

Supplement of

Sensitivity of local air quality to the interplay between smalland large-scale circulations: a large-eddy simulation study

Tobias Wolf-Grosse et al.

Correspondence to: Tobias Wolf-Grosse (tobias.wolf@nersc.no)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

S1 Description of the modifications to PALM for the treatment of heterogeneous surface boundary conditions

The heterogeneous fields for H_s and T_s are specified via separate ASCII files, containing arrays with the same dimension as the computational domain (*Maronga and Raasch* (2013), Björn Maronga personal communication). The files are read into the model in the beginning of each simulation. The arrays contain the value 1 if a specific heat flux or surface temperature

5 should be used for the corresponding model grid-cell and 0 otherwise. The values of H_s and T_s for all grid-cells are then prescribed for a freely chosen number of times during the run via a separately read ASCII list. The use of mixed BC is reached by running the model with the Dirichlet BC and correcting H_s back to the prescribed value over the land surface area for every time step, including a correction of the calculation of the friction velocity and temperature in the Prandtl layer routine. At each grid-point, either H_s or T_s have to be prescribed.

10

S2 Second order statistics from resolution sensitivity runs.

The vertical kinematic heat fluxes are calculated for two sub-areas of the computational domain, over the fjord and over the valley land surface (Fig. S1). The area over the fjord for case 3 shows a well developed convective ABL (Fig. S2). The subgrid-scale heat flux decreases rapidly over the fjord surface and is already smaller than the resolved-scale flux at the first

- 15 vertical level above the surface centred at 5 m height. Over the valley land surface the subgrid-scale fluxes are decaying fast as well but the signal does not show a clearly developed inversion ABL. The reason for this is that the surface is not flat like over the fjord. Only 1 % of area 2 has a surface elevation of 0 m. The most frequent surface elevation in area 2 is 30 m with 38 % prevalence. The highest surface elevation is 60 m with 1 % prevalence again. For the higher/lower resolution simulations the distribution of surface height is slightly different dependent on the discretisation of the surface height within
- 20 PALM. This also makes a comparison of the simulations with different resolutions difficult. Over the fjord, the profiles with the three different resolutions are similar above 50 m height with some minor differences in the fluxes below. Over the land fraction there is a distinct difference in the minimum of the resolved-scale heat fluxes possibly due to the different surface heights. Above 100 m, however, the profiles are fully collapsed on top of each other for the simulations with 5 and 10 m resolution, whereas they remain different for the lowest resolution of 20 m. This indicates that a 10 m resolution can be seen
- as a reasonable compromise between the highest possible resolution and computational costs, whereas a resolution of 20 m might be too low, especially also when considering the shallow inversions that are to be resolved.

Fig. S2: Vertical heat fluxes over the fjord (left panel) and the valley surface (right panel) as indicated in Fig. S1. Run 1 refers to the baseline simulation Case 3. Run 2 refers to a test-simulation with the same setup but double resolution (5 m). The variables w"pt" and w*pt* are the subgrid- and resolved-scale heat fluxes and wpt are the total heat fluxes.

