Supplement of

Experimental determination of Henry's law constants of difluoromethane (HFC-32) and the salting-out effects in aqueous salt solutions relevant to seawater

Shuzo Kutsuna

Correspondence to: Shuzo Kutsuna (s-kutsuna@aist.go.jp)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

S1. Equilibrium time for the PRV-HS method experiments

Figure S1. Relative areas of GC-MS peaks for $\mathrm{CH}_{2} \mathrm{~F}_{2}$ versus headspace time duration for equilibration of $9.0 \mathrm{~cm}^{3}$ of aqueous $\mathrm{CH}_{2} \mathrm{~F}_{2}$ at 353 K .

S2. An example of the IGS method experiments

Figure S 2 shows an example of time profile of P_{t} and how to calculate the k_{1} value for the IGS method experiments. The k_{1} value at each time was calculated by fitting nearest three data of P_{t} for each time. The average of the k_{1} values is given as the k_{1} value for the experimental run. Two standard deviation of the k_{1} values gives errors of the k_{1} value for the experimental run.

Figure S2. An IGS experimental result for $V=0.350 \mathrm{dm}^{3}$ and $F=3.32 \times 10^{-4} \mathrm{dm}^{\mathbf{3}} \mathrm{s}^{\mathbf{- 1}}$ at $\mathbf{2 5} 5^{\circ} \mathrm{C}$. (upper panel) time profile of P_{t}; (lower panel) values of k_{1} calculated by fitting nearest three data of \boldsymbol{P}_{t} for each time with respect to Eq. (1).

S3. Results of the PRV-HS method experiments

Figure S 3 illustrates the results of a PRV-HS experiment at 313 K . In panel A, peak area $\left(S_{i j}\right)$ is plotted against the volume of the $\mathrm{CH}_{2} \mathrm{~F}_{2}$ gas mixture added $\left(v_{j}\right)$ for $V_{i}=9.0,7.5,6.0,4.5,3.0$, and $1.5 \mathrm{~cm}^{3}$. For each V_{i}, the data form a straight line intersecting the origin, indicating that $S_{i j}$ is proportional to v_{j} for vials with the same value of V_{i}. The slope $\left(L_{i}\right)$ of each

5 line is obtained by linear regression with respect to Eq. (8), and the reciprocal of the slope $\left(L_{i}^{-1}\right)$ is plotted against the phase ratio $\left(V_{i} / V_{0}\right)$ in panel B of Fig. S3. Plots of L_{i}^{-1} and V_{i} / V_{0} obey Eq. (9). Table S1 lists the values of L_{i}^{-1}, the slopes and the intercepts for linear regression with respect to Eq. (9), and the $K_{\mathrm{H}}(T)$ values calculated from the slopes and the intercepts. Two measurements of $K_{\mathrm{H}}(T)$ were carried out at each temperature.

Furthermore, the $K_{\mathrm{H}}(T)$ values, along with errors of them at 95% confidence level, were also estimated by non-liner
10 fitting of the two datasets simultaneously at each temperature by use of Eq. (11) (Fig. S4). The $K_{\mathrm{H}}(T)$ values and their errors thus estimated are plotted in Fig. 2 and are listed in Table S1.

Table S1. L_{i} values for various V_{i} / V_{0} ratios at various temperatures, slopes and intercepts for linear regression with respect to Eq. $(10), K_{H}(T)$ values calculated from the slopes and intercepts, and $K_{H}(T)$ values and the errors at 95% confidence level estimated by non-linear fitting the two datasets simultaneously at each temperature (Fig. S4) with respect to Eq. (11).

$\begin{gathered} T \\ (\mathrm{~K}) \end{gathered}$	L_{i} (a.u.) ${ }^{\text {a }}$						Eq. (10) Intercept	$\begin{aligned} & \text { Eq. (10) } \\ & \text { Slope } \end{aligned}$	$K_{\mathrm{H}}\left(\mathrm{M} \mathrm{atm}^{-1}\right)$		
	$V_{\mathrm{i}} / V=0.421$	0.351	0.280	0.210	0.140	0.070			Eq. (10)	Eq. $(11)^{\text {b, c }}$	Eq. (13) ${ }^{\text {b }}$
353	3.226 ± 0.002	3.270 ± 0.026	3.330 ± 0.004	3.391 ± 0.008	3.462 ± 0.014	3.526 ± 0.009	3.581	-0.870	0.026	0.027	0.028
	2.044 ± 0.006	2.050 ± 0.012	2.112 ± 0.010	2.132 ± 0.009	2.186 ± 0.021	2.209 ± 0.011	2.248	-0.513	0.027	$\begin{gathered} \pm 0.002 \\ (\pm 0.003) \\ \hline \end{gathered}$	± 0.003
343	3.000 ± 0.018	3.025 ± 0.009	3.070 ± 0.008	3.089 ± 0.015	3.117 ± 0.015	3.148 ± 0.018	3.179	-0.423	0.031		
	1.949 ± 0.004	1.955 ± 0.005	1.968 ± 0.003	1.998 ± 0.004	2.020 ± 0.002	2.030 ± 0.009	2.050	-0.258	0.031	$\begin{gathered} \pm 0.001 \\ (\pm 0.002) \end{gathered}$	± 0.002
333	3.247 ± 0.018	3.234 ± 0.018	3.243 ± 0.015	3.241 ± 0.010	3.247 ± 0.009	3.223 ± 0.013	3.231	0.034	0.037	0.036	
	3.080 ± 0.009	3.044 ± 0.006	3.082 ± 0.005	3.127 ± 0.009	3.113 ± 0.008	3.134 ± 0.014	3.149	-0.213	0.034	$\begin{gathered} \pm 0.003 \\ (\pm 0.004) \end{gathered}$	± 0.002
323	3.208 ± 0.011	3.190 ± 0.008	3.133 ± 0.010	3.134 ± 0.011	3.092 ± 0.008	3.093 ± 0.006	3.055	0.355	0.042	0.043	
	3.357 ± 0.010	3.289 ± 0.014	3.275 ± 0.005	3.233 ± 0.004	3.226 ± 0.016	3.160 ± 0.001	3.135	0.496	0.044	$\begin{gathered} \pm 0.002 \\ (\pm 0.004) \end{gathered}$	± 0.001
313	3.245 ± 0.018	3.185 ± 0.013	3.100 ± 0.015	3.022 ± 0.012	2.995 ± 0.012	2.915 ± 0.011	2.848	0.935	0.052	0.052	
	2.162 ± 0.031	2.134 ± 0.010	2.060 ± 0.014	2.029 ± 0.018	1.992 ± 0.010	1.925 ± 0.018	1.896	0.612	0.052	$\begin{gathered} \pm 0.003 \\ (\pm 0.005) \end{gathered}$	± 0.001

a. Errors are 2σ for the regression only.; b. Errors are those at 95% confidence level for the regression only.; c. Number in parenthesis represents both errors at 95% confidence level for the regression and potential systematic bias ($\pm 4 \%$).

Figure S3. Headspace GC-MS measurements for six series of test samples containing water (V_{i} in $\mathbf{c m}^{\mathbf{3}}$) to which a $\mathbf{C H}_{\mathbf{2}} \mathrm{F}_{\mathbf{2}}$-air mixture was added (v_{j} in cm^{3}) at $\mathbf{3 1 3} \mathrm{K}$. (a) Plot of peak area $\left(S_{i j}\right)$ versus v_{j} for test samples containing volume V_{i} of water. Slope $\left(L_{i}\right)$ was obtained by linear fitting of the data to Eq. (8) for samples of the same V_{i}. (b) Plot of L_{i}^{-1} versus V_{i} / V_{0} fitted to Eq. (10).

Figure S4. Plot of L_{i} versus V_{i} / V_{0} for the PRV-HS measurements at each temperature. Bold curves represent the simultaneous fitting of the two datasets at each temperature by Eq. (11).

S4. Determination of salting-out effects in artificial seawater

Figure S5. Plots of values of $F /\left(k_{1} R T V\right)$ against F at each temperature for $0.35 \mathbf{d m}^{3}$ of a-seawater at $\mathbf{4 . 4 5 2 \%}$. Error bars represent 2σ due to errors of values of k_{1} as described in Sect. S2. Grey symbols represent the data excluded for calculating the average.

Figure S6. Plots of values of $F /\left(k_{1} R T V\right)$ against F at each temperature for $0.35 \mathrm{dm}^{\mathbf{3}}$ of a-seawater at $\mathbf{8 . 9 2 1 \%}$. Error bars represent $\mathbf{2 \sigma}$ due to errors of values of k_{1} as described in Sect. S2. Grey symbols represent the data excluded for calculating the average.

Figure S7. Plots of values of $F /\left(k_{1} R T V\right)$ against F at each temperature for $0.35 \mathrm{dm}^{3}$ of a-seawater at $\mathbf{2 1 . 5 2 0 \%}$. Error bars represent 2σ due to errors of values of k_{1} as described in Sect. S2. Grey symbols represent the data excluded for calculating the average.

Figure S8. Plots of values of $F /\left(k_{1} R T V\right)$ against F at each temperature for $0.35 \mathrm{dm}^{\mathbf{3}}$ of a-seawater at 51.534%. Error bars represent 2σ due to errors of values of k_{1} as described in Sect. S2. Grey symbols represent the data excluded for calculating the average.

Figure S9. \log-log plots for $\ln \left(K_{H}(T) / K_{\text {eq }}{ }^{s}(T)\right)$ vs. salinity in a-seawater at each temperature. Bold lines represent the fitting obtained by a liner regression. Errors are those at $\mathbf{9 5 \%}$ confidence level for the regression only.

5 Table S2. Values of \boldsymbol{k}_{s} (Eq. (17)) and comparison of values of $K_{\text {eq }}{ }^{S}$ calculated at each temperature by Eq. (17) with those by Eq. (22).

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} k_{\mathrm{s}} \\ \left(\%{ }^{-1}\right) \end{gathered}$	[$K_{\text {eq }}{ }^{\text {S }}$ from Eq. (17) $] /\left[K_{\text {eq }}{ }^{\text {S }}\right.$ from Eq. (22) $]$			$\left[K_{\text {eq }}{ }^{\text {S }}\right.$ at $\left.30 \% 0\right] /\left[K_{\text {eq }}{ }^{\text {S }}\right.$ at 40\%o $]$	
		at 30%	at 35\%	at 40\%	Eq. (17)	Eq. (22)
3.0	0.00811	1.027	1.008	0.988	1.084	1.043
5.8	0.00785	1.033	1.014	0.995	1.082	1.042
10.5	0.00768	1.033	1.016	0.997	1.080	1.042
15.5	0.00718	1.044	1.028	1.012	1.074	1.041
20.3	0.00728	1.037	1.020	1.003	1.076	1.040
25.0	0.00704	1.040	1.024	1.008	1.073	1.039
29.9	0.00731	1.027	1.010	0.992	1.076	1.039
34.8	0.00713	1.029	1.012	0.995	1.074	1.038
39.5	0.00709	1.026	1.010	0.992	1.073	1.038

S5. Discussion of potential reason for this salting-out effect of $\mathbf{C H}_{2} \mathbf{F}_{\mathbf{2}}$ solubility in a-seawater (deviation from Sechenov relationship)

The reason that the salting-out effect of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ solubility in a-seawater depends on $S^{0.5}$ is not clear. Specific properties of $\mathrm{CH}_{2} \mathrm{~F}_{2}$-small molecular volume, which results in small work of cavity creation (Graziano, 2004; 2008), and large solute- solvent attractive potential energy in water and a-seawater- may cause deviation from Sechenov relationship. This possibility may be discussed here.

I calculate Ben-Naim standard Gibbs energy ΔG^{*}, enthalpy ΔH^{*}, and entropy ΔS^{*} changes for dissolution of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ in water because these values correspond to the values for the transfer from a fixed position in the gas phase to a fixed position in water. Values of $\Delta G^{*}, \Delta H^{*}$, and ΔS^{*} are calculated on the basis of the Ostwald solubility coefficient, $L(T)$, as follows.

$$
\begin{align*}
& \ln (L(T))=\ln \left(R T K_{\mathrm{eq}}{ }^{S}(T)\right) \tag{B1}\\
& \Delta G^{\cdot}=R^{\prime} T \ln (L(T)) \tag{B2}\\
& \Delta H^{\cdot}=-\frac{\partial}{\partial(1 / T)}\left(\frac{\Delta G^{\cdot}}{T}\right) \tag{B3}\\
& \Delta S^{*}=\frac{\Delta H^{\prime}-\Delta G^{\cdot}}{T} \tag{B4}
\end{align*}
$$

where both R and R^{\prime} represent gas constant but their units are different: $R=0.0821 \mathrm{in} \mathrm{atm} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} ; R^{\prime}=8.314 \mathrm{in} \mathrm{J} \mathrm{K}$ mol^{-1}.

Combining Eqs. (B1), (B2), (B3), and (B4) with Eqs. (14) and (15), $\Delta G^{*}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right), \Delta H^{*}\left(\mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right)$, and $\Delta S^{*}\left(\mathrm{~J} \mathrm{~mol}^{-1}\right.$ K^{-1}) are represented by $\Delta G_{\text {sol }}$ and $\Delta H_{\text {sol }}$ as follows:

$$
\begin{align*}
& \Delta G^{\prime}=\Delta G_{\text {sol }}+R^{\prime} T \ln (R T) \tag{B5}\\
& \Delta H^{\prime}=\Delta H_{\text {sol }}+R^{\prime} T \tag{B6}\\
& \Delta S^{\cdot}=\frac{\Delta H_{\text {sol }}-\Delta G_{\text {sol }}}{T}+R^{\prime}-R^{\prime} \ln (R T) \tag{B7}
\end{align*}
$$

Values of $\Delta G^{*}, \Delta H^{*}$, and ΔS^{*} calculated at 298 K are listed in Table S3. Table S3 also lists values of $\Delta G^{*}, \Delta H^{*}$, and ΔS° reported for $\mathrm{CH}_{3} \mathrm{~F}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ (Graziano, 2004) and CH_{4} (Graziano, 2008) at 298 K . The chemicals, which having a methyl group, in Table S 3 are classified into two groups $\left(\mathrm{CH}_{2} \mathrm{~F}_{2}\right.$ and $\mathrm{CH}_{3} \mathrm{~F} ; \mathrm{CH}_{4}$ and $\left.\mathrm{C}_{2} \mathrm{H}_{6}\right)$ according to ΔG^{*}.

Table S3 lists values of $\Delta G_{\mathrm{c}}, E_{a}$ and ΔH^{h} deduced using a scaled particle theory (Granziano, 2004; 2008). ΔG_{c} is the work of cavity creation to insert a solute in a solvent. E_{a} is a solute-solvent attractive potential energy and accounts for the solute-solvent interactions consisting of dispersion, dipole-induced dipole, and dipole-dipole contributions. ΔH^{h} is enthalpy of solvent molecules reorganization caused by solute insertion. The solvent reorganization mainly involves a rearrangement of H-bonds.
ΔG_{c} is entropic in nature in all liquids, being a measure of the excluded volume effect due to a reduction in the spatial configurations accessible to liquid molecules upon cavity creation. Hence, $\mathrm{C}_{2} \mathrm{H}_{6}$ has larger value of ΔG_{c} than $\mathrm{CH}_{3} \mathrm{~F}$ and CH_{4}. $\Delta G_{\mathrm{c}}, E_{a}$, and ΔH^{h} are related to ΔG^{*} and ΔH^{*} as follows (Graziano, 2008):

$$
\begin{align*}
& \Delta G^{\cdot}=\Delta G_{\mathrm{c}}+E_{a} \tag{B8}\\
& \Delta H^{\cdot}=E_{a}+\Delta H^{h} \tag{B9}
\end{align*}
$$

Table S3 thus suggests that smaller value of ΔG^{*} of $\mathrm{CH}_{3} \mathrm{~F}$ than CH_{4} is due to large solute-solvent attractive potential energy $\left(-E_{a}\right)$ of $\mathrm{CH}_{3} \mathrm{~F}$.

Table S3. Ben-Naim standard hydration Gibbs energy ΔG^{*}, enthalpy ΔH^{*}, and entropy ΔS^{*} changes for dissolution of $\mathbf{C H}_{2} \mathrm{~F}_{2}$ at 298 K determined here and the corresponding values and values of $\Delta G_{c}, E_{a}$ and ΔH^{h} reported for $\mathrm{CH}_{3} F$ and $C_{2} H_{6}$ (Granziano, 2004) and CH_{4} (Graziano, 2008).

	ΔG^{*} $\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	ΔH^{\cdot} $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	ΔS^{*} $\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$	ΔG_{c} $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	E_{a} $\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	ΔH^{h} $\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\mathrm{CH}_{2} \mathrm{~F}_{2}$	-1.1	-14.7	-45.4			
$\mathrm{CH}_{3} \mathrm{~F}$	-0.9	-15.8	-50.0	23.3	-24.3	8.5
CH_{4}	8.4	-10.9	-64.7	22.9	-14.5	3.7
$\mathrm{C}_{2} \mathrm{H}_{6}$	7.7	-17.5	-84.5	28.4	-20.7	3.2

Graziano (2008) definitively explained the salting-out of CH_{4} by sodium chloride at molecular level on the basis of a scaled particle theory. He explained that ΔG_{c} increase was linearly related to the increase in the volume packing density of the solutions $\left(\xi_{3}\right)$ with adding NaCl . Such an increase of ΔG_{c} is probably the case for salting-out of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ by a-seawater observed in this study. He also explained that E_{a} was linearly related to the increase in ξ_{3} assuming that a fraction of the dipole-induced dipole attractions could be taken into account by the parameterization of the dispersion contribution.

I think the possibility that E_{a} may be nonlinearly related to the increase in ξ_{3} because of dipole-dipole interaction between $\mathrm{CH}_{2} \mathrm{~F}_{2}$ and solvents. Temperature dependence in Eq. (22) suggests that salting-out effect of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ by a-seawater is enthalpic. Eqs. (22) and (B9) thus suggests that the salting-out of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ is mostly related to change in $E_{a} . \mathrm{CH}_{2} \mathrm{~F}_{2}$ has relatively small value of ΔG_{c} because of its small molecular volume compared to other chemicals such as $\mathrm{C}_{2} \mathrm{H}_{6}$. Accordingly, ΔG^{\cdot}, that is, solubility of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ would depend on E_{a} rather than ΔG_{c}. Therefore, I think that specific properties of $\mathrm{CH}_{2} \mathrm{~F}_{2}-$ small molecular volume, which results in small work of cavity creation (Graziano, 2004; 2008), and large solute-solvent attractive potential energy in water and a-seawater- may cause deviation from Sechenov relationship.

References

Graziano, G.: Case study of enthalpy-entropy noncompensation. Journal of Chemical Physics, 120, 4467-4471, doi: 10.1063/1.1644094, 2004.

Graziano, G.: Salting out of methane by sodium chloride: A scaled particle theory study. Journal of Chemical Physics, 129, 084506, doi: 10.1063/1.2972979, 2008.

S6. Estimated results (Sect. 3.3) for monthly amount of $\mathbf{C H}_{2} \mathbf{F}_{2}$ dissolved in the ocean mixed layer at solubility equilibrium with the atmospheric $\mathrm{CH}_{2} \mathrm{~F}_{2}(1 \mathrm{patm})$ and the depth distribution of the $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in each semihemisphere

Table S4. Monthly amount of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the ocean mixed layer at solubility equilibrium with the atmospheric $\mathbf{C H}_{2} \mathrm{~F}_{2}$ (partial pressure, 1 patm) and the depth distribution of the $\mathbf{C H}_{2} \mathbf{F}_{2}$ dissolved in the southern semi-hemisphere ($90^{\circ} \mathbf{S - 3 0} \mathbf{~ S}$).

	Amount $\left(\mathrm{Gg} \mathrm{patm}^{-1}\right)$	Distribution of the amount of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the ocean mixed layer with respect to the ocean mixed layer depth (\%)					
		10-100 m	100-200 m	200-300 m	300-400 m	400-500 m	500-600m
January	0.0169	94.9	2.9	1.0	0.5	0.3	0.3
February	0.0201	92.1	3.6	2.9	1.0	0.3	0.0
March	0.0255	87.8	9.2	1.7	0.7	0.2	0.4
April	0.0338	66.5	31.8	1.1	0.2	0.1	0.2
May	0.0409	48.5	48.1	2.2	0.8	0.3	0.0
June	0.0510	26.8	62.7	8.0	1.7	0.8	0.1
July	0.0571	14.1	69.3	12.2	3.3	0.9	0.1
August	0.0640	8.5	65.8	17.0	6.2	2.3	0.2
September	0.0609	13.5	61.0	14.6	8.2	2.7	0.0
October	0.0504	24.7	58.6	12.1	2.9	1.4	0.3
November	0.0335	60.4	30.5	4.6	2.2	2.3	0.1
December	0.0196	95.1	4.3	0.4	0.2	0.0	0.0

Table S5. Monthly amount of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the ocean mixed layer at solubility equilibrium with the atmospheric $\mathbf{C H}_{2} \mathrm{~F}_{2}$ (partial pressure, $1 \mathbf{p a t m}$) and the depth distribution of the $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the southern semi-hemisphere ($\mathbf{3 0}{ }^{\circ} \mathrm{S}-\mathbf{0}^{\circ} \mathrm{S}$).

	Amount $\left(\mathrm{Gg} \mathrm{patm}^{-1}\right)$	Distribution of the amount of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the ocean mixed layer with respect to the ocean mixed layer depth $(\%)$					
		$10-100 \mathrm{~m}$	$100-200 \mathrm{~m}$	$200-300 \mathrm{~m}$	$300-400 \mathrm{~m}$	$400-500 \mathrm{~m}$	$500-600 \mathrm{~m}$
January	0.0084	99.6	0.4	0	0	0	0
February	0.0084	99.7	0.3	0	0	0	0
March	0.0089	100.0	0	0	0	0	0
April	0.0106	100.0	0	0	0	0	0
May	0.0131	100.0	0	0	0	0	0
June	0.0163	97.1	2.9	0	0	0	0
July	0.0189	80.1	19.9	0	0	0	0
August	0.0193	73.1	26.9	0	0	0	0
September	0.0165	82.2	17.8	0	0	0	0
October	0.0124	94.6	5.4	0.1	0	0	0
November	0.0097	99.9	100.0	0	0	0	0
December	0.0087			0	0	0	

Table S6. Monthly amount of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the ocean mixed layer at solubility equilibrium with the atmospheric $\mathbf{C H}_{2} \mathrm{~F}_{\mathbf{2}}$ (partial pressure, $1 \mathbf{p a t m}$) and the depth distribution of the $\mathbf{C H}_{2} \mathbf{F}_{2}$ dissolved in the northern semi-hemisphere ($0^{\circ} \mathbf{N - 3 0}{ }^{\circ} \mathbf{N}$).

	Amount $\left(\mathrm{Gg} \mathrm{patm}^{-1}\right)$	Distribution of the amount of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the ocean mixed layer with respect to the ocean mixed layer depth (\%)					
		$10-100 \mathrm{~m}$	$100-200 \mathrm{~m}$	$200-300 \mathrm{~m}$	$300-400 \mathrm{~m}$	$400-500 \mathrm{~m}$	$500-600 \mathrm{~m}$
January	0.0132	96.4	3.6	0	0	0	0
February	0.0126	95.9	4.1	0	0	0	0
March	0.0107	98.7	1.3	0	0	0	0
April	0.0087	99.8	0.2	0	0	0	0
May	0.0079	100.0	0	0	0	0	0
June	0.0080	100.0	0	0	0	0	0
July	0.0084	100.0	0	0	0	0	0
August	0.0082	100.0	0	0	0	0	0
September	0.0080	100.0	0	0	0	0	0
October	0.0086	100.0	0	0	0	0	0
November	0.0100	100.0	0	0	0	0	0
December	0.0118	100.0		0	0	0	

5 Table S7. Monthly amount of $\mathbf{C H}_{2} \mathbf{F}_{2}$ dissolved in the ocean mixed layer at solubility equilibrium with the atmospheric $\mathbf{C H}_{2} \mathbf{F}_{2}$ (partial pressure, $1 \mathbf{p a t m}$) and the depth distribution of the $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the northern semi-hemisphere ($\mathbf{3 0 ^ { \circ }} \mathbf{N - 9 0}{ }^{\circ} \mathbf{N}$).

	Amount $\left(\right.$ Gg patm $\left.^{-1}\right)$	Distribution of the amount of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ dissolved in the ocean mixed layer with respect to the ocean mixed layer depth $(\%)$					
		$10-100 \mathrm{~m}$	$100-200 \mathrm{~m}$	$200-300 \mathrm{~m}$	$300-400 \mathrm{~m}$	$400-500 \mathrm{~m}$	$500-600 \mathrm{~m}$
January	0.0205	41.3	50.1	7.0	1.4	0.2	0.0
February	0.0225	34.5	55.3	7.1	2.3	0.6	0.2
March	0.0208	49.7	42.3	4.9	1.7	0.7	0.6
April	0.0147	79.7	17.6	1.7	0.4	0.0	0.6
May	0.0081	90.1	9.9	0	0	0	0
June	0.0055	97.7	2.3	0	0	0	0
July	0.0045	96.6	3.4	0	0	0	0
August	0.0048	94.4	5.6	0	0	0	0
September	0.0059	97.7	2.3	0	0	0	0
October	0.0084	99.6	0.4	0	0	0	0
November	0.0121	89.6	10.4	0.1	0	0	0
December	0.0163	71.0	26.1	2.9	0	0	

