
Atmos. Chem. Phys., 17, 7067–7081, 2017
https://doi.org/10.5194/acp-17-7067-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Assimilation of satellite NO2 observations at high
spatial resolution using OSSEs
Xueling Liu1, Arthur P. Mizzi2, Jeffrey L. Anderson3, Inez Y. Fung1, and Ronald C. Cohen1,4

1Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA, USA
2Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research,
Boulder, CO, USA
3Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO, USA
4Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA

Correspondence to: Ronald C. Cohen (rccohen@berkeley.edu)

Received: 26 August 2016 – Discussion started: 5 September 2016
Revised: 10 April 2017 – Accepted: 29 April 2017 – Published: 15 June 2017

Abstract. Observations of trace gases from space-based in-
struments offer the opportunity to constrain chemical and
weather forecast and reanalysis models using the tools of
data assimilation. In this study, observing system simulation
experiments (OSSEs) are performed to investigate the po-
tential of high space- and time-resolution column measure-
ments as constraints on urban NOx emissions. The regional
chemistry–meteorology assimilation system where meteo-
rology and chemical variables are simultaneously assimilated
is comprised of a chemical transport model, WRF-Chem,
the Data Assimilation Research Testbed, and a geostation-
ary observation simulator. We design OSSEs to investigate
the sensitivity of emission inversions to the accuracy and
uncertainty of the wind analyses and the emission updating
scheme. We describe the overall model framework and some
initial experiments that point out the first steps toward an op-
timal configuration for improving our understanding of NOx
emissions by combining space-based measurements and data
assimilation. Among the findings we describe is the depen-
dence of errors in the estimated NOx emissions on the wind
forecast errors, showing that wind vectors with a RMSE be-
low 1 m s−1 allow inference of NOx emissions with a RMSE
of less than 30 mol/(km2

× h) at the 3 km scale of the model
we use. We demonstrate that our inference of emissions is
more accurate when we simultaneously update both NOx
emissions and NOx concentrations instead of solely updat-
ing emissions. Furthermore, based on our analyses, we rec-
ommend carrying out meteorology assimilations to stabilize
NO2 transport from the initial wind errors before starting the

emission assimilation. We show that wind uncertainties (cal-
culated as a spread around a mean wind) are not important
for estimating NOx emissions when the wind uncertainties
are reduced below 1.5 m s−1. Finally, we present results as-
sessing the role of separate vs. simultaneous chemical and
meteorological assimilation in a model framework without
covariance between the meteorology and chemistry.

1 Introduction

Weather and climate act in concert with emissions to es-
tablish the concentrations of chemicals and aerosols in the
boundary layer. To understand the factors that affect public
health and the productivity of agriculture and animal hus-
bandry, we require accurate models of both emissions and the
boundary layer meteorology to define the surface layer con-
centrations that determine the exposure of humans, animals,
and plants to chemicals and aerosol. There remain substan-
tial uncertainties in even the best models of emissions and
even more so in the best models of boundary layer dynam-
ics (for example, Hu et al., 2010). Current uncertainties in
the surface NO2 emission inventories in the US are thought
to be of the order of 50 % (Krotkov et al., 2016; Travis et
al., 2016). Comparable uncertainties affect estimates of the
planetary boundary layer (PBL) height and mixing rates that
redistribute emissions from the surface (Kretschmer et al.,
2012, 2014; Lauvaux and Davis, 2014).
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Over the last decade, there has been increased use of data
assimilation techniques to constrain model forecasts and re-
analyses of atmospheric constituents (e.g., Arellano Jr. et
al., 2007; Edwards et al., 2009; Claeyman et al., 2011; La-
hoz et al., 2012; Pagowski and Grell, 2012; Bowman, 2013;
Gaubert et al., 2014; Hache et al., 2014; Saide et al., 2014;
Zoogman et al., 2014; Barré et al., 2015; Bousserez et al.,
2016; Mizzi et al., 2016). Assimilation of chemicals can
be extended to optimize model inputs such as emissions,
thereby providing insight into how to improve the processes
that govern the model performance (e.g., Elbern et al., 2007;
Barbu et al., 2009; Chatterjee et al., 2012; Miyazaki et al.,
2012b; Koohkan et al., 2013; Yumimoto, 2013; Cui et al.,
2015; Guerrette and Henze, 2015; Turner et al., 2015).

To date most efforts to incorporate satellite remote sens-
ing in data assimilation have focused on long-lived chemicals
such as CO, CH4, or CO2 and regional- and continental-scale
aspects of emissions. Processes that govern variability in
emissions within an urban center require new approaches that
use models and observations with high spatial and temporal
resolution. NO2 has a lifetime of only a few hours and thus
exhibits concentration changes that are substantial on spatial
scales of 50–75 km. Observations of variations in NO2 are
thus uniquely suited to studying emissions and meteorology
on city scales. Averaged measurements of NO2 have been
shown to be promising for evaluation of absolute emissions
and trends (Russell et al., 2012; Miyazaki et al., 2016) as
well as providing information on the coupling of boundary
layer winds to chemical lifetime (Beirle et al., 2011; Valin
et al., 2013). Current space-based instruments have resolu-
tion that is too low to provide direct information on lifetimes
and emissions from a single overpass. Instead, analyses have
focused on data averages, which wash out some of the key
details about emission location and chemical lifetime.

New instruments with spatial resolution of a few kilo-
meters will soon change that situation. The TROPOspheric
Monitoring Instrument (TROPOMI, launch date in mid-
2017) will be the first to provide spatial resolution suffi-
cient to observe these NO2 changes in a single overpass.
TROPOMI will view the atmosphere from low Earth orbit
and provide one image per day. We also anticipate the launch
of three geostationary satellites, the Geostationary Environ-
mental Monitoring Spectrometer (GEMS), the Tropospheric
Emissions: Monitoring of Pollution (TEMPO), and Sentinel-
4, which will provide observations at higher temporal reso-
lution with hourly repeats at locations in Asia, North Amer-
ica, and Europe, respectively (Zoogman et al., 2017). The
spatial resolution of these new low Earth orbit (LEO) and
geostationary (GEO) instruments will be sufficient to pro-
vide ∼ 10 samples within the advection distance that is de-
termined by the chemical lifetime of NO2. This dense sam-
pling will permit characterization of multi-exponential or
non-exponential behavior where current analyses are typi-
cally forced to assume single-exponential decay. To take full
advantage of these measurements within a data assimilation

system, we will need to model the NO2 column at similar
spatial resolution. This is both because the spatial scales of
important variation in atmospheric plumes are of the order of
4 km and because of the steep nonlinearity in the lifetime of
NO2 as a function of the NO2 concentration. For example,
biases of 34 % (3.3 to 5.0× 1015 molecules cm−2) are found
in the modeled averaged NO2 column over Los Angeles at
resolutions of 96 km compared to 12 km. For a point source,
such as a power plant, model convergence is observed only
at a grid resolution of 4 km or smaller (Valin et al., 2011).

In this study, we describe a chemical transport ensemble
data assimilation system with high spatial and temporal res-
olution and simultaneous assimilation of meteorology and
chemistry to adjust NOx emissions on scales consistent with
the temporal scale of NOx evolution. We use this forecast–
assimilation system to investigate the factors that influence
the capability of TEMPO NO2 observations to accurately
constrain NOx emissions. Our long-term goal is to estimate
hour-to-hour variations in NOx emissions on the scale of
model grid point resolution (3 km) and to use these variations
to understand the processes controlling the emissions. The
remainder of this paper is organized as follows: in Sect. 2,
we describe the forecast and data assimilation system, the
system setup, observations, and the TEMPO NO2 simulator
– the simulation of column NO2 that would be observed by
TEMPO. In Sect. 3, we describe the experimental design, in-
cluding a series of assimilation experiments that guide opti-
mization of the emission estimation performance. In Sect. 4,
we assess the performance of meteorology and chemistry as-
similation. We then discuss the results and provide insight
into the potential accuracy of NO2 emission fields derived
from geostationary NO2 observations. We present our con-
clusions in Sect. 5.

2 The data assimilation system

The forecast–data assimilation system used here is WRF-
Chem/DART (Data Assimilation Research Testbed) as de-
scribed by Mizzi et al. (2016). It consists of the following
elements: the forecast model, the assimilation engine, and
observations of meteorological and chemical states to be as-
similated.

2.1 WRF-Chem model description

The core meteorological and chemical forecast model is
the regional online chemical transport model (CTM) WRF-
Chem v3.4.1 (www2.acd.ucar.edu/wrf-chem). The model
domain is a one-way nest with an outer domain of 12 km
resolution covering western North America and an inner do-
main of 3 km resolution focused on the city of Denver, CO
(Fig. 1). The 3 km resolution domain is 660 km by 840 km.
The model has 30 vertical levels between the surface and an
upper boundary of 100 mb and 10 levels within the bound-
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Figure 1. Model domain setup with 12 km outer domain and 3 km
inner domain (white square). Data assimilation is performed for the
inner domain. Meteorological observations in the inner domain are
assimilated. TEMPO NO2 observations inside the red rectangle are
assimilated.

ary layer (∼ 1.5 km). Simulations of meteorology in the outer
domain are initialized and constrained at the lateral boundary
by North American Regional Reanalysis (NARR) data from
National Centers for Environmental Prediction (NCEP). The
NARR data have a native horizontal resolution of 32 km with
45 pressure levels and 3 h temporal resolution. We use the
global chemical model output from MOZART to initialize
the chemical simulation in the outer domain and to provide
the chemical boundary condition. After a spin-up time of
4 days for the outer domain, the inner domain simulation is
initialized and constrained through one-way nesting in both
meteorology and chemistry.

Anthropogenic emissions for WRF-Chem are from the
National Emissions Inventory (NEI) 2011 version 1 at native
4× 4 km2 resolution. The NEI 2011 provides hourly-varying
emissions for a typical weekday in summertime. The emis-
sions do not vary from day to day. Biogenic emissions are
calculated online with the simulation results by the Model
of Emissions of Gases and Aerosols from Nature (MEGAN).
Fire emissions are not included. We use the widely used re-
gional acid deposition model version 2 (RADM2) as the gas-
phase chemical mechanism (Stockwell et al., 1990). There
are 59 species and 157 reactions to represent both inorganic
and organic chemical reactions under tropospheric condi-
tions. It includes the chemical losses of NOx through reac-
tion with OH radical to form nitric acid, and other NOx sinks
such as peroxyacyl nitrates and alkyl nitrate.

2.2 DART ensemble assimilation system

WRF-Chem/DART is a regional multivariate data assim-
ilation system developed by the National Center for At-
mospheric Research (NCAR) to analyze meteorological

Table 1. The experimental setup of each assimilation run. The three
ensemble runs assimilate NO2 observations every hour and differ in
treatment of meteorology forecast.

Experiment Met Chem Note
assim assim

REF No Yes True meteorology
ENS.1 Yes Yes Ensemble of meteorology

and chemistry
ENS.2 Yes Yes Only update emissions
ENS.3 Yes Yes Initial meteorology

ensemble is from the next
day

REA No Yes Using ensemble mean from
ENS.1

Table 2. DART configurations.

Parameter Value

Filter type EAKF
Adaptive inflation 1.0, 0.6 (initial

mean, spread)
Inflation damping 0.9
Adaptive localization threshold 2000
Localization type Gaspari–Cohn
Horizontal localization half-
width for meteorology (chemi-
cal) observation

50 km (10 km)

Outlier threshold 3.0
Ensemble members 30

variables and chemical variables simultaneously (Mizzi et
al., 2016). We use the ensemble adjustment Kalman filter
(EAKF) in DART to analyze the states with an ensemble size
of 30. Details of the EAKF algorithm and its implementation
in DART are documented in Anderson, 2001; Anderson and
Collins, 2007; and Anderson et al., 2009. In this study the
system is extended to assimilate synthetic TEMPO NO2 col-
umn observations. As emissions are not prognostic variables
of the forecast model, we implement a state augmentation ap-
proach to include emissions in the state variables (Aksoy et
al., 2006). The chemical state variables include the NO2 con-
centration and NOx emissions. Based on the settings used in
meteorology data assimilation, the meteorological state vari-
ables are U , V ,W , T , QVAPOR, QCLOUD, QRAIN, QICE,
and QSNOW. MU and PH are used in vertical coordinate
transforms. T 2, Q2, U10, V 10, and PSFC are used for sur-
face data assimilation forward operators. Definitions of these
variables are taken from Romine et al. (2013) and are given
in the Appendix. Adaptive spatially and temporally varying
inflation is applied to the prior state to assist in maintaining
the ensemble spread. We summarize the DART configuration
details in Table 2.
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2.2.1 Spatial localization

In ensemble methods the correlations among spatially re-
mote variables in the prior ensemble are regarded as spurious
correlations due to the small ensemble size (30). To com-
pensate for this under-sampling issue, spatial localization
is introduced to reduce the prior correlations based on the
distance between the observed and modeled state variables
(Houtekamer and Mitchell, 2001). In this study, we apply the
fifth-order distance-dependent Gaspari and Cohn (GC) func-
tion (Gaspari et al., 1999) to reduce the spurious impact of
observations on spatially remote state variables. The scal-
ing distance in the GC function is defined by a half-width
parameter, 2 times of which is the distance where the GC
function reaches zero. With a data assimilation window of
1 h and a maximum wind speed of 3–5 m s−1, an observation
of column NO2 primarily reflects information about emis-
sions that occurred during the last hour and within 10 km. We
use the half-width distance in spatial localization as 10 km
and demonstrate this as the optimal value based on sensitiv-
ity experiments with localization distances of 5, 10, 20, and
50 km. Because of the high density of TEMPO NO2 obser-
vations (2× 4.5 km2), the update of chemical state variables
is mostly determined by the local observations.

2.2.2 Variable localization

Similar to the concept of spatial localization, variable local-
ization techniques have been introduced (Arellano Jr. et al.,
2007) to reduce spurious correlations among observations
and different types of state variables. For example, for CO2
flux estimation, Kang et al. (2011) showed that the perfor-
mance of data assimilation using a variable localization that
zeroes out the prior error covariance between meteorologi-
cal variables and CO2 flux is better than using a standard full
covariance approach. Here we isolate the influence of meteo-
rological observations on chemical variables and vice versa.

2.3 Initial and boundary condition ensemble

We generate the initial chemical ensemble by adding the per-
turbations to the mean state of the fine domain forecast. In
the ensemble method the generated ensemble should repre-
sent the error statistics of the initial guess of the model state
(Evensen, 2003). The correlation between perturbations of
chemical state variables is modeled by a simple isotropic
exponential decay function with a characteristic correlation
length of 50 km. For the meteorology ensemble, random
perturbations were added to each member by sampling the
NCEP background error covariance using the WRF Data As-
similation System (WRFDA; http://www2.mmm.ucar.edu/
wrf/users/wrfda) (Barker et al., 2012). The options used for
the WRFDA settings are summarized in Table 3. The pa-
rameter cv_option indicates the background error options in
WRFDA. With a cv_option= 3, we use the NCEP back-

Table 3. WRFDA configurations.

Parameter Value

cv_options 3 (NCEP background
error model)

je_factor (ensemble
covariance weighting
factor)

1.0

ground error covariance, which is estimated in grid space
by what has become known as the National Meteorologi-
cal Center (NMC) method. The statistics are estimated with
the differences of 24 and 48 h global forecast system (GFS)
forecasts with T170 resolution, valid at the same time for
357 cases, distributed over a period of 1 year. The parameter
je_factor is the ensemble covariance weighting factor. This
factor controls the weighting component of ensemble and
static covariances. The ensemble member lateral boundary
condition perturbations are generated in a similar manner to
the initial ensemble using the fixed-covariance perturbation
technique. The boundary condition for the analysis time is
adjusted to match the analysis from DART. The tendencies
for the later times in the forecast are adjusted to match the
change in the boundary condition for the analysis time.

2.4 Emission update scheme

By including emissions in the ensemble state vector, emis-
sions are estimated as hourly evolving parameters. Estima-
tion of time-evolving emissions using data assimilation was
first presented for carbon flux estimation (Kang et al., 2011,
2012). Such an approach provides emission information be-
yond an average for a specific time period. NOx emissions
within cities show significant variation within the urban core
and between the urban core and the surrounding suburbs. The
observed columns show strong spatial variation dominated
by an emission hotspot that results from the combination of
spatial patterns in emissions and the short chemical lifetime.
The goal of this work is to constrain hourly evolving emis-
sions at the native model resolution. Here we start with a
simple case in which the emission error is a constant frac-
tion at all times of the day with the prior emissions set as
70 % of the true emissions and we investigate the ability of
assimilation to recover the original emissions.

A challenge for updating the emissions in the augmented
state vector is the absence of an emission forecast model to
evolve the emission variables forward in time. The bottom-
up inventory to be optimized provides hourly-resolved emis-
sions for each model grid point. Instead of treating the emis-
sion variables of each hour at a specific location as indepen-
dent parameters, we update the emission scaling factors at
each assimilation cycle. In our emission update scheme, the
TEMPO NO2 observations at time i are assimilated to gen-
erate a scaling factor for emissions at time i− 1. In this way,
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the model–observation difference in the NO2 column will
correct the emission of an hour ago instead of the current
emission. This approach is reasonable because errors in NO2
concentration result from errors in previous emissions. Con-
sidering the short NO2 lifetime of 3 h in summer daytime,
emissions from the previous hour have a large contribution to
the NO2 total mass at the current time. For a given model grid
point, we define the true (et

i−1), prior (eprior
i−1 ), and posterior

(epost
i−1) emissions at time i− 1. Since we start the assimila-

tion with 70 % of the true emissions, we have eprior
m = 0.7et

m

for any time m. After assimilating observations at time i,
we compute the scaling factor (Si−1) for emissions at time
i−1 as follows: Si−1 = e

post
i−1/e

prior
i−1 . Then we update the prior

emissions at time i as eprior
i = Si−1× e

prior
i . This prescrip-

tion enables us to derive spatial 2-D emission scaling factors,
which play the role of emission forecast models.

2.5 Synthetic meteorological and chemical observations

Assimilated observations include meteorological observa-
tions and NO2 column retrievals from the TEMPO observ-
ing system simulation experiments (OSSE). For meteorolog-
ical observations, we assimilated synthetic observations of
temperature, wind, and humidity from the NCEP Meteoro-
logical Assimilation Data Ingest System (MADIS) (https://
madis.noaa.gov/). MADIS is a meteorological observational
database and data delivery system that provides observations
that cover the globe. MADIS ingests data from NOAA data
sources and non-NOAA providers, decodes the data, and
then encodes all of the observational data into a common
format with uniform observational units and time stamps.
For wind observations, the assimilated observation types in-
clude standard aviation routine weather reports (METAR),
wind profilers, aircraft-based observations (ACARS), na-
tional mesonet data, and satellite data. Among these, the
mesonet wind data are the most abundant, with ∼ 1000 ob-
servations located in the mapping domain in Fig. 2. The ob-
servation errors are the default values from the DART facil-
ity that are defined based on NCEP statistics (Romine et al.,
2013).

The Geostationary Coastal and Air Pollution Events
(GEO-CAPE) mission (Fishman et al., 2012) aims at im-
proving our understanding of both coastal ecosystems and air
quality from regional to continental scales. As the first phase
of the GEO-CAPE implementation, TEMPO (Zoogman et
al., 2017), launch date circa 2019, will provide hourly mea-
surements of NO2, HCHO, tropospheric ozone, aerosols, and
cloud parameters during the daytime. TEMPO will measure
solar backscattered light in the UV–visual spectral range. Im-
plemented on a geostationary platform, TEMPO retrievals
will achieve hourly observations of NO2 vertical column
density (VCD) at a native spatial resolution of 2× 4.5 km
during the daylight period. TEMPO’s high spatiotemporal
resolution will allow a more detailed assessment of emis-

Figure 2. Example of synthetic TEMPO NO2 column observations
over Denver, CO, at 17:00 MST on 2 July 2014.

sion inventories, e.g., urban-scale and large power plant NO2
emissions and mobile emissions that show significant spatial
and temporal variations due to urban transit patterns, than is
possible with existing LEO observations.

As TEMPO has not been launched yet, we generate syn-
thetic TEMPO NO2 observations by simulating the instru-
ment’s observing characteristics. We carried out a model
run, i.e., a forward integration of WRF-Chem for the pe-
riod from 2 July to 7 July 2014 with NO2 emissions spec-
ified by NEI 2011 (true). In the NO2 retrieval algorithm, a
layer-dependent box-air-mass factor (BAMF) represents the
sensitivity of the retrieved NO2 in a specific layer to the
true value in the atmosphere. The BAMF of NO2, as an op-
tically thin absorber, is a vector and determines the mea-
surement sensitivity to NO2 molecules at 35 pressure lev-
els. In the calculation of BAMFs, we follow the latest ver-
sion of the NASA standard product retrieval (level 2, ver-
sion 2.1, collection 3) algorithm (Bucsela et al., 2013) as-
suming the TEMPO measurement has similar characteris-
tics to the Ozone Monitoring Instrument (OMI). We assume
clear-sky conditions for all observing scenes. Cloudy-sky
scenes affect only the number of observations available as
the cloudy scenes are usually discarded in the data filtering
process. Without running a radiative transfer code, the ele-
ments of the BAMF vector are computed as a function of so-
lar zenith angle (SZA), viewing zenith angle (VZA), relative
azimuth angle (RAA), terrain reflectivity (Rt), terrain pres-
sure (Pt), atmospheric pressure level (p), and the NO2 pro-
file (Bucsela et al., 2013). The viewing parameters are com-
puted by simulating the viewing geometry based on the loca-
tion of ground pixels in relation to the observing instrument.
The geometry-related parameters (SZA, VZA, and RAA) are
computed hourly for each TEMPO observation using Mat-
lab functions sun_position.m and geodetic2aer.m with inputs
of the location and time of each TEMPO observation, and
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Table 4. Relative observation uncertainty σrel in synthetic TEMPO
NO2 column for each scenario.

Type NO2 column Gaussian distribution

Clean < 0.3× 1015 molec. com−2 N (200 %, 100 %)
Polluted ≥ 0.3× 1015 molec. com−2 N (7.5 %, 2.5 %)

the location (36.5◦ N, 100◦W) and altitude (35 786 km) of
the TEMPO sensor. The terrain reflectivity and terrain pres-
sure are sampled from the WRF-Chem nature run (NR; see
Sect. 3) for each TEMPO pixel. All the parameters have an
hourly frequency consistent with the TEMPO temporal ob-
servation pattern. Consequently, the NO2 profile with high
spatiotemporal resolution captures the diurnal variation in
NO2 and its urban–rural contrast. This contrast is essential
to accurate interpretation of the measured spectrum (Russell
et al., 2011; Laughner et al., 2016).

To generate synthetic TEMPO data, the modeled 3-D con-
centration fields from the NR are sampled in as similar a
manner to the planned TEMPO measurements as the trans-
port model permits: using the computed BAMF vertically,
hourly frequency, 2× 4.5 km nadir resolution and variations
following the Earth’s curvature horizontally. Figure 2 shows
an example of the spatial distribution of TEMPO data over
Denver, CO.

We describe the observation error as a relative value (σrel)

and a random draw from a Gaussian distribution to avoid us-
ing a fixed value. The magnitude of the relative mean un-
certainty of the NO2 column is different between clean and
polluted areas (Boersma et al., 2004). We follow their cat-
egorization of clean versus polluted regions and summarize
the mean and standard deviation of a Gaussian distribution
for each scenario in Table 4. For polluted regions, we give
a mean uncertainty of 7.5 %, which is lower than the 35 %
minimum in the OMI NO2 retrievals. First, most of these er-
rors are systematic, affecting comparison of different cities,
but have smaller variation across a single, small-area scene
of observations. Second, a relatively lower observation error
improves the efficiency of data assimilation and helps to ex-
amine the sensitivity to other parameters. Finally, as TEMPO
is expected to be operational no sooner than 2018, it is rea-
sonable to expect that the retrieval error that is dominated
by the air mass factor (AMF) in regions with large columns
will be reduced as a result of future improvements in AMF
simulation (Laughner et al., 2016). The synthetic observa-
tions assimilated are obtained by sampling the NR using the
TEMPO observation simulator and adding observation error
as yobs

=N(ytrσ 2), where ytr are the TEMPO NO2 observa-
tions sampled from the true emissions, and σ is the observa-
tion error standard deviation computed as σ = ytr

× σrel.

3 Assimilation experiments

We begin by performing OSSEs in the context of a perfect
model. The original NEI 2011 is used as the emission input
for the NR without any emission perturbation. We consider
the NR as the true atmosphere and sample meteorological
and NO2 observations from the NR. The control run (CR)
is a parallel model calculation to the NR and suffers from
imperfect model input and parametrization. The differences
between the NR and the CR in this study are the emission in-
puts and the initial conditions for the meteorology. We begin
by creating a NR and a CR simulation in the outer domain
of 12 km resolution (d01) without assimilating observations
using a simulation setup as described above in Sect. 2.1. We
impose a difference to the CR by using emissions in the CR
that are scaled to be 70 % of the NR emissions. We apply
the identical forecast model (WRF-Chem) for both the NR
and the CR to isolate the behavior of the ensemble filter al-
gorithm from the influence of the model errors. Then the NR
and the CR in the inner domain of 3 km (d02) are initial-
ized from the corresponding d01 simulations at 06:00 MST
on 2 July 2014. At the time of initialization, the NR and
CR on d02 share the same meteorological fields and differ
in NOx concentrations due to different emission inputs. Our
next step is to generate a 30-member ensemble from the CR.
We use WRFDA to generate an ensemble in meteorological
variables (Barker et al., 2012). For chemical states, we give
an ensemble in NOx emissions and concentrations using the
method described above in Sect. 2.3. The forecast of the CR
ensemble is the prior estimate of the states and will be com-
bined with the observations in the assimilation cycle to yield
the posterior states. By comparing the posterior emissions
with the true emission, we evaluate the data assimilation per-
formance. We run assimilation experiments from 10:00 MST
2 July 2014 to 18:00 MST 5 July 2014 with an assimilation
window of 1 h. We assimilate∼ 20 000 weather observations
in each assimilation window and ∼ 9000 TEMPO NO2 col-
umn observations in each daytime assimilation window.

We design a series of experiments to explore the opti-
mal approach to estimating NOx emissions as shown in Ta-
ble 1. In all experimental runs, we bias the CR initial emis-
sions to be 30 % below the reference emissions and examine
the ability of the assimilation to recover the reference emis-
sions. First, a reference assimilation run (REF) is conducted
without including the meteorological ensemble so that the
NR and CR ensembles have identical meteorological simula-
tions. This shows the best-case scenario to constrain emis-
sions, assuming no errors associated with meteorology. In
practice, the modeled meteorology is different from the true
atmosphere due to errors in the model initial conditions, pa-
rameterizations, and resolutions. In a more realistic simula-
tion case labeled as ENS, we initialize both the meteorol-
ogy and the NOx emissions using an ensemble in which both
weather observations and TEMPO NO2 columns are assimi-
lated. In ENS.1 the CR ensemble is generated by adding per-
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Figure 3. Time evolution of prior (black) and posterior (red) RMSEs and spreads of surface mesonet zonal wind observation in Denver from
2 July 10:00 to 5 July 18:00 for ENS.1 (a) and ENS.3 (b).

turbations to the CR mean state. In this example, the CR en-
semble mean meteorology is very close to the NR because
CR and NR differ in NOx emissions only. For the chem-
istry, the assimilated TEMPO NO2 observations are allowed
to update both the NO2 concentration and the NOx emissions
every hour. In ENS.2 we allow NO2 observations to update
NOx emissions but not the NOx concentrations and keep the
meteorology assimilation the same as ENS.1. By comparing
ENS.1 and ENS.2 we evaluate the additional benefits of up-
dating concentrations when observations are assimilated to
constrain emissions. In ENS.3, we use the meteorology of
the next day to initialize the CR ensemble so that there is
some difference between the CR ensemble mean and the NR
in the meteorology. To be specific, the CR meteorology en-
semble on 3 July 2014 09:00 MST is used as the CR ensem-
ble on 2 July 2014 09:00 MST. This is to mimic our imper-
fect knowledge of the atmospheric state and its uncertainty.
ENS.1 and ENS.3 differ only in the meteorology of the ini-
tial ensemble. By comparing these two runs, we evaluate the
sensitivity of the NO2 assimilation to the initialization of the
meteorology. Our final experiment, REA, mimics a general
approach to a chemistry-only data assimilation where the me-
teorology is extracted from an existing reanalysis. REA re-

initializes the meteorological state every hour with the best
estimate of meteorological states generated by ENS.1. By
design, REA has a single run of meteorology but uses an
ensemble of NO2 emissions and concentrations that are af-
fected by assimilation of TEMPO NO2 observations. As in
ENS.1, REA includes simultaneous updates to emissions and
concentrations.

4 Results

We evaluate the assimilation result by comparing with the
NR states. We calculate the RMSE of observed quantities by√

n∑
i

(ym
i − y

t
i)

2/n, where ym
i and yt

i are the model and true

values for the ith observation, respectively, and n is the to-
tal number of observations of interest. We also calculate the

RMSE of model states by

√
n∑
i

(xm
i − x

t
i)

2/n, where xm
i and

xt
i are the model and true states at the ith model grid point,

respectively, and n is the total number of grid points of in-
terest. For the wind variable, the grid points of interest are
all the points located within a sub-model space as shown in
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Figure 4. Time evolution of prior (black) and posterior (red) RMSEs of Denver TEMPO NO2 column observation from 2 July 10:00 to
5 July 18:00 for REF, ENS.1, ENS.2, ENS.3, and REA (from a to e).

Fig. 2, containing the lowest 10 model levels vertically. Be-
cause NOx is located mostly in the boundary layer, the NO2
transport error is determined by the meteorological errors in
the lowest 10 model levels. For NOx emission variables, the
grid points of interest are categorized as emission points with
emissions greater than 50 mol/(km2

× h). Our analysis does
not include emissions below 50 mol/(km2

× h) because the
observations over such low-emission regions have large un-
certainty and are not constrained. We also analyze the uncer-
tainty of the prior and posterior estimates. The uncertainty is
expressed by the 1-σ standard deviation of the ensemble.

4.1 Wind assimilation

The success of ensemble-based assimilation relies on how
well the ensemble system represents the uncertainty. One
way to test the success of an OSSE is to compare the RMSE
computed with respect to the true observations with the en-
semble spread directly. Figure 3 shows the evolution of the

RMSE and spread for mesonet observations of zonal wind for
ENS.1 and ENS.3. Overall, for each experiment the variation
and magnitude of prior ensemble spread are similar to those
of the prior RMSE, indicating that the ensemble develops a
good amount of spread for the success of OSSE.

We find that the errors in the observation space of mesonet
winds are reduced by 50 % on average from the prior to the
posterior estimates. The prior wind RMSE exhibits the peaks
in the afternoon and this results in the largest error reduc-
tion. The posterior wind RMSE shows a temporal average of
0.39 and 0.47 m s−1 in ENS.1 and ENS.3, respectively. Be-
cause ENS.1 is initialized with a meteorology ensemble with
its mean close to the true ensemble, the wind RMSE on the
first day is low and gradually grows to about 1 m s−1. In con-
trast, the prior wind RMSE in ENS.3 is as high as 2 m s−1

on the first day as a result of using an initial meteorology
ensemble that is very different from the true ensemble. The
wind RMSE evolution in the two experiments becomes very
similar after the afternoon of the third day of assimilation,
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Figure 5. Time evolution of averaged Denver prior (black), posterior (red), and true (green) emissions for REF, ENS.1, ENS.2, ENS.3, and
REA (from a to e).The error bar is defined by the ensemble spread and represents the uncertainty of the prior and posterior estimates.

4 July 2014. We conclude that the ensemble wind assimila-
tion system performance is independent of the initialization
approach after the first day.

4.2 TEMPO NO2 assimilation

We assimilate hourly TEMPO NO2 column observations and
take their difference with the modeled column to correct the
predicted NO2. Figure 4 shows the TEMPO NO2 column
RMSE evolution for all experiments. With perfect knowl-
edge of meteorology, REF shows significant reduction in
TEMPO NO2 RMSE in the first three update cycles and suc-
ceeds in recovering the true emissions (Fig. 5). The prior
TEMPO NO2 RMSE in the last 3 days varies below 3× 1014

molecules cm−2 as a result of perfect NO2 transport and im-

proved emissions. This ideal case with the assumption of per-
fect meteorology sets the upper limit of error reduction in
NO2 concentrations by assimilating the TEMPO NO2 obser-
vations. Compared with REF, ENS.1 shows a prior TEMPO
NO2 RMSE of 5–10× 1014 molecules cm−2 due to the er-
rors in NO2 transport and emissions. By assimilating NO2
observations, the TEMPO NO2 RMSE is reduced by more
than 50 % from the prior to the posterior emissions, indicat-
ing the potential of TEMPO NO2 observations to improve
the modeled atmospheric NO2 composition for the chemical
reanalysis product. Without updating the NO2 concentrations
in ENS.2, there is no reduction in the TEMPO NO2 RMSE as
expected. We find that the TEMPO NO2 RMSE varies above
1× 1015 molecules cm−2, being the largest among all exper-
iments because the emission estimations show very poor re-
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Figure 6. Time evolution of prior (black) and posterior (red) spreads of Denver TEMPO NO2 column observation from 2 July 10:00 to 5 July
18:00 for REF (a) and ENS.1 (b).

sults (shown in Sect. 4.3). The TEMPO NO2 RMSE devel-
opment in ENS.3 is very similar to ENS.1 except for the first
day when ENS.3 shows higher errors in the wind field, which
contribute to the NO2 transport errors. We find that the NO2
forecast using a single meteorology field in REA is very sim-
ilar to the ensemble NO2 forecast in ENS.1. This is because
there is very little difference between the 1 h meteorology
forecast and the ensemble forecast. In addition, the emission
estimation results are also very similar. This is different from
the previous study on CO2 forecasts, which showed that for
a 6 h forecast, the CO2 transport driven by a single meteoro-
logical field has weaker vertical mixing and a stronger CO2
vertical gradient when compared to the mean of the ensem-
ble CO2 forecasts initialized by the ensemble meteorological
field (Liu et al., 2011).

We compare the TEMPO NO2 column spread in REF and
ENS.1 in Fig. 6. For both experiments, the prior NO2 col-
umn spread varies with a magnitude that is similar to the
prior RMSE (Fig. 4), which is the range desired for the
NO2 ensemble spread. The NO2 forecast uncertainty repre-
sented by the NO2 ensemble spread results from the uncer-
tainties in NO2 transport and emissions since the uncertain-
ties in chemical production and removal processes are not
included in this study. The uncertainties in NO2 transport
are determined by the prior wind ensemble spread, which
is widest in the afternoon and stays as low as ∼ 0.5 m s−1

at other times for zonal wind (Fig. 3). The prior NOx
emission uncertainties are 60 % after inflation (Fig. 5). Un-
der these circumstances, the mean prior TEMPO NO2 col-
umn spread is 4.55× 1014 molecules cm−2 in REF, which
does not include NO2 transport uncertainties, and is 7.03
× 1014 molecules cm−2 in ENS.1, which takes uncertainties
in transport and emissions into account. The difference indi-
cates that NO2 transport contributes to 35 % of the total NO2
forecast uncertainties in our assimilation setup. The TEMPO
NO2 column spread in REF is very stable because it is de-
termined by the constant emission spread of 60 %. ENS.1

shows fluctuations in the evolution of TEMPO NO2 column
spread, which corresponds to the wind spread variation, with
increasing spread in the afternoon.

4.3 NOx emission estimation

We show the time evolution of the averaged urban emissions
for all experiments in Fig. 5. For all experiments, the pos-
terior emission ensemble spread is reduced compared to the
prior spread, suggesting the effectiveness of assimilated NO2
columns in constraining the emission uncertainties. In mak-
ing these comparisons, we ignore the emission correction of
the first assimilation cycle since the first update produces a
significant overcorrection to emissions because of the accu-
mulated underestimation of the NO2 concentrations. By ne-
glecting the first update, the prior emission ensemble mean of
the second cycle is still 70 % of the true emission ensemble
mean. During the nighttime when TEMPO observations are
not available, we calculate the ratio of the posterior to true
ensemble mean in the last cycle of daytime and use this to-
gether with the true nighttime emissions to derive the ensem-
ble mean for the nighttime emissions. The prior and posterior
emission ensembles of each nighttime hour are the same.

Not surprisingly, under the condition of perfect knowledge
in meteorological fields, assimilating TEMPO NO2 observa-
tions successfully improves the emissions within the first few
updates. The estimated emissions agree well with the true
emissions throughout the assimilation period. This demon-
strates the capability of a geostationary NO2 column obser-
vation system to constrain city-scale emissions and the reli-
ability of the ensemble-based assimilation method to project
the observed information to emissions.

We find that the errors in estimated emissions correlate
with the wind errors. In ENS.1, the posterior emission is
corrected to the true emission at the second cycle and stays
close to the true emission throughout the first day. The good
performance on the first day benefits from an initial meteo-
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Figure 7. The scatter plot between the prior RMSE of boundary
layer wind vectors and urban NOx emission posterior RMSE over
the 4-day daytime assimilation time period in ENS.1.

rology ensemble with its mean close to the true ensemble.
For the following 3 days, the emission estimates succeed in
recovering the true emissions during the morning and show
deviations from the true emissions in the afternoon as a re-
sult of the increased error in boundary layer winds. Figure 7
shows the dependence of errors in the inverted emissions to
the prior wind RMSE. The emission errors show high sensi-
tivity to the wind errors, with a slope of the regression line of
32.5 mol× km−2h−1 / (m× s−1). With a RMSE of model-
predicted wind vectors of 1 m s−1, the errors in the estimated
emissions are 30 mol× km−2 h−1 on average. For the day-
time cycles, the prior emission ensemble spread after infla-
tion is approximately 60 % and is reduced by more than half
after assimilation (Fig. 5). Even though the posterior ensem-
ble mean does not match with the true ensemble mean in the
afternoon, the true ensemble mean falls within the range of
the posterior ensemble spread with a few exceptions.

We find that the simultaneous update of emission and
concentration performs better than the emission-update-only
scheme with an hourly assimilation window. ENS.2 is a par-
allel assimilation run with ENS.1 but updates emissions only.
As shown in Fig. 5, the estimated emissions have very large
differences from the true emissions and the posterior ensem-
ble spread does not cover the true emissions. For example,
at 10:00 MST on 3 July, the posterior ensemble mean (red)
is very close to the true emissions. As a result of this, we
have a very good prior ensemble estimate (black) at 11:00.
However, the posterior emission at 11:00 is largely underesti-
mated compared with the true emissions. This is because the
posterior emissions from 07:00 to 09:00 are overestimated,
which results in overestimated NO2 concentrations at 10:00
and 11:00. As a result, even though the prior emissions from
10:00 to 11:00 are good, the model still overestimates NO2 at
11:00 due to the NO2 overestimation at 10:00. Without up-
dating the concentrations, the observed differences in NO2
columns are dominated by the NO2 concentration errors of
an hour ago and should not be attributed to the emissions.

We also find that the emission estimation should start af-
ter the meteorology assimilation becomes stable. As a com-
parison to ENS.1, ENS.3 is initialized with a meteorology
ensemble that is very different from the true emissions. On

the first day, the prior wind RMSE varies from 1 to 2 m s−1

(Fig. 3) and leads to enhanced NO2 transport errors. As a
result, the emission estimations are not successful for the
first day. After the afternoon of the second day (3 July), the
wind RMSE evolution is similar between ENS.1 and ENS.3
and as a result, the emission estimations perform in a similar
way. We recommend allowing meteorology assimilations to
stabilize from the initial transport errors before assimilating
chemical observations to constrain the emissions.

With an hourly re-initialization of meteorology, the NO2
transport error statistics are not important to emission esti-
mation if the current practice of using a single meteorolog-
ical field to transport NO2 is adopted. The emission estima-
tion performance in REA is very similar with that in ENS.1
(Fig. 5). This is because the difference in the 1 h NO2 fore-
cast driven by an ensemble meteorological field and a single
ensemble mean field is very small. Though the wind uncer-
tainties represented by the meteorological ensemble reach
1.5 m s−1 in the afternoon, our results show that the infor-
mation of wind uncertainties is not important for estimating
NOx emissions.

Finally, we examine the emission estimation performance
in ENS.1 at the scale of the model grid (3 km). As shown
in Fig. 8, the true emission shows high spatial variation
from the city center to the suburbs as well as distinct point
emission sources. In the example of the emission estimate
at 09:00, the posterior emission recovers the true emission
very well with the posterior RMSE of 21.6 mol/(km2

× h). In
contrast, the emission estimate at 16:00 shows a RMSE of
46.5 mol/(km2

× h) due to relatively high wind errors. The
posterior emission underestimates the emissions significantly
all over the city except for the regional overestimation in the
east. The emission hot spot of ∼ 250 mol/(km2

× h) in the
city center is not fully represented in the posterior estimate.
In conclusion, when wind errors are low, the difference be-
tween posterior emission and the true emission can be re-
duced to ±25 mol/(km2

× h) at most grid points. With high
wind errors, this difference varies significantly from point to
point and grows as large as 100 mol/(km2

× h).

5 Summary and conclusions

In this study, we explore an approach to estimating NOx
emissions by assimilating column NO2 and meteorological
observations in a system comprised of the regional CTM,
WRF-Chem, and the DART EAKF. This ensemble-based
data assimilation system allows the flexibility to assimilate
observations of meteorological and chemical variables on
various scales of space and time. Our approach anticipates
the future availability of long-term measurements, high spa-
tial resolution, and frequent repeats of multiple species from
satellites such as TEMPO.

Previous work has shown that NOx concentrations and
columns vary at fine scales, necessitating high spatiotem-
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Figure 8. The emission estimation results in ENS.1 at 09:00 MST (a) and 16:00 MST (b) on 3 July of true and posterior emissions and the
difference between true and posterior emissions (from left to right). The unit is mol km−2 h−1.

poral resolution to make use of them in the assimilation.
In the coupled chemical and meteorological data assimila-
tion system, we apply an OSSE framework to estimate NOx
emissions in Denver by jointly assimilating MADIS obser-
vation of meteorological variables as well as future TEMPO
NO2 columns. In the meteorological assimilation we suc-
cessfully reduced the posterior wind RMSE below 0.5 m s−1

in Denver to better represent the NO2 transport. The prior
wind RMSE and spread show peaks in the afternoon, thus
increasing the errors in NO2 transport. We find that the me-
teorological uncertainties contribute 35 % to the total NO2
forecast uncertainties, considering the emission uncertainties
of 60 %. Assimilation of TEMPO NO2 columns reduces er-
rors in the predicted NO2 concentration by more than 50 %,
which demonstrates the potential of future geostationary ob-
servations to constrain the NO2 chemical weather.

One of the goals of this work is to investigate the optimal
strategy to estimate NOx emissions. We test the upper limit
of emission constraints from TEMPO NO2 observations in
an ideal case assuming no errors associated with the mod-
eled meteorology. In the experiment of joint assimilation of
meteorology and chemical NO2, we find that the estimate
of emissions is most successful in the morning but degrades
in the afternoon when the prior wind RMSE grows above
1 m s−1. Considering the dependence of errors in estimated
emissions on the wind forecast errors, we recommend guar-
anteeing the accuracy in modeled wind and achieving a wind
RMSE below 1 m s−1 for the success of chemical assimila-
tion in inferring emissions at the 3 km scale of our model
grid. We show that the simultaneous update of NOx emis-
sions and concentrations outperforms the approach of updat-
ing emissions only. We recommend carrying out meteorol-

ogy assimilations to stabilize from the initial transport errors
before starting the emission inversion.

We would like to point out that the covariance of error
statistics between wind and NO2 are not utilized in the OSSE
assimilation in this paper. Results on carbon and weather as-
similation show that the variable localization scheme zeroes
out the background error covariance among prognostic vari-
ables that are not physically related, thus reducing sampling
errors (Kang et al., 2011). Specifically, they find that co-
variance between carbon fluxes and meteorological variables
should be neglected. However, the same result might not
be obtained for short-lived chemicals. The extent to which
chemical observations can be used to improve the assimila-
tion of meteorological variables and vice-versa in a situation
where we do not zero the covariance in the errors should be
pursued in future research.
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