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Abstract. We present a Monte Carlo genetic algorithm
(MCGA) for efficient, automated, and unbiased global op-
timization of model input parameters by simultaneous fitting
to multiple experimental data sets. The algorithm was devel-
oped to address the inverse modelling problems associated
with fitting large sets of model input parameters encountered
in state-of-the-art kinetic models for heterogeneous and mul-
tiphase atmospheric chemistry. The MCGA approach utilizes
a sequence of optimization methods to find and characterize
the solution of an optimization problem. It addresses an is-
sue inherent to complex models whose extensive input pa-
rameter sets may not be uniquely determined from limited
input data. Such ambiguity in the derived parameter values
can be reliably detected using this new set of tools, allowing
users to design experiments that should be particularly useful
for constraining model parameters. We show that the MCGA
has been used successfully to constrain parameters such as
chemical reaction rate coefficients, diffusion coefficients, and
Henry’s law solubility coefficients in kinetic models of gas
uptake and chemical transformation of aerosol particles as
well as multiphase chemistry at the atmosphere–biosphere
interface. While this study focuses on the processes outlined
above, the MCGA approach should be portable to any nu-

merical process model with similar computational expense
and extent of the fitting parameter space.

1 Introduction

Atmospheric aerosols play a key role in climate, air qual-
ity, and public health. Heterogeneous reactions and multi-
phase processes alter the physical and chemical properties
of organic aerosol particles, but the effects of these reactions
are not fully elucidated (e.g. Finlayson-Pitts, 2009; George
and Abbatt, 2010; Abbatt et al., 2012; Pöschl and Shiraiwa,
2015). While multiphase chemistry in aerosols and clouds
can be described by a sequence of well-understood physical
and chemical elementary processes in kinetic models (Han-
son et al., 1994; Pöschl et al., 2007; George and Abbatt,
2010), the deduction of parameters or rate coefficients of the
individual elementary processes is severely complicated by
the inherent coupling of chemical reactions and mass trans-
port processes (Kolb et al., 2010; Berkemeier et al., 2013;
Shiraiwa et al., 2014).

Heterogeneous chemical reactions on aerosol particles are
traditionally described using so-called resistor models, which
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represent parallel and sequential physical or chemical pro-
cesses in analogy to electrical circuits. These models have
typically been used to derive analytical expressions for sim-
plified limiting cases (e.g. Hanson et al., 1994; Worsnop et
al., 2002; Hearn et al., 2005). Recently, numerical models
have been developed that allow a more complete consider-
ation of the time- and depth-resolved chemical and physi-
cal behaviour of aerosol particles, leading to a better under-
standing of these reaction systems, especially under condi-
tions where the steady-state assumptions underlying the re-
sistor models are not valid (Smith et al., 2003; Pöschl et al.,
2007; Steimer et al., 2015; Berkemeier et al., 2016). Kinetic
multilayer models describe single particles or thin films by
division into compartments such as near-surface gas phase,
surface, and particle bulk and further subdivision of the par-
ticle bulk into thin layers to achieve depth resolution. Specific
models provide a focus on chemistry (KM-SUB, Shiraiwa et
al., 2010), on gas-particle partitioning (KM-GAP, Shiraiwa
et al., 2012, and ADCHAM, Roldin et al., 2014), or on water
diffusion (the ETH Diffusion Model, Zobrist et al., 2011).
For simplicity, throughout this paper we refer to a kinetic
model as any computational model that is used to simulate
a system’s behaviour. We will use the term input parameters
to address the prescribed model parameters (thermodynamic,
kinetic, or physical) that are optimized in this study so that
kinetic model output matches experimental data, a process
that we will refer to as fitting the kinetic model. Note that
this definition excludes model parameters that are clearly de-
fined by physical laws or the experiment (e.g. physical con-
stants and experimental conditions) or are of purely technical
nature (e.g. integration time steps).

Ideally, fitting a kinetic model to experimental data would
return all chemical and physical parameters necessary to un-
derstand the importance of the processes at work and to pre-
dict the outcome of future experiments, even if conducted
under experimental conditions not part of the training data
set, i.e. all experimental data used during the fitting process.
However, kinetic models often require a multitude of input
parameters, some of which are not constrained well experi-
mentally or are merely effective parameters combining a se-
quence of inherently coupled processes. In general, two main
difficulties arise when optimizing complex models to exper-
imental data:

1. The optimization hypersurface is often non-convex, i.e.
it will not have only a single minimum due to interac-
tions between non-orthogonal (coupled) input param-
eters and/or scatter in the experimental data. Hence,
steepest descent methods fail since they get trapped eas-
ily in local minima. Brute-force or exhaustive searches,
where an n-dimensional grid is applied to the input pa-
rameter space and the fit quality evaluated for every grid
point in all n dimensions, are often not computationally
feasible.

2. If too few or too similar experimental data are used dur-
ing the fitting process or input parameters are allowed
to move in a large range, the optimization problem can
be underdetermined (ill-defined) and multiple solutions
may exist. In this case, even though a good agreement
between model output and training data set is obtained,
it is likely that only the model input parameters corre-
sponding to the most limiting processes will be physi-
cally meaningful. Extrapolation of the model outside its
training range can then lead to strong discrepancies be-
tween modelled and measured data. For example, if a
model is trained using data that are exclusively limited
by a single process, it will constrain the parameters that
represent that specific process while the other parame-
ters remain nearly unconstrained even if multiple data
sets are used. This means that if a parameter set were
optimized using data from surface film experiments, the
bulk diffusion coefficients would likely be poorly con-
strained regardless of how many different experimental
data sets of that type were used.

Hence, sophisticated optimization methods, which quickly
and reliably determine the model input parameters that lead
to the best correlation between kinetic model and exper-
iment, are needed. Furthermore, experiments covering a
broad range of conditions must be conducted to ensure that
the observables are controlled by (a) as many model input
parameters as possible across all experimental conditions,
but (b) by as few model input parameters as possible for
a specific experimental condition (i.e. limiting cases). The
MCGA presented here is able to overcome the difficulty of
a complex optimization hypersurface with many local min-
ima while providing the user with a realistic assessment of
how well-constrained the model input parameters are by the
experimental data.

2 Monte Carlo genetic algorithm (MCGA)

In many modelling applications, methods are needed that re-
liably find the optimum in non-convex optimization prob-
lems and detect underdetermined optimization problems.
Global optimization methods have been subject of extensive
research in the past (Arora et al., 1995) and provide means
of approximating non-convex optimization problems with-
out premature convergence to local optima. Examples for
these methods are simulated annealing methods and evolu-
tionary algorithms. In atmospheric chemistry, simple opti-
mization techniques are commonly used to determine kinetic
parameters by fitting rate equations to experimental data sets.
However, to our knowledge no global optimization technique
diligently designed for the determination of atmospheric re-
action rate coefficients from multiple data sets has been de-
scribed thus far. A related technique (Markov chain Monte
Carlo algorithm) has been used to determine parametric un-
certainties in cloud–aerosol interaction models (Partridge et
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Figure 1. Schematic representation of the MCGA optimization method consisting of a Monte Carlo sampling, which feeds into a genetic
algorithm. Populations of model input parameter sets (blue boxes) are iteratively improved over several generations through survival of elites
(red boxes) and recombination and mutation of parents to create children (purple boxes) until a sufficient correlation to the experimental data
(goodness of fit) is obtained.

al., 2012; Lowe et al., 2016). Global optimization was also
used to calculate thermodynamic equilibria for phase separa-
tion of aqueous multicomponent solutions (Zuend and Sein-
feld, 2013).

In this study, we present the Monte Carlo genetic algo-
rithm (MCGA), a method combining direct Monte Carlo
sampling with a genetic algorithm as a heuristic global op-
timization method that approximates the global optimum for
input parameter sets of computational models. Repeated exe-
cution of the search algorithm can be used to test for unique-
ness or to provide statistical bounds on the model input pa-
rameters. The MCGA utilizes a two-step approach to find
minima on non-convex hypersurfaces. First, a Monte Carlo
(MC) sampling is performed in the large space of possible
model input parameters to narrow down the possible solu-
tion to smaller areas of interest. The parameter sets are eval-
uated using a goodness-of-fit expression of the user’s choice,
such as the RMSE between kinetic model output and exper-
imental data. In the examples presented here, the RMSE or
logarithmic RMSE was used. When multiple data sets were
fitted, a weighting factor was introduced to prevent bias due
to the number of data points in different experimental data
sets. An additional optional weighting factor allows the user
to assign priority to experimental data with lower statistical
error or scatter. The parameter sets for the MC sampling are
generated randomly from a distribution of the model input
parameters. Each parameter was sampled using a logarithmi-
cally spaced distribution of values to provide uniform sam-
pling over the large ranges most input parameters can pos-
sibly adopt. Note that, depending on the problem, different
distributions and sampling strategies (e.g. Latin hypercube
sampling) could be applied.

The genetic algorithm (GA) uses survival of the fittest to
optimize an ensemble (the population) of parameter sets (the
individuals) over several iterations (the generations). Pro-
cesses known from natural evolution such as survival, recom-
bination, mutation, and migration are mimicked to optimize

a population. The initial population is formed by the param-
eter sets with the best goodness of fit obtained in the MC
sampling step. An equal number of random parameter sets
are added to ensure diversity within the pool of parameter
sets and counteract sampling bias from shallow local minima
(Fig. 1).

During execution of the GA, a number of model input
parameter sets with the highest correlation between model
output and experimental data (goodness of fit) are directly
transferred into the next generation by the survival mech-
anism (the elites). The remaining population is generated
using combinations of parameters from the individuals in
the previous generation with moderate or better goodness of
fit (the parents), forming the children for the next genera-
tion. In this study, 5 % of the next generation are elite indi-
viduals, which are transferred with no changes, while 80 %
of the children are created by randomly choosing individ-
ual parameters (genes) from two selected parents with equal
weighting. The higher the goodness of fit of a certain individ-
ual, the higher its likeliness to be selected as a parent. This
way, parameters leading to high goodness of fit are positively
reinforced, leading to improvement and slow homogeniza-
tion of the population. Finally, 20 % of children are created
by applying a mutation scheme that alters parameters in a
stochastic manner within the prescribed bounds to enhance
genetic variability. Collectively, these mechanisms enable the
MCGA to overcome local minima, a crucial feature of a
global optimization method. Iteration of these steps even-
tually results in a homogeneous, optimized population and
the common parameter set is taken as a result. The MCGA
can be run multiple times to generate a set of representative
solutions, which has been the default approach in previous
applications of MCGA (see Sect. 4). With only a few (∼ 5–
10) repetitions, this procedure allows the user to assure full
convergence to the global optimum. In addition, the random
sampling of optimization space between different executions
of MCGA will generate statistical bounds on the parameters
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Figure 2. Schematic visualization of the parallelized MCGA opti-
mization method. The Monte Carlo step is performed independently
on N processors and the best-fitting parameter sets are fed along
with random parameter sets into the starting population. During the
genetic algorithm step, each processor extracts a number of param-
eter sets from the collective pool and performs a sub-evaluation of
the genetic algorithm on these parameter sets. After completion, the
optimized parameter sets are fed back into the pool, which always
contains a non-zero number of parameter sets as a reservoir. Af-
ter randomization, a different combination of parameter sets is ex-
tracted and the process is repeated.

if a sufficiently large number of repetitions is computation-
ally feasible.

In this study we used the genetic algorithm provided
by MathWorks® (MATLAB® Global Optimization Toolbox)
and developed a routine for parallel computation on com-
puter clusters. In a typical setting, the MC step and GA step
of the optimization occupied an approximately equal amount
of computation time. Figure 2 describes the implementation
of the parallel MCGA optimization method. The N parallel
threads share common populations of parameter sets that are
iteratively optimized by extracting a subset of parameter sets
and performing the genetic algorithm on this subset. Once
a sub-evaluation of the genetic algorithm has finished, the
parameter sets are mixed into the population, and after ran-
domization, a different subset of parameter sets is extracted
and their optimization is immediately continued. Since the
parallel threads will run asynchronously, a fraction of indi-
viduals must remain in the population to be mixed to enable
continuous operation without waiting times.

3 Implications for modelling and measuring chemical
kinetics

Although models may possess a multitude of kinetic and
thermodynamic input parameters that represent the many
possible sequential and/or concurrent processes occurring in
the system, their behaviour is often driven by only a sin-
gle or at most a few processes at a certain point in time. In

chemical kinetics, the behaviour of the system can often be
characterized by a kinetic regime, which may change during
the course of the reaction and with experimental conditions
(Berkemeier et al., 2013). If a set of model input parameters
can be uniquely determined (by MCGA or other means) and
results in a high-fidelity fit of model output to experimental
data, the parameters would then be regarded as correct within
the approximations of the underlying model and uncertain-
ties of the experimental data. This is a convenient way to
assimilate data from multiple previous studies; data sets can
be weighted to reflect confidence in their results, and the fi-
nal range of accepted parameters then represents a consensus
from the fitted data. However, it may not always be possible
to fully constrain the input parameters, even using multiple
experimental data sets. In general, there are two reasons that
a model input parameter can remain unconstrained after op-
timization.

i. The parameter is non-influential.

ii. The parameter is inherently coupled to another one,
forming a non-orthogonal parameter pair under all ex-
perimental conditions.

Figure 3 illustrates both cases in an example taken from
atmospheric multiphase chemistry, using the benchmark sys-
tem of ozone plus oleic acid and data adopted from Hearn
et al. (2005). The original data were converted from ozone
exposure to a time series using an ozone concentration of
2.76× 1015 cm−3. The MCGA was executed under a con-
strained parameter set in which only desorption lifetime and
surface reaction rate coefficient were allowed to vary. In
this scenario, repeated execution of MCGA returned multi-
ple solutions, for which the model output had nearly equiv-
alent goodness of fit with only slight variance between them
(Fig. 3a). In stark contrast to the uniform correlation between
model output and experimental data, Fig. 3b shows the high
variance within the model parameters yielding these solu-
tions (red markers), which scatter across a narrow valley of
the optimization hypersurface (contour lines). In the upper
portion of the figure, i.e. at desorption lifetimes larger than
10−4 s, a vertical relationship between both parameters indi-
cates that the desorption lifetime is a non-influential param-
eter and can take on any value in this interval, correspond-
ing to case (i) above. In the lower portion of the figure, i.e.
below a desorption lifetime of the diagonal relationship in-
dicates that an increase in one parameter can be compen-
sated with a decrease in the other parameter and both form
a non-orthogonal pair, corresponding to case (ii) above. For
comparison, Fig. 3c and d show examples of optimization
hypersurfaces from Berkemeier et al. (2016), who studied
multiphase ozonolysis of shikimic acid and investigated the
existence of non-orthogonal parameter pairs by varying op-
timized parameters (λi) by a factor f (λi) to depict the to-
tal residual as a 2-D contour map. Figure 3c shows that the
Henry’s law coefficient for ozone (Hcp,O3) and the product
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Figure 3. (a) Results from repeatedly fitting a kinetic model to a single experimental decay curve (adopted from Hearn et al., 2005). MCGA
was used to optimize two model parameters, a surface reaction rate coefficient and the desorption lifetime of the gas-phase oxidant. All
other model parameters remained fixed. (b) Visualization of the MCGA findings on the two-dimensional optimization hypersurface. The
hypersurface (contour lines represent the root mean square deviances) exhibits no unique minimum due to insufficiently broad experimental
data and optimization result (red diamonds) scatter along the extended minimum (black dashed line). Panels (c) and (d) show exemplary
optimization hypersurfaces with two parameters showing an elongated (c) or a distinct minimum (d). Panels (c) and (d) are reproduced from
Berkemeier et al. (2016) with permission from the PCCP Owner Societies.

of the bulk reaction rate coefficient (kBR) with the bulk dif-
fusivity of ozone (Db,O3) and the bulk-to-surface transport
coefficient of ozone (kbs,O3) are fully non-orthogonal. Fig-
ure 3d shows a single, well-defined optimum parameter set
for the effective molecular cross section of ozone (σO3) and
the desorption lifetime of ozone (τd,O3), indicating that these
parameters are fully orthogonal for the experimental data fit
in that study.

The prerequisite of a successful optimization is to fit a suf-
ficiently broad experimental data set so that a unique and ac-
curate set of fitting parameters is obtained. Thus, both of the
conditions above must be avoided. This may be achieved by
including additional experimental data, especially from a dif-
ferent experimental technique or over a different timescale
so that the system might sample another limiting behaviour.
In the data given in Fig. 3 above, for example, measuring
full time series at different oxidant concentrations may help
to constrain the oxidant’s desorption lifetime. However, if a
model has too many free parameters (or especially param-
eters that are not well-constrained by experimental data), it

may be necessary to reduce the model complexity or fix some
of the parameters. We therefore recommend using data sets
obtained from a range of different experimental techniques to
ensure this variability if they are available, and using models
with as few free parameters as possible.

In the example above, it was possible to use brute-force
sampling to determine the true optimization hypersurface
(contour lines) for comparison to the MCGA results. Of
course, in typical applications, the number and range of input
parameters makes such a search prohibitive. The computa-
tional feasibility of an optimization depends crucially on the
size of the input parameter space, i.e. number and possible
range of all parameters. Using an unreasonably large range
for input parameters increases the possibility of finding non-
physical solutions that fit the experimental data. The input
parameter space can be reduced based on a priori knowledge
from laboratory experiments and theoretical calculations. Pa-
rameters can be narrowed down by laboratory experiments
(e.g. bulk experiments for derivation of trace gas solubility),
by physics (e.g. the upper limit of the accommodation coef-
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Table 1. Previous studies applying the MCGA.

Study Reaction system

Berkemeier et al. (2013) Oleic acid + O3
Arangio et al. (2015) Levoglucosan and

abietic acid + OH
Kampf et al. (2015) Protein + O3
Hosny et al. (2016) Oleic acid + O3
Berkemeier et al. (2016) Shikimic acid + O3
Tong et al. (2016) OH formation by secondary or-

ganic aerosol
decomposition in water

Lakey et al. (2016a) Reactive oxygen species and
PM2.5 in lung lining fluid

Lakey et al. (2016b) Skin lipid (squalene) + O3

ficient at unity), or by simulations (e.g. molecular dynamics
simulations to estimate the surface accommodation coeffi-
cient and desorption lifetime as in Vieceli et al. (2005) and
Julin et al. (2013)). Note that in the example given in Fig. 3b,
the two parameters were not truly independent, so that con-
straining either model parameter from a priori information
would constrain the other parameter. In multi-parameter op-
timizations, where many such dependencies might exist, this
can lead to a significant reduction in solution space.

4 Application of MCGA in atmospheric multiphase
chemistry

The MCGA has been previously applied to chemical reac-
tion systems of atmospheric relevance (Table 1). The essen-
tial parameters we use to describe an atmospheric multiphase
chemical kinetic system of reactive trace gases X and bulk
material Y include chemical reaction rate coefficients at the
surface (kSLR) and in the bulk (kBR) of aerosol particles; bulk
diffusion coefficients of reactive trace gases (Db,X) and the
bulk matrix (Db,Y ); accommodation coefficients (αs,X) and
desorption lifetimes (τd,X) of trace gases to the particle sur-
face to determine transient and equilibrium adsorption be-
haviour; and equilibrium constants for the solubility of reac-
tive trace gases (Ksol,cc,X), typically expressed in terms of
Henry’s law coefficients (Hcp,X) (Pöschl et al., 2007; Am-
mann and Pöschl, 2007; Shiraiwa et al., 2010; Berkemeier et
al., 2013).

In its first application the MCGA was used to fit individual
data sets of the decay of oleic acid upon ozonolysis (Berke-
meier et al., 2013), highlighting the need for fitting to mul-
tiple experimental data sets to constrain kinetic parameters.
This was done in further studies that investigated gas uptake
to (semi-)solid organic material in coated-wall flow-tube re-
actors (Arangio et al., 2015; Berkemeier et al., 2016), ozone-
induced protein oligomerization in bulk solutions (Kampf et
al., 2015), viscosity change upon alkene ozonolysis as mea-

sured with fluorescence microscopy (Hosny et al., 2016), the
redox-cycling reactions in the human lung lining fluid (Lakey
et al., 2016a), and ozonolysis of squalene contained in hu-
man skin lipids (Lakey et al., 2016b). In each of these stud-
ies, a large set of model input parameters was optimized to
several experimental data sets to constrain the input parame-
ter space. In the following, we review results previously ob-
tained by the MCGA to demonstrate its utility in determining
kinetic parameters, assimilating large data sets, and detecting
ill-defined problems.

In Berkemeier et al. (2016), 11 parameters, under 12 dis-
tinct experimental conditions and using a single set of kinetic
parameters, were varied simultaneously to fit the ozone up-
take to shikimic acid films over many hours (Fig. 4). The
model was found to accurately describe the humidity- and
concentration-dependence of ozone uptake and a high cor-
relation between model output and experimental data was
achieved. During optimization, a subset of six parameters, in-
cluding diffusivity coefficients and trace gas solubility, was
allowed to increase or decrease monotonically over six steps
in relative humidity, resulting in a total of 41 optimized pa-
rameter values. Despite this large number of optimization pa-
rameters, a well-constrained parameter set could be obtained
due to the large depth in training data and by applying a priori
information.

In another study investigating the oxidation of biomass
burning tracers with hydroxyl radicals (Arangio et al., 2015),
repeated execution of MCGA revealed a remaining uncer-
tainty in the kinetic parameters obtained from optimization to
the two experimental data sets (Fig. 5). While some param-
eters could be narrowly constrained (diffusion coefficient of
the organic matrix,Dorg), others were subject to larger uncer-
tainties (surface layer reaction rate constant, kSLR; desorption
lifetime, τd). Note that while these parameters seem almost
unconstrained in Fig. 5, this uncertainty is due to the presence
of non-orthogonal parameter pairs. As detailed in Fig. 3 and
in Arangio et al. (2015), only specific combinations of the
non-orthogonal parameters will lead to agreement between
model and experiment. This knowledge can be used to con-
strain these parameters in further experiments.

5 Conclusions

The MCGA addresses the problem of extracting physical and
chemical parameters from experimental data. The algorithm
allows the user to assimilate multiple data sets and its random
sampling approach reduces the bias which may arise in more
user-directed optimization methods. Unlike simple gradient-
based optimization methods, MCGA can thus be used as a
statistical tool that not only detects unconstrained parame-
ters but also finds dependencies between unconstrained pa-
rameters. The results can be applied in process models and
may serve to direct future experimental studies, e.g. to drive
a reaction system into regimes in which the remaining uncon-
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PCCP Owner Societies.
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Figure 5. Kinetic parameters for multiphase chemical reactions
of OH with levoglucosan (white) and abietic acid (grey) deter-
mined by the MCGA method of fitting the experimental data with
the KM-GAP model. The ranges of parameters are depicted as
a box−whisker plot (the percentiles of 10, 25, 75, and 90 % are
shown). Reprinted with permission from Arangio et al. (2015).
Copyright 2015 American Chemical Society.

strained parameters have high sensitivity. MCGA could also
be used to constrain chemical reaction systems in the post-
analysis of field and laboratory studies: starting with a large

set of model input parameters (i.e. chemical reactions, phys-
ical processes), data from various measurement campaigns
could be combined, reconciled, and in a further step used to
reduce the number of model input parameters to the key pro-
cesses necessary to describe all measurement data. MCGA
may be a powerful and useful tool to constrain kinetic pa-
rameters and reaction rate coefficients in models that study
the formation of secondary organic aerosol in reaction cham-
bers (Chan et al., 2007; Shiraiwa et al., 2013; Cappa et al.,
2013; Riedel et al., 2016). It could be suitable for fine-tuning
of reaction rates in large reaction mechanisms of atmospheric
chemistry, such as the Master Chemical Mechanism (MCM;
Jenkin et al., 1997; Saunders et al., 2003), the Gas-Aerosol
Model for Mechanism Analysis (GAMMA; McNeill et al.,
2012), or the Chemical Aqueous Phase Radical Mechanism
(CAPRAM; Herrmann et al., 1999). Multiple experimental
data sets from a broad range of techniques could be used
with the algorithm to narrow down difficult-to-measure re-
action rate coefficients, provide uncertainty estimates, and
reconcile experiments across different research groups and
facilities.

Data availability. No data sets were used in this article.
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