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Abstract. A simultaneous analysis of 13 years of remotely
sensed data of land cover, fires, precipitation, and aerosols
from the MODIS, TRMM, and MISR satellites and the
AERONET network over Southeast Asia is performed, lead-
ing to a set of robust relationships between land-use change
and fire being found on inter-annual and intra-annual scales
over Southeast Asia, reflecting the heavy amounts of anthro-
pogenic influence over land-use change and fires in this re-
gion of the world. First, we find that fires occur annually,
but with a considerable amount of variance in their onset,
duration, and intensity from year to year, and from two sep-
arate regions within Southeast Asia. Second, we show that
a simple regression model of the land-cover, fire, and pre-
cipitation data can be used to recreate a robust representa-
tion of the timing and magnitude of measured aerosol opti-
cal depth (AOD) from multiple measurements sources of this
region using either 8-day (better for onset and duration) or
monthly (better for magnitude) measurements, but not daily
measurements. We find that the reconstructed AOD matches
the timing and intensity from AERONET measurements to
within 70 to 90 % and the timing and intensity of MISR
measurements to within 50 to 95 %. This is a unique find-
ing in this part of the world since cloud-covered regions are
large, yet the model is still robustly capable, including over
regions where no fires are observed and hence no emissions
would be expected to contribute to AOD. Third, we deter-
mine that while Southeast Asia is a source region of such
intense smoke emissions, portions of it are also impacted by
smoke transported from other regions. There are regions in
northern Southeast Asia which have two annual AOD peaks,
one during the local fire season and the other, smaller peak
corresponding to a combination of some local smoke sources

as well as transport of aerosols from fires in southern South-
east Asia and possibly even from anthropogenic sources in
South Asia. Overall, this study highlights the importance of
taking into account a simultaneous use of land-use, fire, and
precipitation for understanding the impacts of fires on the at-
mospheric loading and distribution of aerosols in Southeast
Asia over both space and time. Furthermore, it highlights that
there are significant advantages of using 8-day and monthly
average values (instead of daily data) in order to better quan-
tify the magnitude and timing of Southeast Asia fires.

1 Introduction

Southeast Asia has been experiencing major haze events over
the past three to 5 decades due to a combination of in-
creased urbanization (Cohen and Wang, 2014; Cohen and
Prinn, 2011) and large-scale conversion of forests by fire
(Cohen, 2014; van der Werf et al., 2008; Taylor, 2010; Den-
nis, 2005). The underlying connections and mechanisms re-
lating the sources and strength of fire-based emissions and
observed intra-annual, inter-annual, and inter-decadal varia-
tions of fire events, with meteorology, land-use change, and
anthropogenic driving factors, are not well understood (van
der Werf et al., 2006; Giglio et al., 2006; Hansen et al., 2008;
Field et al., 2009). Moreover, recent studies have shown that
the impacts these events have on the atmospheric loading of
aerosols and the larger climate are becoming greater in both
absolute terms and frequency (Langmann et al., 2009; Naka-
jima et al., 1999; Podgorny et al., 2003; Rosenfeld, 1999).
Some of the heaviest events, which previously in the lit-
erature were only associated only with strong El Niño in-
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duced drying events, are now being found to occur in con-
nection with other, less extreme impacts on precipitation and
even surface moisture, occurring at various scales includ-
ing but not limited to the Indian Ocean Dipole (IOD), the
Madden–Julian Oscillation (MJO), the shifting of the In-
tertropical Conversion Zone, mountain-induced waves, the
land–sea breeze, and localized convection (Fuller and Mur-
phy, 2006; Wooster et al., 2012; Natalia Hasler and Avissar,
2009; Reid et al., 2013). The fact that so many factors are
capable of influencing these large-scale events is likely to
make prediction much more challenging, as is seen by the
fact that since 2000, there were extreme events of varying in-
tensity, length, and duration occurring in 2002, 2004, 2006,
2009, 2013, and 2014 in southern Southeast Asia, the region
covering Indonesia, Malaysia, Singapore, and Brunei and ev-
ery year except 2003 in northern Southeast Asia, the region
covering Thailand, Myanmar, Cambodia, Vietnam, and Laos
(Neale and Slingo, 2003; Chang et al., 2005; Aldrian et al.,
2007; Cohen, 2014; Wooster et al., 2012). To date, other than
Cohen (2014), there have been no other studies that have
looked at Southeast Asian fires both robustly and holistically
to the extent of being able to reproduce both the extreme and
low levels of aerosols at both the monthly and the decadal
scale. Furthermore, other than Cohen (2014) and Cohen and
Wang (2014) there are no works that have been able to sat-
isfactorily estimate the emissions of aerosols over this re-
gion of the world, from the fundamentals and over the entire
time period, without scaling or other statistical enhancement
techniques to match with atmospheric column measurements
such as aerosol optical depth (AOD) and absorbing aerosol
optical depth (AAOD).

Knowledge of the spatial and temporal distribution and
the magnitude of the emissions and atmospheric loadings
is essential for our improved understanding of the environ-
mental impacts of the fires. Emissions of aerosols and gases
from these fires include significant sources of black carbon
(BC), organic carbon (OC), and ozone and therefore con-
tribute greatly towards impacting human health (Afroz et al.,
2003), atmospheric radiative forcing (Wang, 2007; Jacobson,
2001; Ming et al., 2010; Ramanathan and Carmichael, 2008;
Cohen et al., 2011), and cloud and precipitation properties
(Huang et al., 2006; Tao et al., 2012; Wang, 2013). Further-
more, given the general circulation of the Earth and the lack
of precipitation during the dry season in the tropics, coupled
with intense localized convection, a large portion of the emit-
ted pollutants will spread widely in space and time, enter-
ing into the global-scale circulation patterns (Wang, 2007).
Therefore, emissions from these regions during these times
of the year may have a significant impact on people and the
environment thousands of kilometers away from their source.

AOD can be used to quantify the emissions from the fires,
since it is the non-dimensional vertical integral of the atmo-
spheric extinction (the sum of scattering and absorbance)
of solar radiation due to aerosols. AOD is useful since it
can be measured by a combination of land-based and space-

borne instruments (Holben et al., 1998; Petrenko et al., 2012;
Dubovik et al., 2000). The extinction is a function of the ver-
tical aerosol mass and size distributions as well as chemical,
physical, and optical properties. These values in turn are a
function of the emissions and gasses from fires and other var-
ious anthropogenic sources, in situ processing, washout from
precipitation, and atmospheric transport. Hence, the emis-
sions of primary BC and OC from these fires, coupled with
other secondary species, has a functional relationship with
the change in the AOD, which otherwise would not have oc-
curred over these fire regions and downwind, at these specific
times, if the fires were not present.

This paper uses these relationships and goes one step
further to make the link between measurements of land-
use change and fires directly with the atmospheric column
measurements, with fires the intermediary step between the
two. This is because rapid conversion of forests, agricultural
lands, and associated waste products by burning is one of
the primary sources of aerosols throughout Southeast Asia
(Langmann et al., 2009; Miettinen et al., 2013). However,
little is known about the exact spatial and temporal distribu-
tion of these fires (Fu et al., 2012; Chen et al., 2016; Zhou
et al., 2016). Furthermore, the inter-annual and intra-annual
variability of biomass burning and its associated underlying
mechanisms are also not well understood or constrained by
measurements, leading to the current poor understanding of
fires impact on the local and global aerosol climatology (van
der Werf et al., 2006). Furthermore, Southeast Asia is of-
ten covered with clouds, which further complicates detect-
ing both fire and the pollution that comes from it (Miettinen
et al., 2013; Giglio et al., 2006; Remer et al., 2013). A few
studies have looked at this and give estimates that the emis-
sions are underestimated, up to a factor of 4 times (Giglio et
al., 2003, 2006; Petrenko et al., 2012; Cohen, 2014; Cohen
and Wang, 2014).

Given that large-scale fires lead to abrupt and definitive
changes in the vegetative properties, we employ a set of
measures of land-surface properties which have a long time
record, such as LAI (leaf area index), NDVI (normalized dif-
ference vegetation index), and the number of 1 km by 1 km
pixels with a measured fire (fire count). While we know that
some changes may be masked, obscured, or otherwise miss-
ing, any observed abrupt changes in these variables or the
land’s properties itself must be linked at a minimum with any
observed changes in the AOD itself. Moreover, since the on-
set and the offset on the Asian Monsoon control the start and
end of the fire seasons by rapidly changing from relatively
dry to intensely wet and vice versa (Hansen et al., 2008),
large-scale changes in the monthly scale precipitation is a
proxy for the ability of the fires to occur, as well as washout
of aerosols. Therefore, precipitation is also intimately linked
with measured AOD over Southeast Asia. This is even more
important given that there are only very few studies that have
been able to quantify emissions over this region successfully
over the decadal scale without resorting to statistical scaling,
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in relation to measured AOD and AAOD. Furthermore, the
few emissions datasets that have been made are not capable
of working at a higher frequency than monthly. Additionally,
they have not been directly linked to the changes in the land-
surface properties that should be driving them (Cohen and
Wang, 2014; Cohen, 2014).

2 Data and methods

Several remotely sensed and surface measurements of the
surface land properties (LAI and NDVI), the number of ac-
tive fires (fire count), aerosol (AOD), and precipitation (rain-
fall) are used in this study. These are used in conjunction
with advanced analytical procedures to determine the regions
which contribute the most to the variance of the impact of
fires on the atmosphere loading of aerosols as observed by
the AOD. This analysis, in addition to its own results, leads
to the production of a simple statistical multiyear constrained
model, which is shown to be capable of reproducing the AOD
as a function of the land-use, fire, and precipitation measure-
ments, even in additional years, and even as tested against
measurements of AOD from different sources. All of the de-
tails of the measurements used, the procedures and methods
employed, and the statistical and analytical techniques em-
ployed are detailed below.

2.1 Geography

The domain of interest for this study is Southeast Asia, which
we define here as the region spreading from 90 to 130◦ E in
longitude and from 14◦ S to 23◦ N in latitude (see Fig. 1).
The subregion defined as northern Southeast Asia is defined
by mostly large continental land masses and a single wet sea-
son each year, and consists of Thailand, Myanmar, Cambo-
dia, Laos, Vietnam, and parts of southern Greater China. The
subregion defined as southern Southeast Asia is defined by
a mixture of land and water, has two wet seasons each year,
and consists of Malaysia, Indonesia, Brunei, and Singapore.
Maps of the fires in January 2013 and September 2013 re-
spectively are given in Supplement Figs. S6 and S7.

2.2 Measured data

For the basic remotely sensed measurements used in the anal-
ysis, model construction, and results, we use remotely sensed
variables from the MODIS instrument on both the TERRA
and AQUA satellites. Measurements of AOD (Levy et al.,
2013) are from Collection 6, Level 2 product, swath by swath
at 0.55 µm, and consist of both over land and over ocean,
cloud-cleared pixels, measured daily with a spatial resolu-
tion of 10 km by 10 km at nadir. Each swath of only quality-
controlled pixels of AOD data, from 1 January 2001 through
31 December 2013, has been interpolated onto a consistent
and standardized 0.1◦ by 0.1◦ square grid.

Figure 1. Domain with the two EOF regions highlighted and the
location of the AERONET stations.

It has been shown that there is an slightly biased
uncertainty in the measurement of AOD of −0.02–
0.10×AOD to +0.04+ 0.1×AOD over the ocean and
±0.05+ 0.15×AOD over the land (Levy et al., 2013; Sayer
et al., 2012). However, over this region, the magnitude of the
“noisy floor” is small compared to the linear term, given that
the AOD in polluted regions goes as high as 1.5 to 2.0. While
this linear term seems to not be too small, it is actually quite
small compared to the difference between the peaks and the
troughs as obtained by the variance maximizing technique.
Additionally, as shown by Cohen and Wang (2014) and oth-
ers, this error is sufficiently small as to not impact the end
results, especially when compared with the uncertainties in
the current best-generation of models and the dynamics of
the atmosphere itself. In these cases, the models tend to be
lucky to obtain measurements within a 20 to 30 % range of
the measurements and often perform more poorly than this
(e.g., Cohen and Prinn, 2011; Cohen and Wang, 2014). AOD
is a measure of the vertical sum of the extinction of sun-
light (scattering plus absorption) through the atmosphere due
to aerosol particles, and it therefore is a function of the at-
mospheric loading of aerosols, washout from precipitation,
and the vertical, size, and optical properties of the aerosols.
Hence, there is a physical relationship between measured
changes in AOD and the emissions and subsequent in situ
atmospheric processing of aerosols. It has been shown that
strong spatial and temporal variability in AOD measurements
over this part of the world are due to biomass burning from
this region of the world, while large measurements of AOD
which mostly only co-vary with precipitation (washout) are
more consistent with urban emissions (Cohen, 2014; Cohen
and Wang, 2014).
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To estimate the land-surface and fire responses we also
use the measured values of LAI, NDVI, and fire count from
MODIS (Nightingale et al., 2008; Yang et al., 2006; Huete et
al., 1999; Giglio et al., 2003). Measurements of LAI and fire
count (Collection 5.1, Level 2 product) are made on an 8-day
average basis at 1 km by 1 km horizontal resolution, while
for NDVI the measurements are on a 16-day average basis at
1 km by 1 km horizontal resolution. Each product is then ag-
gregated onto the same consistent and standardized 0.1◦ by
0.1◦ square grid used for the AOD. All measurements only
use data which have been quality assured to be cloud free.
However, in this region, there are some optically thin clouds
that will not be picked up, and this may significantly bias
the measurements of fire count, which are inherently based
on IR measurements, but should not be as impacting on LAI
and NDVI, which both depend mostly on measurements in
the visible bands.

LAI is chosen since it represents the amount of leaf ma-
terial in an ecosystem and hence is useful both for identify-
ing if there were a sudden change in the amount of vegeta-
tion available and its condition (Asner et al., 2003), such as
expected after leaves are consumed in a fire. It is geomet-
rically defined as the total one-sided area of photosynthetic
tissue per unit ground surface area. LAI values are 0 for bare
ground, 1 to 4 for grassland and crops, 5 to 9 for plantations,
and as high as 10 for dense conifer forests. One of the large
drawbacks of using LAI in this region of the world is that it
is hard to analyze the variance in the LAI over areas that are
used for non-forest agriculture. This is because the LAI is
considerably lower than the tropical primary and secondary
forests. Hence, after a burning event, the absolute magnitude
of the LAI and hence the amount of variance is lower. How-
ever, this is the more robust land-surface variable, given that
it uses many of the wavebands from MODIS. For this reason,
the variance in the LAI is most helpful in determining defor-
estation from fire, particularly in regions which are not found
to have hotspots.

Fire count determines how many of the pixels within the
area have an active fire. It is based on a two factors: first,
whether there is a sufficient amount of infrared emissions to
determine that there is an absolute detection of a fire of suf-
ficient strength; second, whether the detected surface tem-
perature is sufficiently variable as compared to the surround-
ing pixels. Given the complexity involved with using infrared
and visible streams for the fire count, as well as the possibil-
ity of thin clouds obstructing this measurement, we only use
quality-assured fire count values, those with a value corre-
sponding to 7 or more. In this study, it is found that the num-
ber of fire count can vary from 0 to more than 5000 (with
a corresponding value of 8) or more than 600 (with a corre-
sponding value of 9) on a monthly basis.

NDVI is also chosen since it represents a measure of the
health of the vegetation. NDVI is mathematically calculated
from the visible (VIS) and near-infrared (NIR) light reflected
by the vegetation as follows: NDVI= NIR−VIS

NIR+VIS . Healthy veg-

etation absorbs most of the VIS light that hits it and reflects
a large portion of the NIR light. In contrast, unhealthy or
sparsely healthy vegetation, such as after being burned, re-
flects more VIS light and less NIR light. Given this formula,
a value close to zero (−0.1 to 0.1) implies that there the land
is barren with respect to living and green vegetation, whereas
values close to +1.0 correspond to the highest density of
healthy green leaves. NDVI is an ideal way to search for the
ratio of the magnitude of the variance to the absolute mean.
This is because the variance in the change in the health is
actually proportionate to the initial value. In this case, while
the overall variance is not too much throughout the region,
the ratio is considerably high in regions that undergo rapid
change such as from burning. However, such changes are not
very useful for looking at small changes over large periods
of time; more are useful at looking at changes occurring over
short periods of time. This is one way to overcome the is-
sue of regeneration, due to either natural regrowth or anthro-
pogenic planting.

Furthermore, since the onset of the monsoon brings suf-
ficiently large amounts of precipitation that it usually leads
to the end of the fire season (Cohen, 2014; Natalia Hasler
and Avissar, 2009), knowledge of the rainfall rate is impor-
tant. For this, we use TRMM measurements of precipitation,
as generated by the 3B42 algorithm. This produces daily av-
erage precipitation measurements at 0.25◦ by 0.25◦ spatial
resolution over the areas of interest for this work.

To validate the results, we also use two additional mea-
surement platforms for AOD from AERONET and MISR.
From AERONET (Holben et al., 1998) we either use
available AOD at 0.55 µm or interpolate the surrounding
wavelength-specific measurements to 0.55 µm, at nine dif-
ferent stations located in the region of interest. We use all
individual Level 2.0 data points, cloud screened and vali-
dated, and then averaged to form a daily value, where a suffi-
cient amount of data are available. At the four stations where
there are insufficient data, we use individual Level 1.5 data
points. However, before forming the daily average value in
the case of Level 1.5 data, we only retain the AOD measure-
ments when the corresponding Ångström exponent is larger
than 0.2, giving us reassurance that the product is relatively
cloud free. This has been tested by varying the sensitivity
from 0.1 to 0.4 (the minimum physically acceptable value
must be positive) and there is little change in the end result.
Although AERONET is the most precise measurement plat-
form for AOD, it is limited in spatial coverage. Therefore we
also use measurements from MISR (Diner et al., 1998; Kahn
et al., 2010) of AOD at 0.55 µm, with a monthly temporal
resolution and a 0.5◦ by 0.5◦ spatial resolution. The reason
for choosing MISR is that it has a smaller error with respect
to AERONET over this region of the world than any other
satellite platform (Petrenko and Ichoku, 2013), which allows
us to provide spatially distributed validation. Although MISR
has a narrower swath width than MODIS in this region of the
world, there are actually more data points that are retrieved
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at the AERONET stations and that the error is lower in com-
parison to the AERONET Measurements. This is partially
due to the fact that it is able to cloud process and clear more
efficiently than MODIS due to the spherical fraction. Addi-
tionally, the fact that MISR is able to measure AOD levels
greater than 2.0 allows it to actually obtain more pixels on
a monthly basis over this region than MODIS. However, the
major downside is that only at a monthly average or lower is
frequency available, with the monthly dataset having from
four to eight data points per measurement. It is therefore
effective over this region at obtaining a spatial distribution
upon which to extend the more precise AERONET results.
However, this helps quite a bit with the cloud-clearing statis-
tics. Combining these together allows the use of the higher-
quality AERONET data as an anchor, where available, to
evaluate any errors in the magnitude between the model and
the measurements, even away from the source, so long as it
is still in the same geographical region (as described below).
It also provides a means for investigating how error propaga-
tion between various different measurement sources can be
quantified.

All of the data used have been taken from January 2001
through December 2013. In the case of remotely sensed data,
it was first interpolated (in the case of AOD) or aggregated (in
the case of fire count, NDVI, and enhanced vegetation index,
or EVI) onto a 0.1◦ by 0.1◦ square grid, using only quality-
assured data. These gridded data sets were then aggregated or
interpolated respectively to the temporal resolution used, ei-
ther 1-day, 8-day, or monthly average temporal resolution, to
make them consistent. AERONET measurements have also
been taken using whatever data was available over the same
respective 1-day, 8-day, and monthly periods, and have been
considered to be representative of the entire corresponding
0.1◦ by 0.1◦ box in which they are located. One of the sig-
nificant advances of using this approach is the ability to ana-
lyze how the results are improved by using data with different
temporal variability.

2.3 Variance maximizing technique

Aerosol emissions and resulting changes in AOD in the
Southeast Asia region mainly comes from two types
of sources: urban/anthropogenic and fires. Emissions of
aerosols from urban/anthropogenic include those from cities,
transportation, and industrial processes, which generally in-
clude temporally and geographically regular combustion of
coal, oil, and natural gas throughout the year. In contrast,
emissions of aerosols from fires, which include clearing of
forests, agriculture, peat, and rubbish, are more highly ir-
regular over space and time, preferentially occurring under
certain economic conditions as well as during periods of
dryness, either due to changes in irrigation or under the in-
fluence of various meteorological/climatological conditions
(Cohen, 2014). As the ultimate goal of this study is to de-
velop an understanding and constraint on the absolute source

of aerosol emissions, and since fire is the most uncertain con-
tribution in this region, the analytical technique must target
the large amount of variance in the measured fields of the
AOD. Those regions which both contribute the most to the
variance of the AOD field as well as correspond to a large
annual amount of AOD on an absolute basis are the regions
which are most likely fires. A simple check of the geography
has been performed to eliminate any false positives that are
known to be urban or industrial regions, of which there are at
least three in the regions under study: in Vietnam, Indonesia,
and Malaysia. However, it is possible that rapidly developing
industrial uses of the land, such as new large mill towns in
Indonesia (as witnessed by the author), were not fully identi-
fied. Further, observed land-use changes were considered to
be reasonable if they corresponded to reasonable changes in
the values of NDVI and LAI.

To achieve these goals, we first employ the em-
pirical orthogonal functions/principal component analysis
(EOF/PCA) technique on the 8-day average AOD product.
This is one of the beautiful things about using the EOF ap-
proach: patterns in the variance of the data search for the set
of the relative maxima. Therefore, since the process searches
for the highest and lowest values and gradients in space and
time, any unbiased error in the measurements, will not sig-
nificantly impact the result. Furthermore, the 8-day average
product was chosen, so that it could take full advantage of
the higher frequency of the MODIS data, when compared
with the MISR data. Additionally, the lifetime of the aerosol
plume is roughly on order of this period of time, given the
low amount of precipitation and the high amount of aerosols
lofted into the atmosphere due to the heat from the fires, mak-
ing source–sink and overall statistical properties robust (Co-
hen, 2014; Lin et al., 2009, 2014).

The specific EOF/PCA analysis decomposes the 8-day
AOD data F into subcomponents. Each subcomponent is or-
thogonal to the whole, and can be ordered based on the
overall contribution to the fractional amount of the overall
variability (Bjornsson and Venegas, 1997). This is done by
decomposing the measurements into independent (orthogo-
nal) spatial/geographic modes Si and their associated tempo-
ral/time modes Ti , as explained in Eqs. (1)–(5), where aij are
the individual measurements (i is the marker indicating the
ordered number in latitude/longitude, and j is the individual
marker indicating the marker in time), and ci and yi , which
are the corresponding decomposed values of the spatial and
temporal maps accordingly.

F =

 a11 · · · a1M
...

. . .
...

aN1 · · · aNM

 (1)

F T F = CY T YCT (2)

Si =

 c1i
...

cMi

 (3)
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Si =

 y1i
...

yNi

 (4)

F = YCT = T1S
T
1 + ·· ·+ TNS

T
N (5)

2.4 Regression-fit model connecting land-use change to
AOD

Along with the analysis, we also employ a simple multi-
variable linear regression model to predict AOD from mea-
sured land-use and meteorological variables. This approach
is adapted because of the physical nature of the relationship
between these variables. Fires lead to a direct drop in LAI
in currently growing vegetation through the combustion pro-
cess. In the case of agriculture which has already been har-
vested, the LAI would have previously dropped, while the
dried products are left to burn. Similarly, if there is a change
in the vegetation/agricultural state after the fire, this should
show up by a restored LAI, although at a different magni-
tude. NDVI would similarly be impacted, as the chlorophyll
is combusted along with the plant material that is associated
with it. Furthermore, the hypothesized loss of efficiency of
the land surface associated with the fires would show up as a
lower-frequency change in the NDVI. Due to these reasons,
there may be a lag expected between the occurrence of the
fire and the change in the land-use variable. However, given
the rapid rate of regrowth over this region, and the high de-
gree of cloud cover, it is found that day-to-day passes or in-
formation are not very reliable. It is uncertain how much lag
would be expected in weekly averaged or 2-weekly averaged
products. However, our results have determined that in fact
the relationship which is based on no lag produces the best
fit. Hence, one of the objectives is to quantify the impacts of
different averaging kernels applied to the measurements.

There is also evidence that in regions where dryness is
an issue, which it certainly is during the extremes of the
dry season throughout Southeast Asia, that NDVI recovers
slower than LAI. This would certainly be the case in regions
in which peat is being drained or has recently been drained,
such as the southern Southeast Asia region, or in regions
where there is little to no irrigation, such as the northern
Southeast Asian region (Hope et al., 2007; Morawitz et al.,
2006; Cuevas et al., 2008). The clear indication here is that
the rate of greenness regrowth, as observed by the change in
the NDVI, may not relate to the canopy and soil moisture re-
growth, which is more related to the LAI due to the additional
bands in the NIR. However, in regions in the topics that are
either managed or fed by the arrival of the monsoon, this is
not expected to be a significant issue, and hence a possible
reason why little lag is actually observed.

During the dry season, how dry it is will impact the
amount, intensity, and duration of the fires as a whole. In
practice, years with wetter dry season or a drier dry season
should have a reduction in the intensity of the fires as well
as their geographic spread, although it will not necessarily

lead to them being altogether suppressed. This relationship
is slightly more complex, since there are cases where anthro-
pogenic water due to irrigation, burning occurring on very
wet peat, or fast-moving thunderstorms can make the ground
quite wet but still continue to burn, thereby leading to an in-
crease in emitted aerosol, and hence AOD, due to a switch
of the type of fire from flaming to smoldering (Field et al.,
2009; Saatchi et al., 2013). However, these cases are over
and beyond the approach taken here and are still not fully
understood. It is thought that surface wetness is critical for
this switch, although in theory this is partially a function of
the LAI, NDVI, and precipitation and hence could be approx-
imated to first order using the approach employed here, with
the physical variable itself at least being partially captured
(Fisher et al., 2009; Phillips et al., 2010; Wohl et al., 2012).
Another advantage is that low-temperature fires, which may
otherwise go undetected, can still be represented, since they
still impact changes in terms of AOD, LAI, and NDVI.

To ensure that the impact of fires is physically as expected
on AOD, in which an increase in fire should lead to an in-
crease in emissions and hence AOD, we employ two dif-
ferent regression equations. Both equations use LAI, NDVI,
and precipitation as predictive variables R2 (Eq. 7), while
only one R1 (Eq. 6) also uses fire count. The regression co-
efficients αi , βi , γi , and δi are computed by minimizing the
root-mean-square errors (RMSEs) of Eqs. (6) and (7). Us-
ing these constrained values, the AOD can be approximated
during different seasons or over different areas, such as those
which are cloud covered and hence do not show measure-
ments. These reconstructed values are generated and specifi-
cally compared against AOD values from other measurement
platforms, specifically MISR and AERONET.

AODMODIS,R1
= α1 ·LAI+β1 ·NDVI+ γ1 · rain+ δ1 (6)

·fire count
AODMODIS,R2

= α2 ·LAI+β2 ·NDVI+ γ2 · rain (7)

Since the nature of the land-use change, the amount of pre-
cipitation, the state of native vegetation, and the strengths and
timing of the AOD signal are different over the two regions
S1 and S2, we compute the fitting for AOD over reach re-
gion separately. This helps us better quantify and understand
the functional relationships between these variables under
the different land-use types, land-use management practices,
and climatology, when the fires actually do occur. This is es-
pecially important in southern Southeast Asia, where there is
stronger year-to-year variability, the issue of cloud cover is
much more pronounced close to the equator, there are only
very few ground station measurement sites, vastly different
sets of anthropogenic land-use policies in different regions,
and different magnitudes of fire emissions.

To test separately only the fire-occurring seasons, we de-
fine fire activity periods over each region as the days during
which T1 and T2, respectively, are above the threshold τnorth
and τsouth. Different thresholds for T1 and T2 are tested, based
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on the percentile P of the time series beneath the point τ if
the time series were to be regrouped and sorted. We thus use
the points P ={0.90,0.835,0.75}. Since this method is test-
ing for the extreme values in the AOD variance, or when the
fires are occurring, this method proves to be methodologi-
cally suitable, as it is further providing a constraint on the
more extreme conditions and when the pattern is most signif-
icant. The values chosen are not arbitrary, as they are based
on the statistical robustness of the magnitude of the fields
Si × Ti . However, the point of the sensitivity analysis is to
quantify at what point the errors in the analytical technique
are no longer able to statistically retrieve the maximum con-
tributions to the variance of signal, as compared to just pick-
ing up the variance induced by the unbiased errors in the
measurements themselves.

3 Results

3.1 Decadal-scale analysis of remotely sensed
measurements of AOD and land-surface properties

The subsequent analysis performed using the variance max-
imizing analytical technique only retains those modes Si , Ti
that explain at least 5 % of the total variability. This is to en-
sure that any signal found is larger than the uncertainty in the
measurements themselves and hence should be physically
relevant. Specifically, since the MODIS AOD uncertainty is
5 %, we need at least 5 % of the variance for a mode to repre-
sent something useful (Bjornsson and Venegas, 1997). Using
this constraint, there are two modes, i ={1,2}, that explain
the variability in the 8-day AOD measurements (see Fig. 2).
Of the variability in the AOD field, 38 % maps to region i = 1
as shown in Fig. 2a, which we will hence refer to as north-
ern Southeast Asia; 13 % maps to region i = 2 as shown in
Fig. 2b, which we will hence refer to as southern Southeast
Asia. The next largest mode contributes less than 5 % to the
total variance in the AOD field and therefore is indistinguish-
able from other sources of variability and error, such as non-
linear effects of El Niño, planetary dynamical events such
as the MJO, regional dynamical events, small-scale perturba-
tions, short-term anthropogenic events, unaccounted for vari-
ations in cloud cover, bias in the data, and new urbanization
around the edges of the growing megacities.

The physical relevance of these mathematical modes is
established by correlating the computed measured average
AOD over the respective regions Si , as a time series, with the
respective principal component Ti . The modes are found to
be highly correlated with both the AOD over northern South-
east Asia (R2 = 0.86, p < 0.01) and the AOD over southern
Southeast Asia (R2 = 0.86, p < 0.01), as shown in Fig. 2c and
d.

Over northern Southeast Asia there is a partially bi-annual
peak, with some years having a single peak and others have
two peaks. The major peak, which is the more pronounced or

sole peak, occurs every year in the measured AOD averaged
over T1 during the latter part of the local dry season (from
mid-February to late April). Looking at the average value
of the time series of the AOD measurements over S1, it is
found that the AOD peaks at the same time as T1 peaks, and
that the average AOD ranges from 0.46 to 0.86, depending
on the year. The smaller peak occurs in August and Septem-
ber as shown in T1 in most of the years (but not in 2008,
2010, or 2011). Similarly, the average of the measured AOD
over the region S1 during the same months and years has
a corresponding peak ranging from 0.40 to 0.63 during the
years when the second peak occurs. The only disagreement
between T1 and the measured time series of averaged AOD
over S1 occurs during 2003, which has already been noted
previously by Cohen (2014), although none of the variables
used in this study can explain why.

Over southern Southeast Asia, there is a one-to-one agree-
ment between the peaks in T2 and the peaks in the averaged
measurements of AOD over S2, with the peaks occurring in
6 years (2001, 2002, 2004, 2006, 2009, and 2012) and not
occurring in the other 7 years. The measured peak in the av-
erage AOD ranges from 0.5 to 1.2, indicating that when these
events occur, their impact on the aerosol loading is larger
than in northern Southeast Asia. The timing of the peaks is
also wider and less well constrained than in northern South-
east Asia, corresponding to most of the entire dry season,
from early August to the end of October. Furthermore, there
is no observed second or smaller peak.

However, the issue of cloud cover leading to missed pos-
itives is observed in southern Southeast Asia. While this
method was able to pick up the high haze and pollution years
of 2002, 2004, the El Niño in 2006, and 2009, two additional
high haze and pollution years of 2010 and 2013 were not
captured. As already shown in Cohen (2014), which was ca-
pable of capturing 2010 and 2013, the likely cause is cloud
cover. We have confirmed that the MODIS cloud cover is in
fact the culprit, with there being fewer than 10 % of pixels
containing measurements of AOD over the regions given by
S2. In fact, the only time during these years that the results
are found for these years is in Si , where i is greater than 2
and thus under the threshold used for statistical robustness.
This reconfirms the aforementioned results that MISR is in
fact better at dealing with cloudiness over this region.

Careful consideration of T1 (see Fig. 2c) shows that it is
considerably noisier than T2 (see Fig. 2c), and there are three
explanations for this. First, the emissions from the region are
more complex. In addition to the fires, there are large urban
sources from three megacities: Bangkok, Ho Chi Minh City,
Hanoi, as well as many highly populated and inhabited ar-
eas outside of these cities throughout the countryside. The
emissions from these cities is consistent throughout the year,
and therefore the high-frequency noise in these emissions,
such as day–night differences and weekday–weekend differ-
ences, tends to make the signal slightly noisier. Secondly, the
fires in this region are due to a combination of a few factors,
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Figure 2. First line: EOF1 (38.2 % of variance) (a) and EOF2 (13.3 % of variance) (b) of the AOD (2001–2013). Regions of highest AOD
variability are delineated by black dots. Second line: PC1 (cutoff 0.006, PC on the left-hand axis, AOD on the right-hand axis) (c) (red
curve) and their associated AOD (green curve) averaged on the region. Third line: PC2, (cutoff 0.01, PC on the left-hand axis, AOD on the
right-hand axis) (d) (red curve) and their associated AOD (green curve) averaged on the region.

which occur on different scales and have various different
size holdings in each case, meaning that small differences in
timing, intensity, and duration are to be expected from when
the people decide to burn and how long they decide to burn
for (Taylor, 2010). There is agricultural and straw burning in
Thailand, subsistence burning in Cambodia, forest clearing

in Myanmar and Laos, and urban and agricultural expansion
in Vietnam, and some of these agricultural regions, especially
related to rice, have two crops a year and thus the possibility
of being burned more than once (Dennis, 2005; Tipayarom
and Oanh, 2007). Thirdly, the dry season here tends to be
extremely dry, without even occasional rainstorms. There-
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fore, any emitted particles tend to have a very long lifetime.
Hence, the impact of secondary chemistry is important. This
chemistry tends to be very sensitive to the emissions ratios,
to clouds, and to any nonlinearly emitted secondary species
from urban areas as the plums proceeds downwind. In con-
trast, in southern Southeast Asia the population is also large,
but in many of the places in Indonesia and Malaysia that
are source regions the cities are large and well contained,
while the countryside is still relatively empty. Secondly, in
this region, the major cause of burning is the clearing of pri-
mary forests, and much of this is done by a smaller number
of large land holders, further reducing the variability. This
is especially so on a year-to-year basis; during some years
there is relatively little burning at all. Finally, even during the
dry season, there is still a considerable amount of small-scale
convective precipitation and day–night sea–land breezes and
rain. Hence, the lifetime of the particles and secondary pre-
cursors tends to be slightly shorter, and the impacts of non-
linear secondary processing are also reduced. Hence, the fact
that southern Southeast Asia often has an even higher av-
erage AOD means that the emissions must be considerably
larger in terms of magnitude from year to year, although not
necessarily more variable within each year, as also found in
Cohen (2014).

These results are clearly consistent with the time-averaged
values of the land-use measurements of LAI and NDVI when
averaged over regions S1 and S2 respectively (Fig. 2). Over
S1, we can clearly see that much of the region either has an
average LAI which is far too low to correspond to native of
secondary forest, implying that the land is now agriculture
or there is still a high average LAI value with a correspond-
ing reduction in NDVI, implying that primary forest is being
deforested in exchange for some type of commercial agricul-
tural tree crop, such as palm oil, rubber, or wood for paper.
However, the region over which this second category is oc-
curring is smaller in size than the first region with the simul-
taneous decrease in both LAI and NDVI (Huete et al., 2002;
Myneni et al., 2002, 2007). In contrast, over the region S2
we find that the LAI is still generally quite high throughout
the region of interest, while the average NDVI is falling at an
even faster rate than the drop over the smaller region in S1 in
which a similar type of condition is occurring. This is com-
pletely consistent with the known large-scale deforestation
occurring throughout Indonesia and Malaysia where mostly
primary forest is burned and replaced with large-scale agri-
cultural tree-based crops (Dennis, 2005; Phillips et al., 2010;
Taylor, 2010; Wooster et al., 2012; Field et al., 2009).

A spatial mapping of the climatological mean and stan-
dard deviations of LAI and NDVI over Southeast Asia are
displayed in Fig. 3. First, it is observed that the LAI is
smaller in average over northern Southeast Asia (LAI= 2.3)
then over southern Southeast Asia (LAI= 3.5). Similarly
for NDVI, the average value over northern Southeast Asia
is (NDVI= 0.61) while over southern Southeast Asia it is
(NDVI= 0.70). This is consistent with the knowledge that

in northern Southeast Asia the land has been more altered
from its base tropical rainforest state (Natalia Hasler and
Avissar, 2009; Taylor, 2010). In fact, there is a considerable
amount of rice and other agriculture which has completely
replaced trees with crops. Also, the pace of forest clearing is
quite rapid in those regions which still retain a considerable
amount of native forest. The only considerably widespread
regions of native forests are left only in Laos and at the
frontier regions near the intersection of Laos, Thailand, and
Myanmar.

3.2 Influence of measured fires

To look at the impacts of measured fires, we fit the relation-
ships between LAI, NDVI, precipitation and AOD in two
cases, both with and without the inclusion of the fire count
variable using REG1 and REG2. This is done separately over
both the northern and southern regions with the correspond-
ing different thresholds. A comparison of the time series of
the region-averaged AOD from each EOF region, the four
model-predicted AOD values, and the measured averaged
AOD is made. The average statistical error and average sta-
tistical correlation (coefficient of determination,R2) between
the datasets and the regression-fit model-predicted AOD used
to determine which threshold τ is ultimately used for the pur-
pose of determining the best-fit coefficients for αi , βi , γi , and
δi . The resulting statistics are displayed in Table 1.

As expected, including the fire count variable significantly
increases the performance of the algorithm in terms of corre-
lations: on average the correlation increases from 70 to 79 %
in the northern region and from 66 to 75 % in the southern re-
gion. However, there is no improvement in the mean error be-
tween the reconstructed data and the original measured AOD.
This means that if there is a hotspot measurement available,
it will improve the ability to predict the spatial and temporal
distribution of the fires, but provides no help in terms of esti-
mating the AOD or emissions. This is physically consistent,
since the actual emissions should be a more complex func-
tion of the type of burning, the material burned, and the con-
ditions under it was burned, not just the existence of a fire.
Additionally, this is consistent because the fire count prod-
uct only quantifies the likelihood of a fire occurring within
the given pixel but provides no information on the intensity
of the fire. Furthermore, the results of the fitting of the re-
gression coefficient associated with fire count (Fig. 4) show
that the coefficient is strongly positive over the regions where
fire is the most important and AOD variability the strongest
(regions within the dots). Thus, the results are found to be
consistent with what is understood – that fire count is a rea-
sonable predictor of emissions of aerosols from fires, but this
factor is only useful as a predictor of the effect, not as a
means of understanding the magnitude of the effect.

The best-fit regression coefficients associated with NDVI
make more physical sense in the case where the fire count
predictor is used REG1 (Fig. S2a) than in the case where
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Figure 3. Climatological values of LAI (first column) and NDVI (second column) for the 2001–2013 period. Average values are displayed
on the first line, while the standard deviation is displayed on the second line.

Table 1. Average error and correlation between AOD at 0.55 µm from MODIS and reconstructed AOD with different thresholds:
τ =P90(PC), τ =P87.5(PC), τ =P83.5(PC), and τ =P75(PC) on the northern and southern regions, obtained by using REG1 and REG2.

Region τ =P90(PC) τ =P87.5(PC) τ =P83.5(PC) τ =P75(PC)
err/corr(%) err/corr(%) err/corr(%) err/corr(%)

North (with fire count) −0.02/76 −0.02/78 −0.02/80 −0.01/83
North (without fire count) −0.02/69 −0.02/70 −0.02/71 −0.02/71
South (with fire count) −0.01/77 −0.01/78 −0.01/75 0.01/69
South (without fire count) −0.01/71 −0.01/70 −0.01/66 −0.01/57

it is not REG2 (Fig. S2b). In all cases, the timing is based
on the 8-day period in the year, days 1 to 8 being the first
data point, days 9 to 16 being the second data point, etc. In

this way, multiyear variances in the climatology can be rig-
orously analyzed. In general, a negative coefficient is found,
which implies that regions will lose NDVI as a result of an
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Figure 4. Regression coefficients(δ1) associated with fire count for
REG1. Regions of highest AOD variability from the EOF analysis
are delineated by black dots.

increase in AOD, which is consistent with the health of the
land decreasing during a fire. A similar gain is also found in
terms of the best-fit coefficients for LAI in the regions which
are not rice dominant (rice has a significantly low LAI so
that the signal-to-noise ratio from the satellite product is too
low to produce a statistically significant result over these re-
gions). The regression coefficients are thus consistent and for
this reason we only refer to REG1 from this point forward.

Making comparisons between the regression constructed
AOD and the measured AODMODIS over northern South-
east Asia leads to the determination that in average, using
τnorth =P75(PC1) as the threshold of fire activity leads to the
best results, as shown in Table 1. This leads to the reasonable
conclusion that in order to represent the AOD during the fire
season well, there must be greater access to data, while to
represent the AOD during the non-burning or low-burning
seasons, less data are required. This is consistent with the
variability being considerably larger during the burning sea-
son in both space and time over the region of interest.

However, for southern Southeast Asia, using a very small
value of τsouth =P12.5(PC2) gives the best statistics. This
means that using less data improves the fit during the fire
season as compared to the use of more data which better con-
strains the fit over the whole year. This is not intuitive and
is only consistent with the case that either (a) the data are
more likely to be of low quality during the burning season
(i.e., the data are corrupted by clouds) or (b) there is a con-
siderable amount of data missing during the burning season
(which is also possible due to the widespread distribution of

clouds over much of both Borneo and Sumatra). This view
is also consistent with the year-to-year and decadal scale of
variability, wherein some years will have little to no fire, and
hence data are required over a considerably longer period
of time, including both high- and low-fire years in order to
properly reproduce the observed patterns. For the remaining
of this analysis, we only consider (1) that the reconstructed
data set of AOD over the northern region has been computed
by using τnorth =P75(PC1) as fire threshold and (2) that the
reconstructed data set of AOD over the southern region has
been computed by using τsouth =P12.5(PC2) as fire thresh-
old. These two data sets will be referred as AODnorth, REC and
AODsouth, REC.

3.3 Comparing AERONET measurements over
northern Southeast Asia

Seven stations from AERONET are situated within the north-
ern region (Chiang Mai, Pimai, Bac Giang, Nghia Do, Vi-
entiane, Mukdahan, and Ubon Ratchathani) and four sta-
tions are located inside the southern region (Jambi, Kuching,
Palangkaraya, and Singapore). The location of those stations
is displayed in Fig. 3 and Table S1 in the Supplement. Of
these stations, three are urban sites located downwind from
burning regions: Singapore, Bac Giang, and Nghia Do. The
remaining sites are located directly in or adjacent to burning
areas. Figure 5 displays the temporal series of the AERONET
AOD (black curve) and regression-fit modeled AOD (blue
curve) at the seven stations situated within the northern re-
gion. Table 2 displays the statistics of the goodness of fit be-
tween the measured AOD and the reconstructed AOD respec-
tively, AODMODIS and AODnorth, in terms of reproducing the
AERONET measured AOD signal.

The first general observation is that all AERONET stations
in northern Southeast Asia have an annual peak in their AOD
which occurs during the fire season, from February through
April each year. Additionally, each station has a smaller sec-
ond peak over many of the years, but not annually, occur-
ring in August or September. At the two remote stations: Pi-
mai (Fig. 5c) and Ubon Ratchathani (Fig. 5d), AOD reaches
its maximum value of over 0.5 during the fire season, while
generally the values are clean throughout the rest of the year
except for 2001 to 2006 and 2009, with a second local max-
imum of around 0.46 in September and October. At Pimai,
the AERONET data show high pollution during the fire sea-
son every year from 2003 to 2008. The model captures all
these events correctly in terms of duration, with the onset
and end times slightly off, leading to a correlation of 43 %,
with an intensity mean error of−0.12. At Ubon Ratchathani,
the AERONET data show high pollution events during the
fire season of the years 2010 to 2012. The model captures
all these events in terms of duration (correlation of 80 %)
but underestimates the intensity by a slightly larger mean
error of −0.22. A large peak of high AOD can been seen
in September 2012 corresponding to a high-pollution event

www.atmos-chem-phys.net/17/721/2017/ Atmos. Chem. Phys., 17, 721–743, 2017



732 J. B. Cohen et al.: Decadal-scale relationship between measurements of aerosols

Table 2. Statistics over the respective northern and southern regions compared to the AERONET stations. Overlapped periods between the
reconstructed AOD AODNorth/South and AERONET are stated in parenthesis. “Fire” denotes data analyzed only during the fire season,
while “all” denotes the entire data set.

Stations AODMODIS AODNorth AODSouth
err/corr (%) err/corr (%) err/corr (%)

Chiang Mai all (218/598) −0.1/83 −0.1/75
Bac Giang all (154/598) −0.03/74 −0.06/42
Mukdahan all (238/598) −0.01/79 −0.01/69
Nghia Do all (79/598) −0.12/74 −0.14/42
Pimai all (120/598) 0.0/77 −0.01/57
Ubon Ratchathani all (99/598) −0.01/88 −0.02/61
Vientiane all (36/598) −0.08/83 −0.07/64
Chiang Mai fire (62/151) −0.26/91 −0.26/64
Bac Giang fire (46/151) −0.07/75 −0.24/33
Mukdahan fire (74/151) −0.08/86 −0.15/49
Nghia Do fire (15/151) −0.08/75 −0.5/62
Pimai fire (45/151) −0.03/75 −0.12/43
Ubon Ratchathani fire (23/151) −0.07/88 −0.22/80
Vientiane fire (8/151) −0.14/93 −0.33/92
Jambi all (64/598) −0.12/51 −0.26/76
Kuching all (91/598) 0.06/75 0.13/66
Palangkaraya all (65/598) −0.11/71 −0.11/74
Singapore all (279/598) −0.02/29 0.01/44
Jambi fire (6/74) −0.51/80∗ −0.54/71∗

Kuching fire (10/74) −0.28/80 −0.03/− 9∗

Palangkaraya fire (6/74) −0.5/85 −0.45/31∗

Singapore fire (24/74) −0.23/− 21∗ −0.09/8∗

∗ Not statistically significant at the p = 0.05 level.

also observed in Singapore. This peak, which has a maxi-
mum AOD value of 0.6, is captured by the model. During
the common years of data between AERONET and AODnorth
(2008 to 2013), we calculate that the model captures the fire
season and the pollution that is generated by it in terms of du-
ration (correlation is 64 %) and less well in terms of intensity
(mean error of −0.26). Although the error in the intensity is
not insignificant, it is still significantly better than most other
errors from model studies over heavily biomass burning in-
fluenced areas of the world; the mean error is still quite good,
since most admit to requiring a scaling factor from 1.7 to as
much as 5 (e.g., Wu et al., 2011; Cohen and Wang, 2014;
Hodnebrog et al., 2014).

There are three stations which are situated at medium-
sized urban sites which are also adjacent to or directly up-
wind from fire burning regions: Chiang Mai, (Fig. 5e), Muk-
dahan (Fig. 5f), and Vientiane (Fig. 5g). All show a strong
annual peak during the fire season from February to April. At
Chiang Mai and Mukdahan, which are nearer to the agricul-
tural fires, the maximum value of AOD is around 0.5, while it
is around 0.6 at Vientiane, which is located further downwind
and hence able to undergo additional secondary processing.
Figure 5e, f, and g also show smaller peaks during other parts
of the year: from September to October for the years 2001 to
2006 at Chiang Mai, with a maximum AOD value of 0.4;

from July/August and to October/November (depending on
the years) for the years 2001 to 2007, 2009, and 2010 at
Mukdahan, with a maximum AOD value of 0.44; and from
September to October for the years 2001 to 2007, and 2009 at
Vientiane, with a maximum AOD value of 0.59. The nature
of these secondary peaks are not annual in occurrence. At
Mukdahan, the AERONET data demonstrate the fire season
peak for every year the data exist: 2004, 2006, 2007, 2008,
and 2009. The regression-fit model reproduces the high pol-
lution every year (R2 = 0.69), while also reproducing the in-
tensity correctly in 2007 and 2009. While there is only very
sparse AERONET data at Vientiane, the regression-fit model
reproduces the signal well (R2 = 0.64 and RMS=−0.07)
(see Table 4). Finally, the model also captures the high pollu-
tion events measured in March, April, and September 2012.

As expected, there is a considerable amount of variability
at stations which are in or near large urban areas (megaci-
ties) due to the combination of both the fire signal as well as
local emissions and in situ secondary processing. In particu-
lar, the signals at the two stations near to the rapidly grow-
ing urban megacity of Hanoi: Bac Giang (Fig. 5a) and Nghia
Do (Fig. 5b) are very similar. These stations have a much
higher annual average AOD than the other stations in the re-
gion, with the daily average value as well as long-term mean
measured AOD being frequently larger than 0.4, while the
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Figure 5.
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Figure 5. Temporal series of 8-day AERONET AOD (black) and AODnorth (blue) at Bac Giang (a1), Nghia Do (b1), Pimai (c1), Ubon
Ratchathani (d1), Chiang Mai (a2), Mukdahan (b2), and Vientiane (c2) (2001–2013). All x axes are the time coordinates from January 2001
through December 2013. y axes are the AOD.

annual high AOD peak has a yearly maximum of at least 0.9
at both of these stations (see Table 3). Figure 5a and b also
show smaller AOD peaks (maximum value of around 0.7)
during other parts of the year (from July through November
depending on the year). During the fire seasons in 2004 and
2007 at Bac Giang, the timing of the high pollution events
is well captured by the regression-fit model, in terms of on-
set, duration, and end time, although the model intensity is
underestimated.

In 2006, the southern Southeast Asian fire season pro-
duced an extensive and massive amount of emissions T2 due

to extremely dry and warm conditions brought on by the
El Niño conditions. Various models and measurements have
shown that the fires from these emissions have spread from
S2 throughout the Indian and Pacific oceans (Podgorny et al.,
2003). However, we have also found that the signal is clearly
present at all of the stations located in S1. At Chiang Mai,
Mukdahan, and Pimai the intensity of the 2006 season as well
as its onset, duration, and conclusion are all well reproduced
in both the AERONET measurements and the regression-fit
model. Even at the urban megacities Bac Giang and Nghia
Do the AERONET measurements also display a high pol-
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Table 3. Average values of maximum AOD and average LAI and
NDVI during the two annual AOD peaks over the northern region
for the 2001–2013 period.

Stations Maximum AOD Average LAI Average NDVI
first peak first peak first peak

(second peak) (second peak) (second peak)

Bac Giang 0.89/0.74 0.44/1.1 0.37/0.58
Chiang Mai 0.5/0.4 2.3/2.97 0.56/0.7
Mukdahan 0.53/0.44 0.96/1.62 0.45/0.67
Nghia Do 0.9/0.71 0.87/1.45 0.39/0.54
Pimai 0.5/0.46 0.54/1.22 0.42/0.61
Ubon Ratchani 0.51/0.46 1.09/1.14 0.48/0.55
Vientiane 0.62/0.59 2.13/2.39 0.52/0.63
Jambi 0.98 2.92 0.68
Kuching 0.66 4.16 0.75
Palangkaraya 1.05 3.72 0.68
Singapore 0.87 1.71 0.4

lution peak (AOD= 1.2) around September 2006, while the
regression models at both of these stations capture the mea-
sured onset, duration, and ending of this event. The only is-
sue is that the magnitude of the regression-fit model AOD
underestimates the measured value by as much as 33 % at
Bac Giang.

Given the intimate connection between fires and the en-
suing rapid changes of the land surface which occur at the
same time, as expected, LAI and NDVI have changed at the
same locations as the AERONET stations. First, they show
a correspondingly higher value during the second, localized
peak, than at the major annual peak, with a maximum value
of around 0.9 at these stations (see Table 3). Figure 5a and
b also show smaller AOD peaks (maximum value of around
0.7) during other parts of the year (July through November
depending on the year); see Tables S1 and 3. This indicates
that the second peak, which does not occur year to year, may
not be attributed to large-scale local burning unless the local
fires are much less extensive and thus do not lead to signifi-
cant change in the land surface, but happen to just be upwind
of these measurement stations in these given years, or that
the local fires are much more polluting per unit of land-use
change, and hence still contribute to the AOD to some extent.
The other possible explanations are that the pollution during
these times is actually transported from other place or is in-
tensified due to some sort of secondary processing. However,
it is also found that these changes in the year-to-year LAI and
NDVI values do not vary in a one-to-one manner with T2,
which has some covariance during the big fire years of 2002,
2004, 2006, and 2009 but not during other years in which the
peak occurs, such as 2001, 2003, 2005, and 2007.

Overall, we find that the annual peak in AOD throughout
S1 is clearly due to fires and that this is true for both ur-
ban, partially urban, and remote sites. Further, during these
fire events, the dominant source contributing to the peak in
AOD is from the burning itself, even in urban areas where

it may be one of two dominant sources. Additionally, there
is a second peak found at these stations, which is smaller in
magnitude and only occurs in certain years. This secondary
peak is very likely not due to local burning, and instead it is
shown that a significant number of these years co-vary with
analyzed large-scale fires from region S2, indicative of long-
range transport. However, since there are a few years during
which this is also not the case, it is possible that other sources
of long-range transport or secondary production of aerosols,
such as from South Asia.

3.4 Comparing AERONET measurements over
southern Southeast Asia

In southern Southeast Asia, S2, the majority of the emissions
come from a small number of well-defined major urban cen-
ters, transport lines through the waterways, and widespread
sources from fires, with much of the region still continuing
primary forest or dense secondary forest. As a consequence,
the major source of the variation in the AOD is a combina-
tion of the emissions from fires and precipitation (as it is the
major source of the aerosols removal from the atmosphere).
This is demonstrated in Fig. 6, demonstrating a smoother and
less variable set of measurements during the wet season than
at sites 5 and 6 over northern Southeast Asia. Consequently,
the AERONET site in Singapore, the sole large urban area in
S2, is very different from the other stations of this subregion.

Unlike in northern Southeast Asia, in general, the AOD
signal in southern Southeast Asia tends to only peak once a
year (except for in 2009 and 2014, which are special cases
to be discussed later that had two peaks due to primary fire
emissions). This primary peak, as shown in T2, always oc-
curs during the local fire season from August through Oc-
tober/November, without any additional second peak occur-
ring during a non-burning period, as in T1. Effectively, this
implies that emissions from S1 are not contributing to the
variance in the measured AOD over S2 and that long-range
transport from northern Southeast Asia is not efficient in con-
tributing to the high peaks in AOD found over S2.

Additionally, southern Southeast Asia has an important
source of uncertainty and bias in the measurements over the
region. Specifically, the impact of intense cloud cover is also
determined to be very important, in terms of being able to
capture all of the known large-scale fire-based events. We
observe that in a few special cases, where known large-scale
pollution events have occurred over S2 as measured both
on the ground and by MISR measurements of AOD (Co-
hen, 2014), MODIS was not able to successfully capture the
events (for example, June 2013). A careful examination of
the cloud cover fields and fire count measurements shows
that this is clearly the case, at least for June 2013; the re-
gion S2 was almost completely masked by clouds (over 80 %
of all pixels) in the day-to-day tracks, with more than 90 %
of pixels in the 8-day average fields over this period of time
being masked.
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Figure 6. Temporal series of 8-day AERONET AOD (black) and AODsouth (blue) at Jambi (a), Kuching (b), Palangkaraya (c), and Singa-
pore (d) (2001–2013).
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The AERONET station in Singapore is located in a highly
urban environment, with sizable sources of aerosol emissions
related to shipping, a high energy using population, and re-
fineries. It is clear that there are no wildfires occurring within
Singapore. At the Singapore station, we observe an annual
signal except for every year, although during the years 2008
and 2010 the signal is less intense than in the other measured
years. There is a considerable amount of variation in the mag-
nitude, the onset, and the duration of the peak, as well as a
considerable amount of noise. However, the maximum mea-
sured AOD here on an 8-day average basis ranges from a low
year of 0.55 to a high year of 0.81 in 2006. Even though the
fires were quite distant, it is clearly observed that then most
intense event in 2006 is readily captured here, further sup-
porting that, even in an urban environment, Singapore offers
a reasonable downwind signal site for observing the impacts
of the fires.

In contrast, the other AERONET stations in this region, in-
cluding in Kuching, Jambi, and Palangkaraya, are situated in
remote and mostly heavily jungle/forested regions of Borneo
and Sumatra islands (see Table S1). These sites are all lo-
cated close to where the fire sources originate, in the jungles
and forests of Borneo and Sumatra. The AERONET station
in Jambi, situated on Sumatra Island, has an annual signal of
high AOD occurring once a year, every year, except in 2010
(where there were no measurements). However, the magni-
tude, onset, and duration of these high pollution events is
highly variable from year to year. The AOD maximum value
ranges from a low of 0.67 (in 2007) to a high of 1.49 (in
2006) (see Table 5). The AERONET station in Kuching has
an annual peak signal in AOD every year that measurements
are available (there were no measurements during the corre-
sponding peak times in 2008, 2010, and 2013). The magni-
tude, start, and duration of this peak are again highly vari-
able from year to year, with the maximum in measured AOD
ranging from a low of 0.68 in 2007 to a maximum of 1.36
in 2006. At Palangkaraya, which is situated in Western Bor-
neo in Indonesia, there is also a single high peak occurring
every year, except for 2010 (which did not have any mea-
surements). Similar to the other stations, the intensity, onset,
and duration of the high AOD signal were very variable from
year to year.

The regressive-fit model based on the MODIS measure-
ments at each of the remote sites in southern Southeast Asia,
Jambi, Kuching, and Palangkaraya, is capable of reproduc-
ing the major heavily polluted years as found in the measure-
ments, such 2002 (maximum AOD of 1.24 in Jambi, 1.0 in
Kuching, and 1.94 in Palangkaraya), 2004 (maximum AOD
of 0.99 in Jambi, 0.85 in Kuching, and 1.18 in Palangkaraya),
2006 (maximum AOD of 1.49 in Jambi, 1.4 in Kuching, and
1.98 in Palangkaraya), and 2009 (maximum AOD of 0.95
in Jambi, 0.87 in Kuching, and 1.02 in Palangkaraya). At
Jambi and Palangkaraya, the regressive-fit model reproduces
the high AOD event of late 2012 well, with a better cor-
relation with the AERONET measurements (R2= 76 % at

Jambi and R2= 74 % at Palangkaraya) than MODIS AOD
at the same grid point (R2= 51 % at Jambi and R2= 71 %
at Palangkaraya), as given in Table 6, although the inten-
sity in these years is slightly low. However, the regressive-fit
model reproduces the AOD well in terms of intensity, on-
set, and duration at Kuching (RMSE of 0.13, R2= 66 %)
(see Table 6). However, the regressive-fit model is still ba-
sically constrained by the cloud cover issue. It is for this
reason that the known high values of aerosols in the atmo-
sphere over Singapore in June of 2013 (as based on sur-
face measurements and personal observation) are not cap-
tured in AERONET measurements, MODIS measurements,
or the regressive-fit model. In addition to June 2013, we also
find that MODIS AOD and the regressive-fit model are both
not capable of capturing the 2010 fire season peak either.
However, the issues of cloud cover seem to be less impor-
tant in other years, and we find the onset, duration, and in-
tensity are all well matched between the regressive-fit model
and AERONET measurements at Singapore during the fire
seasons of the years 2007, 2008, 2009, 2011, and 2012 (see
Table 6 for statistics).

3.5 Comparisons versus measurements from the MISR
satellite

MISR satellite measurements of AOD are at lower spatial
and temporal resolution than MODIS and AERONET mea-
surements, and thus, to use them as a basis for comparison,
the values from MODIS and AERONET will be averaged
to a monthly basis as well as at 0.5◦× 0.5◦. Over northern
Southeast Asia, the time series of the regression-fit model
AOD compares very well with the time series of the average
MISR AOD over the same region (R2= 0.77 over S1, and
R2= 0.85 over the region of highest variability). While there
is some underestimation of the absolute AOD as compared
to the MISR measurements, that underestimation is always
less than 0.1 and therefore is not far from the order of mag-
nitude of the error in the measurements themselves. One of
the important reasons why the agreement is so good is that
this region is generally cloud free during the dry season when
the fires occur, and hence there is a quite large and represen-
tatively similar sampling size between MODIS, MISR, and
AERONET during the fire periods in this region. This es-
tablishes that indeed the MODIS-based regression-fit model
matches well against MISR and is able to reproduce the vari-
ability and magnitude of the AOD over northern Southeast
Asia (Fig. 7).

Not surprisingly, when fitting the results of the MODIS
regression-fit model using 8-day average data, the overall fits
are not as good when comparing against MISR. Part of the
issue is the additional variability, but more importantly is the
lack of sufficient data due to cloud coverage. Specifically,
over the region S1, the correlation rises from R2= 0.66 to
R2= 0.81 when increasing from 8-day to monthly averag-
ing. Similarly, the comparison between the AERONET data
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Figure 7. Basic statistics between MISR and AODnorth (a, b) and AODsouth (a, b) on a monthly basis (2001–2013). Regions of highest AOD
variability from the EOF analysis are delineated by black dots. Within the northern region the mean correlation is 84.8 % and the average is
77.3 % (mean error is 0.06), while in the southern region the mean correlation is 79.2 % and the average is 72.4 % (mean error is 0.08). The
mean errors are given on the left-hand side, while the correlations are given on the right-hand side.

and MISR AOD also increases from R2= 0.59 to R2= 0.79
when comparing 8-day averages and monthly averages re-
spectively. Overall, the regression-fit model is able to re-
produce the variation of AOD at all the stations in northern
Southeast Asia, in terms of both duration and intensity con-
cerning high pollution events (see Figs. S5 and S6).

As expected, the spatial comparison between MISR and
the regression-fit model over southern Southeast Asia is not
as good. The first thing to note is that the spatial extent of the
region from MODIS, given with the relatively level of high
certainty by S2, is considerably smaller than a similar spa-
tial distribution of the smoke extent over this same region,
when analyzed in the same way using data from MISR mea-
surements (Cohen, 2014). This is explained in part due to the
larger cloud-covered fraction in the MODIS measurements
when compared with MISR, as well as the shorter averaging
period with the MODIS measurements, leading to a situa-
tion where there is insufficient information at each averag-
ing time step over much of the region. It is found that the
RMSE between MISR and the regression-fit model ranges
from a minor and relatively insignificant (as compared to the
measurement errors) model overestimation of 0.1 in AOD
to a substantial and significant model underestimation in the

AOD of up to 0.5. This regression-fit model underestimation
as compared to MISR measurements is significantly larger
than the AERONET and MISR disagreement over this re-
gion, which is less than 0.3 (Cohen, 2014; Shi et al., 2011),
and, further, this error occurs especially and exclusively dur-
ing the intense fire-burning years. However, the overall tem-
poral correlation between the regression-fit model and the
time-averaged AOD from MISR is R2= 0.72 overall and is
as high asR2= 0.79 over the region of highest AOD variabil-
ity. This means that the inter-annual and intra-annual varia-
tion is relatively captured by the MODIS measurements and
the resulting regression-fit model.

4 Conclusions

An in-depth analysis of multiple measurements from
MODIS, MISR, TRMM, and AERONET measurements has
been performed over a 13-year period over Southeast Asia.
Using MODIS AOD, the spatial and temporal patterns of the
contribution of fires to the atmospheric loading of aerosols
was established. Two distinct regions, with vastly different
properties were observed: one in northern Southeast Asia,
which had a strong annual signal with some inter-annual vari-
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ability, and another in southern Southeast Asia, which had a
strong signal with inter-annual and intra-annual variability.
Northern Southeast Asia shows an annual high AOD dur-
ing the fire season (varying roughly from February through
April), with a smaller nearly annual peak occurring during
the exact timing when southern Southeast Asia has its fire
season. Southern Southeast Asia is affected every year by
their own fires (from roughly August through October), with-
out any observed secondary peak except for during two ex-
ceptionally dry years during the second very short dry sea-
son in February 2009 and the very end of 2013 (which would
maximize in February 2014, although it is beyond the end
of the data analyzed in this paper). The representation in
terms of the timing of the fires of northern Southeast Asia
was consistently good in terms of start time, length of the
burning season, and cessation of the burning when com-
pared against AERONET and MISR measurements. The rep-
resentation in terms of timing over southern Southeast Asia
was not as good, but still quite acceptable, when compared
against AERONET and MISR measurements, with the dura-
tion of the fire season well captured in strong fire years and
the strongest part of the fire season captured in low fire years.

Bringing in different simultaneous measurements of land-
surface variables, fires, precipitation, and column aerosol
measurements allows us to confirm that these patterns exist
and are consistent with land-use burning. Given the differ-
ence in the timing and durations of the major monsoon sea-
sons over these regions, the results are consistent. From this
point, a simple regression-fit model was established to pre-
dict the AOD from measurements of land-use change vari-
ables, fires, and precipitation, which should be the basis upon
which fires start in the environment. These simple regression-
fit models (based on MODIS and TRMM) reproduced the
onset, duration, and magnitude of the measured AOD from
other measured sources (MISR and AERONET) well over
northern Southeast Asia. The results of this regression-fit
model demonstrate the ability to predict the AOD as ob-
served by AERONET and MISR, using only measurements
of land-use change variables and fires from MODIS, and pre-
cipitation from TRMM, measurements of some of the impor-
tant and fundamental underlying factors controlling the fires.

These simple regression-fit models reproduced the onset,
duration, cessation, and even the magnitude of the mea-
sured AOD from AERONET and MISR very well in northern
Southeast Asia. These simple regression-fit models also re-
produced the onset, duration, and cessation of the measured
AOD from AERONET and MISR well in southern South-
east Asia, especially during the more intense burning years.
The main issue in southern Southeast Asia, however, was that
the magnitude over this region was strongly underestimated.
These results still underestimate the column loading, but by
a magnitude of 30 % or less, which is far better than the typi-
cal scaling factors applied of 1.7 (70 %) or more, and consis-
tent with the results in Cohen and Wang (2014) and Cohen
(2014) which show that there is an underestimate of both the

overall magnitude and the fire magnitude, and that correct-
ing for the former leads to an underestimate in the latter of
20 to 30 %. The result is not only larger in magnitude than the
GFED (Global Fire Emissions Database) emissions products
but also includes regions which are considered to have zero
emissions in the GFED data set, a worrying conclusion since
a value of 0 cannot be scaled up by a scaling factor. Some
reasons for this include emissions sources which are more
variable in space and time, such as the clearing of primary
forests, peat burning, and rapid development, and increased
cloud cover reducing the number of available measurements
over large portions of this region by a significant amount.
Further, the inter-seasonal periods in southern Southeast Asia
tend to be both more rainy and more cloud covered than in
northern Southeast Asia due to large-scale convection and
other regional disturbances like the MJO and the IOD.

There is a strong and consistent change in the land-use
variables occurring during the local fire season over both
northern and southern Southeast Asia, although these rela-
tionships, as expected, are different over the two regions due
to different types of land-use change. The relationships be-
tween burning of primary forests, grasslands or crops, and
peat should all be different. Additionally, there is an im-
portant secondary use for these relationships, determining
whether the observed smoke is locally produced of trans-
ported from far upwind. For example, it is clearly noted that
the land-use changes are much smaller during the second
non-annually occurring peak in northern Southeast Asia, im-
plying that while there may be some contribution from local
sources, there is also a large amount of smoke transported
from other regions. This comes from the idea that if the land
itself did not change very much, then the emissions of smoke
produced must have been considerably lower. The timing of
this smaller peak matches the timing of the fire occurrence
over southern Southeast Asia with a very high level of corre-
lation. Additionally, it also cannot be ruled out that the smoke
could be urban pollution from South Asia. However, there is
no evidence that any of the smoke in southern Southeast Asia
originates from any region other than its own sources.

Further, we explored the added value of using higher tem-
poral resolution data, which are usually thought to add im-
proved value. Due to the large amount of cloudiness en-
countered, there was a much reduced number of measure-
ments available over southern Southeast Asia during the fire
season using 1-day average values as compared to 8-day
average values, leading to less statistical relevance. In the
end, it was not possible to have a reasonable reproduction
of the measured AERONET and MISR values of the on-
set, duration, and ending of the fires using 1-day average
MODIS and TRMM data as compared to when using 8-
day average MODIS and TRMM measurements to develop
the regression-fit relationships. Even with the 8-day average
data and the associated regression-fit relationships, the mag-
nitude of AOD during southern Southeast Asia’s fire sea-
son is significantly too low, although in northern Southeast
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Asia it is low but not more than the magnitude of the uncer-
tainty of the input measurements themselves. The correlation
between the regression-fit model AOD and AERONET sta-
tions over the entire decadal time period, using 8-day aver-
age MODIS data, ranges fromR2= 0.42 toR2= 0.75. While
monthly average data from MODIS do not provide as fine
resolution for the duration, onset, and end times of the fires,
they provide the best match in terms of the magnitude of the
AOD measurements from AERONET and MISR. However,
when using MODIS data on a monthly average basis, the
regression-fit model AOD gives a better performance with
the correlation coefficient between AOD and AERONET sta-
tions ranging from R2= 0.70 to R2= 0.90. Furthermore, the
correlation over the regions of interest S1 and S2 between
the regression-fit model and MISR measurements of AOD
ranges from R2= 0.57 to R2= 0.81. This is due partially to
less underrepresentation of very high short-term peaks, as
well as additional data points being available in the MODIS
fire and land-use products at longer average time durations.
This is a counterintuitive result, with many in the commu-
nity stressing the added value of higher-frequency measure-
ments, but is consistent with the fact that such spaceborne
measurements are severely limited by clouds over this region
of the world during the fire season. MISR has shown to repre-
sent the magnitude of the AOD well, with the measurements
from monthly average MISR measurements and monthly av-
erage AERONET measurements being basically the same.
Therefore, the ability of the regression-fit model to capture
the monthly average AOD from both MISR and AERONET,
in terms of both the inter-annual and intra-annual variability
in the fire seasons, is significant and shows that the changes
in the land surface and the impacts of precipitation are in-
deed driving the atmospheric loading of AOD and hence the
impact of the fires over this region on the decadal scale. Fur-
ther, as it is widely known, peat can burn and smolder for
an extended period of time after any measured fire has gone
away; therefore, by extending the average value for the fire, it
allows for a better matching with the total emissions, which
will continue to often be produced for weeks after any vis-
ible flame or surface heat is observed. Thus, one of the im-
portant findings is to examine the most ideal temporal reso-
lution at which to use the data, whether it be daily, weekly,
or monthly. While most of the published literature leans to-
wards using high-frequency daily data (or individual swath-
by-swath data, where available), we determine and validate
that using weekly or monthly average data leads to a better
ability to accurate reproduce the measured values, explain
why that is the case, and then quantify some of the impacts
and limitations of this result.

This study highlights the importance of taking into ac-
count land-use variable and precipitation for estimating AOD
correctly both in time and magnitude, even though magnitude
remains hard to capture on a 8-day basis. One significant bias
in the magnitude of the results must be due to problems of
the relationships over the region being not properly captured,

such as the different anthropogenic driving forces of the land-
clearing being significantly different over the two regions. A
second significant bias in the magnitude is due to the fact that
there is a significantly more cloud cover over the two regions
during their local burning seasons (Giglio et al., 2003). These
results support the efficacy of the approach introduced here:
that it is appropriate to use measured changes in the land,
precipitation, and active fires from MODIS and TRMM to
reproduce a working model of the atmospheric aerosol load-
ing. Furthermore, other than Cohen (2014) and Cohen and
Wang (2014) there are no works that have been able to sat-
isfactorily estimate the loadings of or AOD associated with
emissions aerosols over this region of the world without us-
ing some type of scaling. This method is able to reproduce
the magnitudes by introducing physical parameterizations of
scaling, and doing so based on a more fundamental driver-
based approach. This allows us to improve our understand-
ing of the relationships, both in terms of how they vary over
space and time and in terms of physical drivers.

5 Data availability

MISR data used are Level 3. The data can be found at http:
//www-misr.jpl.nasa.gov/getData/accessData/.

AERONET data used are Level 2.0, except for the four
stations mentioned that have no Level 2.0 data, and in these
cases Level 1.5 data are used. The data can be found at http:
//aeronet.gsfc.nasa.gov.

MODIS data used for AOD are Collection 6, Level 2. The
data can be found at https://modis.gsfc.nasa.gov/data/.

MODIS data used for NDVI, LAI, and fire count are Col-
lection 5.1, Level 2. The data can be found at https://modis.
gsfc.nasa.gov/data/.

TRMM data used are from Collection 3B42. The data can
be found at https://pmm.nasa.gov/data-access/downloads/
TRMM.

Specific details of the various data sets used, as well as as-
sumptions made in selecting and handling the data, are pro-
vided in Sect. 2.2.

The Supplement related to this article is available online
at doi:10.5194/acp-17-721-2017-supplement.
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