
 2

00
5 

[%
]

      China 
(+26 % decade   )

    Europe 
(-0.1 % decade  )

Southern Africa 
   (-8.2 % decade  )

        India 
(+29.2 % decade  )

 United States 
  (-29.4 % decade  )

Western Europe 
    (-8.8 % decade   )

–1

–1

–1

–1

–1

–1

Figure 9. Time series of the difference (in %) of the annual mean
a posteriori surface NOx emissions relative to the 2005 emissions
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crements for the regional total emission are strongly posi-
tive during 2005–2008, producing a long-term negative trend
(Fig. 7). The timing of maximum emissions moves for-
ward by 2 months (from July to May) due to data assimila-
tion (Fig. 8). The summertime peak enhancement is obvious
over remote regions such as high-temperature agricultural
land over the south-east central and the south-western USA,
which suggests that the a priori emissions underestimates
emissions from soil, as suggested by Oikawa et al. (2015) for
the western USA. The estimated emissions are larger than
the EDGAR-HTAP v2 emissions around large cities such
as New York (+24 %), Chicago (+12 %), Denver (+35 %),
Houston (+17 %), San Francisco (+74 %), and Los Angeles
(+68 %) but are smaller over remote areas in the eastern and
central USA for 2008 and 2010 (Fig. 10). The 0.73 Tg N esti-
mated over the USA (130–70◦W, 25–50◦ N) from ICARTT
observations between 1 July and 15 August in 2004 (Hud-
man et al., 2007) is close to our estimates of 0.82 Tg N for
1 July to 15 August in 2005. The 0.465 Tg N estimated over
the eastern USA (102–64◦W, 22–50◦ N) from the OMI ob-
servations for March 2006 (Boersma et al., 2008a) is slightly
smaller than our estimate of 0.502 Tg N.

The a posteriori regional emissions for the USA show a
strong negative trend during 2005–2014 (−29.4 % decade−1)
(Table 4). The estimated trend for 2005–2012 (−32 %)
in this study is close to that reported by Tong et
al. (2015) using OMI measurements (−35 %). The 10-year
linear trend is strongly negative over large cities such as
New York (−48 % decade−1), Boston (−42 % decade−1),
Chicago (−52 % decade−1), Atlanta (−47 % decade−1), Dal-
las (−19 % decade−1), Houston (−25 % decade−1), Den-
ver (−16 % decade−1), and Los Angeles (−46 % decade−1)
(Fig. 11). Lu et al. (2015) estimated that total OMI-derived
NOx emissions over selected urban areas decreased by 49 %
from 2005 to 2014, reflecting the success of NOx control
programmes for both mobile sources and power plants, with

Table 4. Linear trend (in % per decade) of the regional a posteriori
NOx emissions from the multiple-species assimilation (left column)
and NO2-only assimilation (central column), and of the regional
mean tropospheric NO2 columns from OMI (right column) for the
period 2005–2014.

NOx emission NOx emission OMI NO2
(multiple species) (NO2-only)

China 26.0 27.3 39.6
Europe −0.1 −1.4 13.6
W Europe −8.8 −10.0 7.5
USA −29.4 −23.9 −6.3
S America −12.2 −0.4 2.8
N Africa −13.6 −3.3 3.4
C Africa −4.2 6.7 7.1
S Africa −8.2 0.9 2.2
SE Asia −0.3 13.0 13.0
Australia 1.3 10.2 −1.3
India 29.2 34.3 25.0

greater reductions before 2010 than after 2010. These vari-
ations are similarly found in our estimates (Fig. 12). Both
the a posteriori and EDGAR-HTAP v2 emissions consis-
tently reveal a decrease in the regional emissions for the
USA from 2008 to 2010 (−0.34 and −0.51 Tg N yr−1, re-
spectively).

4.2.4 India

The 10-year total emissions from India are 22 % higher in the
a posteriori emissions than in the a priori emissions (Table 3).
The positive adjustment for the country’s total emissions
is large in spring, resulting in a Mar–June/July–September
ratio of about 1.55± 0.1 (Fig. 8), which could be associ-
ated with seasonality in open biomass burning (Venkatara-
man et al., 2006). The seasonal variation is mostly absent
in the a priori and EDGAR-HTAP v2 inventories. The pos-
itive increment is large around large cities such as Luc-
know (+110 %), Patna (+25 %), Mumbai (+50 %), Hyder-
abad (+16 %), and Madras (+21 %) (Fig. 10). In contrast, the
country’s total emissions are about 10 % smaller in the a pos-
teriori emissions than in the EDGAR-HTAP v2, with large
negative biases (i.e. the a posteriori is smaller) around Delhi
(−49 %) and southern India (−20 –−70 %) and large posi-
tive biases over Lucknow (+68 %), Gwalior (+45 %), Raipur
(+41 %), Mumbai (+12 %), and Hyderabad (+14 %) at grid
scale (Fig. 10). These results suggest both EDGARv4 and
EDGAR-HTAP v2 inventories largely underestimate emis-
sions over some parts of India such as around Lucknow,
Raipur, Mumbai, and also in Thailand around Bangkok
(+26 % compared with the a priori emissions and +118 %
compared with the EDGAR-HTAP v2 emissions) and Chi-
ang Mai (+54 and +66 %, respectively).

The a posteriori emissions for India increased contin-
uously over the 10-year period, with a linear trend of
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Figure 10. The regional distribution of 10-year mean surface NOx emissions (in 10−11 kg m−2 s−1) over East Asia (upper panels), Europe
(upper middle panels), the USA (lower middle panels), and South-east Asia (lower panels) obtained from the a posteriori emissions in the
period 2005–2014 (left panels), and the difference between the a posteriori emissions and a priori emissions in the period 2005–2014 (centre
panels), and between the a posteriori emissions and EDGAR-HTAP v2 emissions for the years 2008 and 2010 (right panels). The black
square line represents the region used for the regional mean analysis.

+29 % decade−1 (Fig. 9). The positive trend is large across
the country, with particularly strong increases around Luc-
know (+29 % decade−1), Kolkata (+47 % decade−1), Raipur
(+67 % decade−1), and Madras (+40 % decade−1) (Fig. 12).
The positive emissions trend could be associated with in-
creased thermal power plants in India, as pointed out by Lu
and Streets (2012). In 2014, the regional total emissions for
India (i.e. 3.46 Tg N yr−1) are comparable to (about 83 % of)
the total European emissions (i.e. 4.15 Tg N yr−1) and about
67 % of the total US emissions (i.e. 5.17 Tg N yr−1). In con-

trast, tropospheric NO2 columns over India are much lower
compared to those in northern midlatitude polluted areas, as a
result of the high values of temperature, photolysis rates, and
specific humidity, leading to shorter NO2 lifetimes through-
out the year (Beirle at al., 2011).

4.2.5 Southern Africa

A large adjustment in NOx emissions is apparent in the High-
veld region of southern Africa with a factor of about 1.5 (Ta-
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Figure 11. Global distribution of linear trend of the a posteriori
surface NOx emissions for the period 2005–2010 (top panel) and
2011–2014 (bottom panel). The red (blue) colour indicates positive
(negative) trends.

ble 3). The positive adjustment is relatively large in the aus-
tral summer (Fig. 8). The emissions from southern Africa
show a slight negative trend (−8 % decade−1), with a tem-
porary increase in 2006–2007, followed by a rapid decrease
in 2009, and almost constant emissions afterwards (Fig. 9).
The difference in emissions between 2008 and 2010 is small
in EDGAR-HTAP v2 (+0.01 Tg N yr−1), whereas the a pos-
teriori emissions show a negative trend (−0.09 Tg N yr−1 –
2010–2008) (Table 3). The 10-year linear trend reaches about
−40 % decade−1 at grid scale over highly polluted areas.
Duncan et al. (2016) highlighted a complex mixture of dif-
ferent emissions sources over southern Africa. The various
emission sources may have experienced different variations,
and high-resolution emission analysis is required to under-
stand the detailed spatial variation in these emissions and to
obtain unbiased emission estimates (Valin et al., 2011).

4.2.6 Northern and central Africa

Over northern Africa, the 10-year mean emission increased
by 40 % due to data assimilation from 2.07 to 2.90 Tg N yr−1

(Table 3). The positive increment is large from boreal winter
to summer, producing the second maximum in July that is
absent in the a priori emission (Fig. 8). The enhanced emis-
sions for July and August are found throughout the 2005–
2014 period and can mainly be attributed to emissions from
the Sahel and Nigeria. This large positive increment may in-
dicate an underestimation of soil NOx emissions in the a pri-
ori inventory. The short summer dry season in Nigeria may
also lead to enhanced biomass-burning emissions. The data
assimilation largely corrects the spatial distribution during
the peak season in January, with larger positive adjustments
over the western (by about+60–+120 % at grid scale around
5–15◦W) rather than the eastern parts of northern Africa
(Fig. 5). The data assimilation also introduced a distinct
year-to-year variation, reflecting the observed concentration
variations associated with changes in biomass-burning activ-
ity. The estimated emissions are high in 2005, 2006, 2008,
and 2009, and low in 2010 (Fig. 7), which could be asso-
ciated with drought events related to atmospheric variations
such as ENSO (Janicot et al., 1996).

Over central Africa, the 10-year mean a posteriori emis-
sions are larger than the a priori emissions by about 53 %
(2.57 Tg N yr−1 vs. 1.68 Tg N yr−1) (Table 3). Large positive
increments are found in the Congo region, with about +50–
+150 % increases for the 10-year mean emissions at the grid
scale (Fig. 5). The relative adjustment for the regional to-
tal emissions during the biomass-burning season is +30–
+40 % over central Africa and about +40 % over northern
Africa. These numbers may indicate a possible underesti-
mation of the magnitude of fire-related emission factors in
GFED v3. Although variation in the seasonal emissions is
different for northern Africa and central Africa (almost oppo-
site phases, reflecting the transition of the Intertropical Con-
vergence Zone, ITCZ), the year-to-year variation revealed by
data assimilation is similar for the two regions. The tempo-
ral correlation of the annual total emission between northern
Africa and central Africa for the 2005–2011 period (when the
GFED emissions are available) is estimated at 0.90 for the a
posteriori emissions, and 0.01 for the a priori emissions. This
result may suggest that year-to-year emission variations over
the two regions are controlled in the same manner by long-
lasting atmospheric variations (e.g. ENSO), for which the a
priori emissions have large uncertainties.

4.2.7 South-east Asia

Over South-east Asia, the data assimilation increases the an-
nual mean emission by 45 % from 0.47 to 0.68 Tg N yr−1

(Table 3), with a large increase in boreal winter and spring
(Fig. 8). The regional emission increment is positive over
peninsular Malaysia (+20–+40 % for the 10-year mean
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Figure 12. The regional distribution of the linear trend in surface NOx emissions (in 10−11 kg m−2 s−1 per decade) during 2005–2014 over
East Asia (upper left panel), Europe (upper right panel), the USA (bottom left panel), and South-east Asia (bottom right panel), obtained
from the a posteriori emissions. The black square line represents the region used for the regional mean analysis.

emission), Borneo Island (+60–+100 %), and central and
northern Thailand (+50–+80 %) (Fig. 10). Because of the
large adjustment in boreal winter and spring, the peak-to-
peak seasonal variation for south-eastern Asia is enhanced
by 20 % by data assimilation (Fig. 8). The a priori invento-
ries reveal enhanced emissions in 2005, 2007, and 2010, re-
flecting year-to-year changes in biomass-burning emissions,
whereas data assimilation further increased them by up to
30 % (Fig. 7). The relative adjustment in other years (i.e.
years with weaker biomass-burning activity) is even higher
during the boreal winter and spring (with a factor of more
than 2), which can largely be attributed to large positive
increments over central and northern Thailand. The South-
east Asia emissions can be characterized as a combination
of various sources. Using the ratio between different emis-
sion categories in the a priori emission inventories at each
grid point, the regional total emissions from anthropogenic
sources, biomass burning, and soils are estimated at 0.51,
0.11, and 0.06 Tg N yr−1, respectively, which are 47, 32, and
58 % higher than the a priori emissions.

4.2.8 South America

Over South America, the 10-year mean regional total emis-
sions are comparable between the a priori and a posteriori
emissions, whereas the spatial distribution is largely cor-
rected, with large positive increments over eastern Brazil
(+50–+110 % at grid scale) and Peru (+90–+140 %) and
negative increments over the central Amazon (up to −30 %)
(Fig. 5). The seasonal variation of the regional total emis-
sion for South America is largely corrected by data assim-
ilation (Fig. 8). A large decrease (by −30 %) occurs in the
biomass-burning season in August–September in all years,
which might be the result of an overestimation of emis-
sions by forest (i.e. deforestation) fires in dry conditions in
the emissions inventory, as similarly investigated by Castel-
lanos et al. (2014) using GFED v3. This is in contrast to
the increased emissions over central Africa in the biomass-
burning season (see Sect. 4.2.6). In contrast to the negative
increments in the biomass-burning season, the emissions in
the biomass-burning off-season are increased by 30–60 % by
data assimilation. Consequently, data assimilation decreased
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the seasonal amplitudes by 40 %. The year-to-year variations
are similar for the a priori and a posteriori emissions (Fig. 7).
As an exception, a large decrease in 2010 (with a 50 % de-
crease from 6.9 to 3.5 Tg N in August by data assimilation)
suggests large uncertainty in fire-related emission factors in
the major fire year (Bloom et al., 2015).

4.2.9 Other remote regions

The data assimilation may capture signals related to soil
emissions, for which the inventories may have large uncer-
tainties. For instance, the regional mean emissions over Aus-
tralia are higher by about 40 %, with a large increase in bo-
real spring–early summer. The emissions are also higher over
the central Eurasian continent, including eastern Europe and
western China, and over the Sahel (Fig. 5), as was simi-
larly found by Vinken et al. (2014). The global total NOx

emissions by soils for the 10-year period are estimated at
7.9 Tg N yr−1, in contrast to 5.4 Tg N yr−1 for the a priori
emissions. The results indicate large underestimates in the
soil emission inventories over these regions. For instance,
the non-linear relationships between soil NOx emissions and
time since fertilization, soil temperature, and soil moisture,
are not properly considered in current inventories, as pointed
out by Oikawa et al. (2015) for agricultural regions. Note that
our estimate of 7.9 Tg N yr−1 is smaller than other recent es-
timates (8.9 Tg N yr−1 in Jaeglé et al., 2005; 8.6 Tg N yr−1

in Steinkamp and Lawrence, 2011; 10.7 Tg N yr−1 in Hud-
man et al., 2012; and 12.9± 3.9 Tg N yr−1 in Vinken et al.,
2014), which could partly be attributed to the assumed emis-
sion ratio between different categories for each model grid
point, which is based on the a priori inventories and was not
modified by the data assimilation in this study.

Among major industrialized areas, the Middle East has ex-
perienced a rapid increase in NO2 levels (Lelieveld et al.,
2015). Our estimates reveal a linear trend of+20 % decade−1

in NOx emissions and a 45 % positive adjustment from the a
priori emissions for the Middle East (32–65◦ E, 12–40◦ N)
during the 10-year period. Strong positive trends are found
over major cities, such as Kuwait (+47 % decade−1), Cairo
(+29 % decade−1), and Tehran (+37 % decade−1). In con-
trast, the trend in the estimated emission over Dubai is neg-
ative (−6 % decade−1). The rate of increase becomes larger
after 2010 for many areas (Fig. 11), as found in observed
NO2 levels (Lelieveld et al., 2015). Lelieveld et al. (2015)
suggested that a combination of air-quality control and polit-
ical factors has drastically altered the emission landscape of
NOx in the Middle East.

Over the oceans, the data assimilation decreases the 10-
year mean global total emissions from ships. In contrast,
at the regional scale, data assimilation increments are posi-
tive over the oceans around Europe (Fig. 12), and a positive
trend during 2005–2010 is introduced by data assimilation
(Fig. 11, note that the estimated positive trend is more pro-
nounced during 2005–2008, as commonly found by Boersma

Table 5. Difference between the a posteriori emissions from the
multiple-species assimilation and NO2-only assimilation. Relative
difference for the regional 10-year mean emissions (left column),
RMSE for the monthly regional emissions (central column), and
range of relative difference for the monthly regional emissions
(right column) are shown.

Mean diff. RMSE Range
[%] [%] [%]

China 1.3 5.2 −10.8–+16.2
Europe 1.9 6.4 −18.1–+16.0
USA −0.9 6.1 −20.2–+13.2
S America −10.0 15.3 −67.2–+19.8
N Africa −4.6 8.4 −38.8–+11.0
C Africa −7.1 15.5 −42.0–+16.6
S Africa −1.6 10.1 −26.2–+18.7
SE Asia 4.9 11.2 −59.8–+34.2
Australia −10.1 16.5 −69.1–+14.2
India 2.2 8.1 −23.6–+22.4
NH −0.6 4.4 −16.4–+9.9
TR −3.6 7.5 −26.6–+9.6
SH −8.7 13.2 −42.1–+12.4
GL −2.2 4.8 −17.3–±6.8

et al., 2015). The overall negative increment, as well as the
positive increment around Europe, may indicate an overes-
timate and an underestimation around Europe of ship emis-
sions in the a priori inventories and errors in modelled chem-
ical processes in the exhaust plumes (Vinken et al., 2011),
which occur at fine scales relative to the model grid. The
overall negative increment can also be influenced by possi-
ble negative bias in NO2 retrievals. Boersma et al. (2008a)
showed negative bias over the ocean in NO2 retrievals in
version-1 DOMINO NO2 retrievals, and the negative bias
could not be fully removed in the version-2 DOMINO NO2
retrievals (Boersma et al., 2011).

5 Discussion

5.1 Importance of assimilating multiple trace gases

The differences between our NOx emissions estimates and
previous studies, as discussed in Sect. 4, may be attributed
to differences in the assimilated data, forecast model, and
data assimilation approach. In particular, the use of non-NO2
measurements is expected to improve emission estimates in
our approach, as these affect the NOx chemistry and reduce
model errors unrelated to surface emissions.

Table 5 compares the estimated emissions between the
multiple-species data assimilation and a NO2-only data as-
similation. The estimated emissions differ in many regions
if non-NO2 data assimilation is considered because the ratio
of predicted NOx emission and NO2 column has been modi-
fied by non-NO2 observations. The assimilation of non-NO2
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measurements leads to changes of up to about 70 % in the
regional monthly mean emissions. The estimated 10-year to-
tal regional emissions for South America and Australia are
about 10 % lower in the multiple-species assimilation than
in the NO2-only assimilation. The RMSE between the two
estimates for the monthly total regional emissions is 15.5 %
for central Africa, 16.5 % for Australia, and about 5–8 % for
major polluted regions during the 10-year period. The es-
timated monthly mean emissions are mostly smaller in the
multiple-species assimilation than in the NO2-only assimila-
tion, especially over the tropical and southern subtropical re-
gions such as South America, central Africa, and Australia,
suggesting that NO2-only data assimilation tends to overcor-
rect the emissions from the a priori. The monthly total global
emissions decrease by up to 6 Tg N (in boreal summer) if
non-NO2 data assimilation is considered.

We conducted observing system experiments (OSEs), and
confirmed that the assimilation of individual data sets re-
sults in a strong influence on the estimated emissions. For
instance, in January 2008, the TES O3 assimilation led to
substantial changes in the regional emissions over India
(3.50 Tg N in the NO2-only assimilation and 3.15 Tg N in the
NO2 and TES O3 assimilation, in contrast to 3.16 Tg N in the
multi-species assimilation and 2.45 Tg N in the a priori emis-
sions), whereas other non-NO2 measurements (i.e. MOPITT
and MLS) have less impact. Similar important contributions
of TES O3 measurements are found for South America in
January 2008 (1.09 Tg N in the NO2-only assimilation and
0.91 Tg N in the NO2 and TES O3 assimilation, in contrast
to 0.90 Tg N in the multi-species assimilation and 0.46 Tg N
in the a priori emissions). These changes in NOx emissions
are associated with negative adjustments of O3 by the TES
assimilation over South America throughout the troposphere
and positive adjustments of O3 over India in the middle tro-
posphere, and their influence on NOx-OH-O3 chemical reac-
tions and the LNOx source optimization, as discussed below.

The 10-year linear trend is also different over most indus-
trial areas (Table 4). For instance, the positive trend for In-
dia is 34.3 % decade−1 in the NO2-only assimilation, which
is larger than the 29.2 % decade−1 in the multiple-species
assimilation. For the USA, the negative trend is larger in
the multiple-species assimilation (−29.4 % decade−1) than
in the NO2-only assimilation (−23.9 % decade−1). These
results confirm that the assimilation of measurements for
species other than NO2 provides additional constraints on
the NOx emissions over both anthropogenic and biomass-
burning regions.

The improved representation of NOx emissions is con-
firmed by the better agreement of simulated O3 concentra-
tions with independent ozonesonde observations using NOx

emissions from multiple-species assimilation than those us-
ing NOx emissions from NO2-only data assimilation, which
was also demonstrated by Miyazaki and Eskes (2013). Af-
ter 2010, TES O3 retrievals were not assimilated because
of the lack of standard observations. Even so, the optimized

surface NOx emissions from the multiple-species assimila-
tion improved agreements with TES O3 ver. 6 special ob-
servations during 2011–2014 for most locations (Table S1 in
the Supplement). These results indicate that multiple-species
measurements provide important information for improving
surface NOx source estimations and improve the chemical
consistency including the relation between concentrations
and the estimated emissions. Note that the emissions of O3
precursors other than NOx , such as VOCs, and various model
processes in atmospheric transport and chemistry influence
the model performance. The impact of using the optimized
NOx emissions may vary with models (e.g. given different
forecast errors of NO2 and O3). The optimization of addi-
tional precursor emissions and the improvement of the fore-
cast model could be important for improving O3 simulations,
as discussed in our previous studies (Miyazaki et al., 2012b,
2015).

LNOx sources are important for a realistic representa-
tion of tropospheric NO2 columns, which are optimized
from data assimilation in our framework. Using the multiple-
species data assimilation, the 10-year mean global LNOx

source amount was estimated at 5.8 Tg N yr−1, in contrast
to 5.3 Tg N yr−1, estimated from the model simulation and
6.3± 1.4 Tg N yr−1 in our previous data assimilation esti-
mate (Miyazaki et al., 2014). The data assimilation incre-
ments for LNOx sources are large and mostly positive in
the middle and upper troposphere in the NH and the TR,
in which non-NO2 measurements with different vertical sen-
sitivities provided important constraints. Through its influ-
ence on simulated tropospheric NO2 columns, for instance,
the inclusion of the LNOx source optimization altered the
surface NOx emission estimates over eastern China by up to
12 % in summer. Moreover, surface CO emissions increased
by 10 % in the NH through the assimilation of MOPITT CO
measurements in our system. Both optimized LNOx sources
and CO emissions reveal enhanced seasonal and interannual
variations over many regions after data assimilation, provid-
ing important constraints on long-term estimates of surface
NOx emissions, through their influence on OH and thus the
NOx chemical lifetime.

Figure 13 shows changes in OH concentrations (1OH) in
the lower troposphere in the boreal summer (averaged over
June–August) due to data assimilation. The multiple-species
assimilation changes the global OH distribution, increasing
OH globally. As summarized in Table 6, the regional impact
is large (greater than +20 %) in tropical regions such as over
the Middle East, South-east Asia, and central and northern
Africa, and over industrial areas (greater than +10 %), such
as over China, the USA, and India. These changes in OH
concentrations are influenced by changes in NOx emissions
through the assimilation of NO2 measurements, but the as-
similation of non-NO2 measurements is also important. Fig-
ure S2 demonstrates that the assimilation of non-NO2 mea-
surements acts to decrease the OH concentration in the lower
and middle troposphere for most regions in June 2008. The
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Figure 13. Global distribution of the 10-year mean OH concen-
tration (in 106 molecules cm−3) in the data assimilation run (top
panel) and its difference between the data assimilation run and the
model simulation (bottom panel) averaged over June, July, and Au-
gust over the 2005–2014 period at 850 hPa.

TES assimilation mostly reduces the O3 concentration in the
tropics, which leads to a decrease of OH concentrations. In
contrast, the TES assimilation acts to increase the OH con-
centration in the NH extratropics in the lower and middle tro-
posphere. The assimilation of MOPITT CO acts to decrease
the OH concentration in the NH, because of the increased
surface CO emissions. The 10-year mean NH/SH OH ratio
is estimated at 1.19 in the multiple-species assimilation, in
contrast to 1.27 in the MIROC model simulation and 1.22 in
the NO2-only assimilation, which is closer to 0.97± 0.12 es-
timated with the help of methyl chloroform observations (a
proxy for OH concentrations) by Patra et al. (2014).

To elucidate the changes in the NOx chemical lifetime,
Table 6 compares the lower tropospheric OH concentration
and the ratio of the regional mean surface NOx emissions
and lower tropospheric NO2 concentrations (averaged from
the surface to 790 hPa) between the multiple-species data as-
similation and the model simulation (1NOx-emi/NO2) in
the boreal summer. The multiple-species assimilation leads

Table 6. Regional and 10-year mean difference in lower tropo-
spheric OH concentration averaged below 790 hPa (1OH) and the
ratio of surface NOx emission and lower tropospheric NO2 con-
centration averaged below 790 hPa (1NOx -emi/NO2) between the
data assimilation run and the model simulation in the boreal sum-
mer (averaged over June–August) over the 2005–2014 period.

1OH 1NOx -emi/
(%) NO2 (%)

China 14.3 9.1
Europe 4.9 3.8
USA 10.7 0.9
S America 21.5 −14.8
N Africa 20.3 28.5
C Africa 21.1 16.5
S Africa 20.0 −2.1
SE Asia 14.1 7.2
Australia 23.5 3.0
India 10.8 −0.7

NH 9.7 (4.3) 9.1 (−5.9)
TR 13.1 (2.2) 16.5 (−0.9)
SH 23.8 (2.0) 11.3 (−12.9)
GL 12.2 (7.4) 9.3 (2.0)

to an increase in the OH concentration in the troposphere.
Meanwhile, the increased ratio of NOx to NO2 (i.e. in-
creased fraction of NO) in the multiple-species assimila-
tion compared to the model simulation indicates that the
HO2+NO→NO2+OH reaction, which is the source of
OH, is enhanced in the multiple-species assimilation. It is
also found that the assimilation of non-NO2 measurements
suppresses these changes for most regions in both the OH
concentration (see Fig. S2) and the NOx-emi/NO2 ratio. For
instance, the 10-year mean ratio over Central Africa is in-
creased by 16.5 % in the multiple-species assimilation, in
contrast to the 19.3 % increase in the NO2-only assimilation.

These results suggest that NOx chemical lifetime is de-
creased because of increased OH concentrations (through the
NO2+OH reaction, which acts as the main sink of NOx)
in the multiple-species data assimilation (and also in the
NO2-only assimilation) compared to the model simulation
over most industrial and biomass-burning areas. It is also
suggested that, for many regions, the NOx chemical life-
time is longer in the multiple-species assimilation than in the
NO2-only assimilation, because of decreased OH concentra-
tions by the assimilation of non-NO2 measurements. These
changes, together with the increased LNOx sources, could
explain the smaller NOx emissions in the multiple-species
assimilation than in the NO2-only assimilation in many cases
(see Table 5). These results demonstrate the utility of the
multiple-species assimilation to constrain the tropospheric
chemistry (i.e. chemical regime), controlling NOx variations,
and to improve surface NOx emission inversions.
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Table 7. Regional and 10-year mean correction factor for the emis-
sion diurnal variability (Etc) for 2005–2014.

Etc

China −0.44
Europe −0.37
USA −0.33
S America −0.06
N Africa −0.03
C Africa −0.08
S Africa −0.20
SE Asia −0.04
Australia −0.03
India −0.26

5.2 Impact of assimilating NO2 observations from
multiple instruments

Unlike most previous studies that used NO2 retrievals from
a single sensor, we assimilated multiple NO2 measurements
to constrain surface NOx emissions. When assimilating OMI
retrievals only, the larger discrepancies with respect to the
SCIAMACHY and GOME-2 retrievals for some regions may
be attributed to errors in the simulated diurnal NO2 varia-
tions, since both emission factors and tropospheric concen-
trations of NOx are constrained only in the early afternoon
in this case. When assimilating multiple NO2 measurements,
the application of the correction factor (Etc) for the emis-
sion diurnal variability function (Et) modified the shape of
the diurnal emission variability (Fig. 1), which improved the
agreement with multiple NO2 retrievals in both the morning
and afternoon for many cases. The global RMSE for monthly
mean tropospheric NO2 column is reduced by 8 % compared
to the OMI retrievals and by 13 % compared to the SCIA-
MACHY in January 2005 by assimilating multiple NO2 mea-
surements by applying Etc, compared to the case with the
OMI retrievals only. The estimated monthly regional emis-
sions constrained by the three retrievals decreased by 18 %
over Europe and by 9 % over Australia in January 2005 com-
pared to those from the OMI retrievals only.

As shown in Fig. 14 and Table 7, the estimated Etc is
negative for most industrial regions such as Europe and
North America, and over biomass-burning areas, such as
South-east Asia. The large adjustments (Etc=−0.3 –−0.4,
for which the daily mean hourly emission value is 1) for
the industrialized areas suggest that a positive adjustment
to the assumed diurnal emission variability is required be-
tween 07:30–10:30 LT (and then a negative adjustment for
emissions between 10:30–13:30 LT), probably due to larger
underestimations of emissions (e.g. morning traffic rush).
Large negative values of Etc are also found over northern
China including Inner Mongolia, northern India, and the
Middle East, where various emission sources (not only mo-
bile sources with morning peaks) could be important. For in-

stance, over Inner Mongolia, the estimated emissions show a
positive trend over the past decade (around 110◦ E, 41◦ N in
Fig. 12), which could be associated with increased emissions
by power plants and industries without morning peaks. These
results suggest a larger negative bias in simulated tropo-
spheric NO2 column in the morning than in the afternoon, as-
sociated with errors in the chemical lifetime and atmospheric
transports (e.g. boundary layer development) and also associ-
ated with biases between the different NO2 retrievals. Thus,
the model errors could artificially affect the diurnal emis-
sion variability. The optimized Etc for biomass-burning and
soil-emission-dominant regions are mostly slightly negative,
which may suggest that the applied diurnal emission vari-
ability with an afternoon maximum (see Sect. 2.1) was inap-
propriate for some regions. In contrast, they are positive for
most of the ocean. These results suggest a need to not only
correct diurnal NO2 variations, but to also account for the
differences in the sampling and bias between OMI and other
instruments as well as the influences of model errors. Future
geostationary satellite missions such as Sentinel-4, GEMS,
and TEMPO will be able to provide dramatically more sys-
tematic constraints on diurnal emission variability and obser-
vational information.

5.3 Possible error sources

Biases in satellite retrievals and modelling affect the magni-
tude of estimated emissions. Miyazaki et al. (2012a) demon-
strated that possible biases (up to 40 %) in the NO2 re-
trieval alter regional NOx emissions by 5–45 %. The emis-
sion estimates may also be sensitive to measurement biases
for species other than NO2. For example, a bias correction
for the positive bias in the TES O3 profiles altered monthly
NOx emissions by 1–11 % at the regional scale (Miyazaki
and Eskes, 2013). Discontinuities in the assimilated measure-
ments (e.g. lack of most TES retrievals after 2010, OMI row
anomaly since January 2009, and the limited data coverage
of SCIAMACHY – before February 2012 – and GOME-2 –
after January 2007) may also affect long-term emission esti-
mates.

Estimated emissions are sensitive to the choice of forecast
model and its resolution. Our analysis using a different fore-
cast model (CHASER versus MIROC-Chem) showed up to a
20 % difference in monthly NOx emissions at the regional
scale. Meanwhile, negative biases remain in tropospheric
NO2 columns over industrial regions, such as China, Europe,
the USA, and southern Africa, using either model and data
assimilation. The inadequacies of the improvements in sim-
ulated tropospheric NO2 columns could be related to model
biases in the NOx chemical lifetime (e.g. Stavarakou et al.,
2013) and may also be partly attributed to the small number
of observations and large observation errors for highly pol-
luted cases (Fig. S1). Over polluted areas, observation errors
increase almost linearly with the retrieved concentrations for
most cases, and large observation errors may lead to insuffi-
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Figure 14. Global distribution of the annual mean correction factor
for the emission diurnal variability (Etc) for the period 2005–2014.

cient improvements by data assimilation for highly polluted
cases. The remaining error may indicate a possible bias in the
estimated emissions.

For example, over Europe, the increased wintertime nega-
tive bias against OMI retrievals (in contrast to the reduced
bias against SCIAMACHY retrievals) in 2009 and 2010
could also be associated with difficulties in correcting the di-
urnal emission variation. For that time period over northern
Europe, the number of OMI observations used for data as-
similation is greatly reduced and observation errors are sig-
nificantly increased, whereas those of SCIAMACHY vary
differently (Fig. S1). More observational data (e.g. from
ground-based measurements) may be required to further con-
strain surface NOx emissions for cloudy and snow-covered
conditions and for high latitudes. Meanwhile, the diurnal
variability correction scheme may need to be refined to fur-
ther improve the agreement with various overpass time mea-
surements.

Meanwhile, coarse-resolution models are known to have
negative biases in NO2 over large sources (Valin et al.,
2011). The emissions estimated at the T42 resolution in this
study could potentially be overestimated over polluted areas,
whereas the contrast between rural and urban areas could
be underestimated. A high-resolution forecast model is im-
portant to accurately simulate non-linear effects in NO2 loss
rate, while also providing insights into individual emission
sources, such as power plants (e.g. de Foy et al., 2015).

Although the assimilation of multiple-species data in-
fluences the representation of the entire chemical system
(Miyazaki et al., 2012b, 2015), the influence of model and
observation errors remains a concern. In the multiple-species
data assimilation, model performance is critical for the cor-
rect propagation of observational information between chem-
ical species and to improve the emission estimation, whereas
biases in any of the measurement data sets (including non-
NO2 measurements) may seriously degrade the emission es-
timation (Miyazaki and Eskes, 2013). Improvements in the

model, data assimilation scheme, and retrieved observations
are essential to reduce the uncertainty on the emission esti-
mates from the multiple-species data assimilation.

5.4 Trends in NO2 concentrations and NOx emissions

We emphasize that the observed concentration variations do
not necessarily correlate linearly with surface emissions, as
similarly investigated by other inversion studies (e.g. Lamsal
et al., 2011; Castellanos and Boersma, 2012; Turner et al.,
2012; Vinken et al., 2014). As summarized in Table 4, linear
trends are significantly different for the observed concentra-
tions and estimated emissions. The positive trend is larger
in the observed NO2 concentration (+39.6 % decade−1) than
in the emission estimates (+26.0 % decade−1) for China,
whereas the negative trend is larger in the emission esti-
mates (−29.4 % decade−1) than in the observed NO2 con-
centration (−6.3 % decade−1) for the USA. The relation be-
tween observed NO2 concentration and estimated NOx emis-
sions varies seasonally, as similarly expressed by Zhang
et al. (2007), and the differences can be much larger at
the grid scale. The results indicate that an accurate estima-
tion of the long-term emission trends requires an emission–
concentration relationship that explicitly accounts for tropo-
spheric chemistry and non-NO2 concentrations afforded by
advanced data assimilation techniques (see Sect. 5.1). These
year-to-year variations in the observed NO2 concentrations
have previously been reported by Duncan et al. (2016) and
Krotkov et al. (2016).

These results also suggest that the tropospheric chem-
ical regime may have changed over the 10-year period.
For instance, over Europe, the linear trend is positive for
the observed NO2 concentration (+13.6 % decade−1 for all
of Europe and +7.5 % decade−1 for western Europe in
OMI) and is negative for the emission estimates (−0.1 and
−8.8 % decade−1, respectively). This suggests that NO2 may
have become longer-lived or has become a larger fraction of
NOx over Europe over the past decade. In fact, the lower
tropospheric OH concentrations show slight negative trends
(by up to −5 % decade−1) over most of western Europe over
the past decade (figure not shown). Another possible expla-
nation is that a shift in NO2 : NOx emission ratios related to
the increasing share of European diesel cars could have oc-
curred. Further efforts are required to explain the long-term
variations of the tropospheric chemical regime and its causal
mechanisms. Note that the linear trend in the observed con-
centration is different for all instruments over Europe (see
Fig. 3).

6 Conclusions

Global surface nitrogen oxides (NOx) emissions are esti-
mated for the 10-year period between 2005–2014 from the
assimilation of multiple satellite data sets: tropospheric NO2
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columns from OMI, GOME-2, and SCIAMACHY; O3 pro-
files from TES; CO profiles from MOPITT; and O3 and
HNO3 profiles from MLS. The daily emission inversion is
performed based on the ensemble Kalman filter data assim-
ilation, which simultaneously optimizes chemical concen-
trations of various species and emission sources of several
precursors. Within the simultaneous emission and concen-
tration optimization framework, the analysis increment, di-
rectly produced via chemical concentrations, plays an impor-
tant role in reducing model–observation mismatches arising
from model errors unrelated to emissions, which can be ex-
pected to improve emission inversion. The assimilation of
measurements for species other than NO2 provides additional
constraints on the NOx emissions over both anthropogenic
and biomass-burning regions, leading to changes in the re-
gional monthly mean emissions of up to 70 %. The impact
of non-NO2 measurements varied largely with season, year,
and region. In addition to daily emission factors, the diur-
nal emission variability function was optimized using multi-
ple NO2 retrievals, obtained in the morning (SCIAMACHY
and GOME-2) and afternoon (OMI). The emission correction
largely improved the agreement with observed tropospheric
NO2 columns, at both seasonal and interannual timescales.

The 10-year mean global total surface NOx emissions
after data assimilation is 48.4 Tg N yr−1, which is 26 %
higher than a priori emissions based on bottom-up inven-
tories. The optimized 10-year mean emissions are higher
over most industrialized areas. The data assimilation cor-
rected the timing and strength of emissions from biomass
burning, such as over central Africa (the 10-year mean re-
gional emission is 1.68 Tg N yr−1 in the a priori emissions
and 2.57 Tg N yr−1 in the a posteriori emissions), north-
ern Africa (2.07 Tg N yr−1 vs. 2.90 Tg N yr−1), South-east
Asia (0.47 Tg N yr−1 vs. 0.68 Tg N yr−1), and South Amer-
ica (1.00 Tg N yr−1 vs. 1.04 Tg N yr−1), suggesting a large
uncertainty in fire-related emission factors in the emission
inventories. At northern midlatitudes and over Australia, the
emissions are largely enhanced during summer, suggesting
an important underestimation of soil sources in the a priori
inventory. Using the emission ratio between different cate-
gories in the a priori emission inventories, the global total
soil NOx emission for the 2005–2014 period is estimated at
7.9 Tg N yr−1, which is much higher than the a priori esti-
mate of 5.4 Tg N yr−1. This soil NOx emission estimate may
nevertheless be conservative, because the ratio between the
source categories is kept fixed in our approach.

The estimated regional total emissions show strong
positive trends over India (+29 % decade−1), China
(+26 % decade−1), and the Middle East (+20 % decade−1),
and negative trends over the USA (−29.4 % decade−1),
southern Africa (−8.2 % decade−1), and western Europe
(−8.8 % decade−1). At the grid scale, strong positive
trends are found over large cities in China, e.g. Wuhan
(+42 % decade−1), Chengdu (+56 % decade−1), and
north-western China (+50–+110 % decade−1; India, e.g.

Kolkata (+47 % decade−1), Raipur (+67 % decade−1),
and Madras (+40 % decade−1); the Middle East, e.g.
Kuwait (+47 % decade−1), and Tehran (+37 % decade−1);
and Sao Paulo, Brazil (+40 % decade−1) whereas large
negative trends are found in Europe, e.g. northern Spain
(−45 % decade−1), and Po Valley (−52 % decade−1);
in the USA, e.g. New York (−48 % decade−1), Boston
(−42 % decade−1), Chicago (−52 % decade−1), Atlanta
(−47 % decade−1), and Los Angeles (−46 % decade−1);
and in Japan, e.g. Tokyo (−48 % decade−1), and Osaka
(−38 % decade−1). The yearly mean emissions for China
reveal a large positive trend from 2005 to 2011, subsequently
decreasing until 2014. For the USA and some parts of
Europe, the negative trends are larger during 2005–2010
than 2011–2014. These changes are more variable as a result
of the global economic recession and emission controls.
Despite the large year-to-year variations over many regions,
the global total emission is almost constant between 2005
(47.9 Tg N) and 2014 (47.5 Tg N).

The estimated emissions have great potential to contribute
to better understanding of precursor variability influences on
observed air-quality (e.g. tropospheric O3) variations and as-
sociated climate impacts. The obtained emission data are
also crucial for evaluating bottom-up inventories. The con-
sistent data set comprising emissions and concentrations of
various species, which were obtained from our simultane-
ous data assimilation framework, provides comprehensive in-
formation on atmospheric environmental variations, associ-
ated with both human and natural activity. Meanwhile, our
results suggested that more observational constraints would
be required to improve the global emission estimates. Ob-
servational information from future satellite missions such
as TROPOMI and sensors on board geostationary satellites
(Sentinel-4, GEMS, and TEMPO) in conjunction with ex-
ploitation of existing sounders, e.g. IASI and CrIS, can be
expected to add constraints on more detailed spatio-temporal
variability in surface NOx emissions and its impact on air
quality (Bowman, 2013).

7 Data availability

The surface NOx emission data can be downloaded at https:
//ebcrpa.jamstec.go.jp/~miyazaki/tcr/.

The Supplement related to this article is available online
at doi:10.5194/acp-17-807-2017-supplement.
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