

Supplement of

Ozone and haze pollution weakens net primary productivity in China

Xu Yue et al.

Correspondence to: Xu Yue (xuyueseas@gmail.com)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

PET	Species	[O ₃]	D ₃] Damage (%)		Sym ^c	Reference
	species	(ppbv)	Mean	Range	Sym	Kelefellee
A 11		37.5	-8.5	[-17.5, 0.5]		
	Mata analaria	62.5	-24.5	[-29, -20]	т	Lombardozzi
All	Wieta-analysis	87.5	-15	[-22, -8]	L	et al. (2013)
		112.5	-19.5	[-33, -6]		
	Dioog / Dimug	45	-2	[-6, 3]	W	Wittig et al.
	r iceu / r inus	92	-17	[-21, -12]	vv	(2007)
	Cinnamomum camphora					
ENF	/ Cyclobalanopsis glauca / Neolitsea sericea /	150	-26	[-32, -16]	Z	Zhang et al. (2012b)
	Schima superba					XZ ()
	Pinus tabulaeformis / Pinus armandii	85	-33.8	[-36.7, -31.0]	X	Xu et al. (2015)
	Betula / Fagus /	48	-14	[-16, -12]	117	Wittig et al.
DBF	Prunus / Quercus	82	-20	[-23, -16]	W	(2007)
		80	-21	[-53, -5]	Н	He et al. (2007)
	Cinnamomum camphora	95	-28.0	[-31.7, -20.4]	F	Feng et al. (2011a)
	Liriodendron chinense / Liquidambar formosana	150	-39	[-42, -36]	Z	Zhang et al. (2012b)
	Ginkgo biloba / Quercus mongolica	85	-34	[-51.5, -17]	X	Xu et al. (2015)
SHRUB	Calluna vulgaris	70	-7.1	[-16.4, -1.7]	Fo	Foot et al. (1996)
	Phillyrea latifolia L. / Arbutus unedo L. / Laurus nobilis L.	68 ^b	-6.4	[-8.8, -1.9]	Ν	Nali et al. (2004)
	Pistacia terebinthus / P. lentiscus / Viburnum lantana / V. tinus	76	-16.3	[-26.5, -9.5]	С	Calatayud et al. (2010)
	Ilex integra / Photinia × fraseri	150	-4.5	[-6, -3]	Z	Zhang et al. (2012b)
	Euonymus bungeanus Maxim. / Photinia × fraseri / Chionanthus retusus Lindl. & Paxt. / Cornus alba L.	70	-43.1	[-49.6, -36.5]	Z	Zhang et al. (2012a)

Table S1. Summary of measurements for ozone damage to photosynthesis ^a

	Southcom	38	0.2	[-4.5, 6.5]	М	Mulchi et al.
HERB_C3	Soybean	84	-11.3	[-19.4, -6.8]	IVI	(1992)
	Wheat	73	-20	[-24, -20]	F	Feng et al. (2008)
		82	-24	[-35, -12]	В	Biswas et al. (2008)
		55	-12.9	[-18.4, -7.3]	F	Feng et al. (2011b)
		100	-18.3	[-38.2, -8.2]	7.	Zheng et al.
		150	-25.9	[-42.5, -5.8]	Le	(2010)
	Rice	59	-28	[-34, -22]	А	Ainsworth (2008)
		54	-15.6	[-22.7, -8.4]	Р	Pang et al. (2009)
	Snap bean	71	-22.0	[-38.8, -4.5]	Y	Yuan et al. (2015)
	Spartina alterniflora	80	-23.7	[-34.7, -8.3]	Т	Taylor et al. (2002)
	Sugarcane clones	76	-25.9	[-38.1, -9.3]	G	Grantz et al.
		147	-50	[-73.7, -17.9]	U	(2012)
	Maize	80	-23.5	[-33.7, -16.8]	Fu	Fu et al. (2008)

^a Bold references are experiments performed for species in China. All O₃ concentrations are averaged for an 8-hour exposure period per day. Most of these statistics are derived based on multiple literature sources, species, or genotypes. ^b The average [O₃] is for 8-hour average converted from the 5-hour exposure at 110 ppbv. ^c The abbreviation of reference shown as symbol on Figure 5.

ID	Simulations ^a	[O ₃] (ppbv)	O ₃ damage ^b
1	YIBS_O000	0	Null
2	YIBS_O020L	20	Low
3	YIBS_O020H	20	High
4	YIBS_O040L	40	Low
5	YIBS_O040H	40	High
6	YIBS_O060L	60	Low
7	YIBS_O060H	60	High
8	YIBS_O080L	80	Low
9	YIBS_O080H	80	High
10	YIBS_O100L	100	Low
11	YIBS_O100H	100	High
12	YIBS_O120L	120	Low
13	YIBS_O120H	120	High
14	YIBS_O140L	140	Low
15	YIBS_O140H	140	High

Table S2. Summary of 15 simulations with offline vegetation model YIBs

^a Each simulation is performed for 1995-2011. The last ten years are used to calculate the ozone-induced damages to gross primary productivity (GPP).

^b Ozone damage applied in the simulation can be low or high for the same level of $[O_3]$, depending on the selection of damaging coefficients (Sitch et al., 2007).

Simulations	Base forcing	Temperature	PAR	Soil moisture
YG10_NAT	G10NATNO3			
YG10_ALL	G10NATNO3	G10ALLNO3	G10ALLNO3	G10ALLNO3
YG10_TAS	G10NATNO3	G10ALLNO3		
YG10_PAR	G10NATNO3		G10ALLNO3	
YG10_SLM	G10NATNO3			G10ALLNO3
YG30_NAT	G30NATNO3			
YG30_ALL	G30NATNO3	G30ALLNO3	G30ALLNO3	G30ALLNO3
YG30_TAS	G30NATNO3	G30ALLNO3		
YG30_PAR	G30NATNO3		G30ALLNO3	
YG30_SLM	G30NATNO3			G30ALLNO3
YM30_NAT	M30NATNO3			
YM30_ALL	M30NATNO3	M30ALLNO3	M30ALLNO3	M30ALLNO3
YM30_TAS	M30NATNO3	M30ALLNO3		
YM30_PAR	M30NATNO3		M30ALLNO3	
YM30_SLM	M30NATNO3			M30ALLNO3
YG10AIE_NAT	G10NATNO3_AIE			
YG10AIE_ALL	G10NATNO3_AIE	G10ALLNO3_AIE	G10ALLNO3_AIE	G10ALLNO3_AIE
YG10AIE_TAS	G10NATNO3_AIE	G10ALLNO3_AIE		
YG10AIE_PAR	G10NATNO3_AIE		G10ALLNO3_AIE	
YG10AIE_SLM	G10NATNO3_AIE			G10ALLNO3_AIE
YG30AIE_NAT	G30NATNO3_AIE			
YG30AIE_ALL	G30NATNO3_AIE	G30ALLNO3_AIE	G30ALLNO3_AIE	G30ALLNO3_AIE
YG30AIE_TAS	G30NATNO3_AIE	G30ALLNO3_AIE		
YG30AIE_PAR	G30NATNO3_AIE		G30ALLNO3_AIE	
YG30AIE_SLM	G30NATNO3_AIE			G30ALLNO3_AIE
YM30AIE_NAT	M30NATNO3_AIE			
YM30AIE_ALL	M30NATNO3_AIE	M30ALLNO3_AIE	M30ALLNO3_AIE	M30ALLNO3_AIE
YM30AIE_TAS	M30NATNO3_AIE	M30ALLNO3_AIE		
YM30AIE_PAR	M30NATNO3_AIE		M30ALLNO3_AIE	
YM30AIE_SLM	M30NATNO3_AIE			M30ALLNO3_AIE

Table S3. Summary of 30 simulations using offline vegetation model YIBs driven with simulated meteorology from the climate model ModelE2-YIBs

Logations	Time period	Sassan	[O ₃] (ppbv)	Reference		
Locations	Time period	Season	Obs.	Model	Kelelelice		
Longfongshan		Spring	43	47.3			
$(44.7^{\circ}N)$ 127.6°E)	2006	Summer	33	42.4	An et al. (2013)		
(44.7 N, 127.0 E)		Fall	29	38.0			
Shanadianzi	Ian 2005 Dec	Spring	43.2	46.0			
$(40.7^{\circ}N)$ 117 1°E)	Jan. $2003 - Dec.$	Summer	46.7	47.2	Xu et al. (2011)		
(40.7 N, 117.1 E)	2008	Fall	29.8	36.8			
	Aug. 2000	Spring	52.3	45.3			
	Aug. $2009 -$	Summer	73	48.4	Wang et al. (2013)		
Xinglong	Juli. 2010	Fall	43	37.3			
(40.4°N, 117.6°E)	Lun 2005 Can	Spring	52	45.3			
	Jun. $2005 - Sep.$	Summer	53	48.4	Ma et al. (2011)		
	2000	Fall	47	37.3			
Mission		Spring	48.7	45.5			
$\frac{1}{(40.5^{\circ}N)} = \frac{1}{1} \frac{1}{(40.5^{\circ}N)} = \frac{1}{(40.5^{\circ}N)$	2006	Summer	57.7	47.7	Wang et al. (2011)		
(40.3 N, 110.8 E)		Fall	39.3	36.7			
Wuqing (39.4°N, 117.0°E)	Jul. 2009 – Sep. 2009	Summer	44.1	50.9	Han et al. (2013)		
Mauntain Tai	Mar. 2004 – Feb. 2005	Spring	58.3	42.2			
$\begin{array}{c} \text{Mountain 1al} \\ (2(29NL 117 19E)) \end{array}$		Summer	64.3	62.4			
(30.3 N, 117.1 E)		Fall	57.7	39.0			
Manufalu Harris	Mar. 2004 –	Spring	59	46.5	L = (2007)		
Mountain Huang		Summer	45.3	57.7	L1 et al. (2007)		
(30.1 N, 118.2 E)	Feb. 2005	Fall	52.3	47.5			
Mountain Hua	Mar. 2004 –	Summer	58.3	48.2			
(34.5°N, 110.1°E)	Feb. 2005	Fall	44.3	35.3			
Waliguan	Aug. 2006	Summer	58	49.2	Xue et al. (2011)		
(36.3°N, 100.9°E)	Oct. 2011	Fall	53	43.7	Wang et al. (2015)		
D	G 2 000	Spring	46	56.4			
Dangxiong	Sep. 2009 –	Summer	37.7	46.0	Lin et al. (2015)		
$(30.5^{\circ}N, 91.1^{\circ}E)$	Aug. 2011	Fall	31.3	49.2			
Xinken (22.6°N, 113.6°E)	Oct. 2004	Fall	49	54.4	Zhang et al. (2008)		
		Spring	50.3	46.8			
Average		Summer	51.9	49.9			
_		Fall	43.3	41.4			

Table S4. Comparison of simulated O_3 concentrations with measurements at Chinese non-urban sites

	2010		2030 CLE		2030 MTFR	
	No AIE	With AIE	No AIE	With AIE	No AIE	With AIE
Temperature (°C)	-0.63 * (0.36)	-0.75 [*] (0.48)	-0.36 [*] (0.59)	-0.52 * (0.53)	-0.31 [*] (0.51)	-0.08 (0.35)
Direct SW (W m ⁻²)	-35.0 * (3.8)	-33.4 [*] (3.0)	-33.2 * (3.2)	-33.6 [*] (4.1)	-15.1 [*] (3.6)	-15.9 [*] (3.0)
Diffuse SW (W m ⁻²)	8.8 [*] (1.7)	3.0 [*] (1.7)	11.0 [*] (2.3)	5.6 [*] (2.4)	6.5 * (1.7)	2.0 * (1.7)
RH (%)	1.6 [*] (1.7)	0.6 (1.2)	1.1 [*] (1.9)	1.0 (2.5)	0.7 (1.9)	1.6 [*] (2.3)
Precipitation (mm d ⁻¹)	0.05 (0.33)	-0.48 [*] (0.39)	-0.07 (0.51)	-0.34 [*] (0.40)	0.10 (0.46)	0.01 (0.37)
Middle cloud (%)	0.8 [*] (1.2)	0.1 (1.4)	0.2 (1.3)	-0.1 (1.7)	0.6 (1.4)	0.0 (0.8)
Evaporation (%) ^b	-4.0 * (1.4)	-8.3 * (1.9)	-2.8 [*] (2.2)	-7.0 [*] (1.5)	-0.6 (2.7)	-2.6 [*] (1.2)
Soil moisture (%) ^b	7.0 [*] (7.4)	-0.2 (9.5)	3.7 (8.9)	1.4 (9.5)	5.2 [*] (9.2)	4.8 (7.3)

Table S5. Aerosol-induced changes in annual mean radiative and meteorological fields in eastern China ^a

^a Significant changes (p < 0.05) are marked with asterisks. Significant changes (p < 0.01) are shown in bold. Values refer to mean changes and one standard deviation (bracketed). Abbreviations for variables include shortwave radiation (SW), relative humidity (RH), and aerosol indirect radiative effects (AIE). All the values are the averages over the box domain of Fig. S5a.

^b Changes are relative values: $(Y2-Y1)/Y1 \times 100\%$, where Y2 and Y1 are, respectively, simulations with and without aerosol effects.

	2010		2030 CLE		2030 MTFR	
	No AIE	With AIE	No AIE	With AIE	No AIE	With AIE
Temperature (°C)	-0.48 * (0.37)	-0.69 * (0.36)	-0.34 [*] (0.49)	-0.53 * (0.45)	-0.31 [*] (0.39)	-0.32 (0.50)
Direct SW (W m ⁻²)	-35.9 * (5.3)	-35.4 [*] (4.6)	-36.4 * (3.7)	-38.8 * (6.0)	-17.4 [*] (3.4)	-16.6 * (5.3)
Diffuse SW (W m ⁻²)	11.7 [*] (3.0)	6.2 [*] (3.0)	13.2 [*] (2.7)	7.0 [*] (1.8)	7.4 [*] (3.3)	3.1 [*] (1.6)
RH (%)	1.7 [*] (2.8)	0.0 (2.6)	2.2 [*] (2.5)	2.7 [*] (1.8)	1.9 [*] (2.3)	1.5 (2.2)
Precipitation (mm d ⁻¹)	0.15 (0.96)	-0.85 * (0.79)	0.11 (0.88)	0.05 (0.82)	0.40 (0.72)	0.17 (0.58)
Middle cloud (%)	1.0 (2.1)	0.3 (1.7)	0.4 (2.1)	0.6 (2.1)	0.6 (2.1)	-0.1 (2.3)
Evaporation (%)	-3.2 [*] (2.6)	-8.0 * (2.4)	-3.2 [*] (3.6)	-7.7 [*] (2.7)	-0.7 (3.8)	-2.5 [*] (2.9)
Soil moisture (%)	7.6 [*] (13.2)	-2.5 (12.0)	5.7 [*] (11.2)	6.7 (11.0)	8.1 [*] (9.2)	3.9 (9.5)

Table S6. Aerosol-induced changes in summer mean radiative and meteorological fields in eastern China ^a

^a The same as Table S5 but for summer variables

Figure S1. Land cover fraction in China. Each grid square contains vegetation cover for 8 plant functional types (PFTs) used by the YIBs vegetation model.

Figure S2. Chinese emissions from global inventories used for simulations and intercomparison. Three inventories, GAINS for 2010, GAINS_CLE for 2030, and GAINS_MTFR for 2030, within the red dashed boxes are used in the simulations. The other three, HTAP for 2010, RCP8.5 for 2010, and RCP8.5 for 2030 are used for comparison. All emissions are broken into five sectors, including energy, industry, residential, transportation, and agriculture. The inventory GAINS refers to the v4a version of the Greenhouse Gas and Air Pollution Interactions and Synergies integrated assessment model (<u>http://gains.iiasa.ac.at/models/</u>). The inventory GAINS_CLE is developed based on current legislation emissions. The inventory GAINS_MTFR is adopted from the Emissions Database for Global Atmospheric Research (EDGAR, http://edgar.jrc.ec.europa.eu). Units: Tg yr⁻¹.

Figure S3. Simulated year-to-year carbon fluxes. Annual total carbon fluxes of (a) GPP, (b) NPP, and (c) NEE in China for the 20-year simulations with ModelE2-YIBs climate model (Table 2). Different colors represent results from simulations G10ALLHO3 (blue), G30ALLHO3 (red), and M30ALLHO3 (green), indicating different influences from CO_2 fertilization, climate change, and O_3 damages.

Figure S4. Similar to Fig. 1 but for the annual carbon fluxes.

Figure S5. Similar to Fig. 2 but for the annual air pollution.

Figure S6. Similar to Fig. 4 but for the annual radiative fluxes.

Figure S7. Simulated air pollution in 2010 and the contributions from anthropogenic emissions. Panels shown are for (a, b) AOD at 550 nm, (c, d) $[O_3]$, and (e, f) PM_{2.5} concentrations for the summer of the year 2010. Results for the left panels are from G10ALLNO3. Results for the right panels are calculated as $(1 - G10NATNO3/G10ALLNO3) \times 100\%$. The average value over the box domain (21°-38°N, 102°-122°E) of (a) is shown in the title bracket of each subpanel.

(a) Relative changes in stomatal conductance (%)

Figure S8. Changes in (a) stomatal conductance and the consequent changes in (b) temperature, (c) relative humidity, and (d) precipitation due to O₃ vegetation damages. The relative changes in (a) are calculated as $(\frac{1}{2} (G10ALLHO3+G10ALLLO3)/G10ALLNO3 - 1) \times 100\%$. The absolute changes in (b-d) are calculated as $\frac{1}{2}(G10ALLHO3+G10ALLLO3) - G10ALLNO3$. Significant changes (p < 0.05) are marked with black dots.

(b) Absolute changes in temperature (K)

Figure S9. Predicted offline percentage damage to summer GPP caused by O₃ (a, b) with natural emission alone and (c, d) with both natural and anthropogenic emissions. Simulations are performed with the climate model ModelE2-YIBs, which does not feed O₃ vegetation damages back to affect biometeorology, plant growth, and ecosystem physiology. Results are calculated as (a) (G10NATLO3_OFF/G10NATNO3 – 1) ×100%, (b) (G10NATHO3_OFF/G10NATNO3 – 1) ×100%, (c) (G10ALLLO3_OFF /G10ALLNO3 – 1) ×100%, and (d) (G10ALLHO3_OFF /G10ALLNO3 – 1) ×100%. The maximum and minimum fractional changes are marked at the bottom of each panel. The average value over the whole China domain is shown in the title bracket of each subpanel.

Figure S10. Simulated summer surface radiation and the perturbations by anthropogenic aerosols. Simulations are performed with the climate model ModelE2-YIBs. Panels show (a) total, (c) direct, and (e) diffuse visible solar radiation without anthropogenic aerosols (G10NATNO3) and (b, d, f) their perturbations by anthropogenic aerosols (G10ALLNO3 - G10NATNO3) at the year 2010. The average value over the box domain of (a) is shown in the top center of each subpanel. Units: W m⁻².

Figure S11. Changes in summer meteorology due to both direct and indirect radiative effects of anthropogenic aerosols. All changes are calculated as the differences between the simulations G10ALLNO3 AIE and G10NATNO3 AIE. For (a) temperature, (b) precipitation, and (c) relative humidity, we show the absolute changes as G10ALLNO3 AIE - G10NATNO3 AIE. For (d) middle cloud cover, (e) evaporation, content, show relative and (f) soil water we the changes as (G10ALLNO3 AIE/G10NATNO3 AIE – 1) \times 100%. Significant changes (p<0.05) are marked with black dots.

Figure S12. Decomposition of aerosol-induced changes in summer NPP with both aerosol direct and indirect effects. Changes in NPP are caused by aerosol-induced changes in (b) surface air temperature, (c) photosynthetically active radiation (PAR), (d) soil moisture, and (a) the combination of above three effects. Simulations are performed with the offline YIBs vegetation model driven with meteorological forcings simulated with the ModelE2-YIBs climate model (Table S3). The color scale for the first panel is different from the others. The average NPP perturbation over the box domain in (a) is shown in the bracket of each title. Units: g C m⁻² day⁻¹.

Reference

- Ainsworth, E. A.: Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration, Global Change Biology, 14, 1642-1650, doi:10.1111/J.1365-2486.2008.01594.X, 2008.
- An, X. Q., Sun, Z. B., Lin, W. L., Jin, M., and Li, N.: Emission inventory evaluation using observations of regional atmospheric background stations of China, Journal of Environmental Sciences-China, 25, 537-546, doi:10.1016/S1001-0742(12)60082-5, 2013.
- Biswas, D. K., Xu, H., Li, Y. G., Sun, J. Z., Wang, X. Z., Han, X. G., and Jiang, G. M.: Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years, Global Change Biology, 14, 46-59, doi:10.1111/j.1365-2486.2007.01477.x, 2008.
- Calatayud, V., Marco, F., Cervero, J., Sanchez-Pena, G., and Sanz, M. J.: Contrasting ozone sensitivity in related evergreen and deciduous shrubs, Environmental Pollution, 158, 3580-3587, doi:10.1016/j.envpol.2010.08.013, 2010.
- Feng, Z. Z., Kobayashi, K., and Ainsworth, E. A.: Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis, Global Change Biology, 14, 2696-2708, doi:10.1111/J.1365-2486.2008.01673.X, 2008.
- Feng, Z. Z., Niu, J. F., Zhang, W. W., Wang, X. K., Yao, F. F., and Tian, Y.: Effects of ozone exposure on sub-tropical evergreen Cinnamomum camphora seedlings grown in different nitrogen loads, Trees-Structure and Function, 25, 617-625, doi:10.1007/s00468-011-0538-x, 2011a.
- Feng, Z. Z., Pang, J., Kobayashi, K., Zhu, J. G., and Ort, D. R.: Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions, Global Change Biology, 17, 580-591, doi:10.1111/j.1365-2486.2010.02184.x, 2011b.
- Foot, J. P., Caporn, S. J. M., Lee, J. A., and Ashenden, T. W.: The effect of long-term ozone fumigation on the growth, physiology and frost sensitivity of Calluna vulgaris, New Phytologist, 133, 503-511, doi:10.1111/J.1469-8137.1996.Tb01918.X, 1996.
- Fu, Y., Zhao, T., Sun, J., Cao, Y., Hu, Y., Xu, L., and Shi, Y.: Effects of Elevated Ozone Concentration on Maize Photosynthesis and Grain Quality, Acta Agriculturae Boreali-Sinica, 23, 120-124, doi:10.7668/hbnxb.2008.06.028, 2008.
- Grantz, D. A., Vu, H. B., Tew, T. L., and Veremis, J. C.: Sensitivity of Gas Exchange Parameters to Ozone in Diverse C-4 Sugarcane Hybrids, Crop Science, 52, 1270-1280, doi:10.2135/Cropsci2011.08.0413, 2012.
- Han, S. Q., Zhang, M., Zhao, C. S., Lu, X. Q., Ran, L., Han, M., Li, P. Y., and Li, X. J.: Differences in ozone photochemical characteristics between the megacity Tianjin and its rural surroundings, Atmospheric Environment, 79, 209-216, doi:10.1016/j.atmosenv.2013.06.045, 2013.
- He, X. Y., Fu, S. L., Chen, W., Zhao, T. H., Xu, S., and Tuba, Z.: Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area, Photosynthetica, 45, 555-561, doi:10.1007/s11099-007-0095-0, 2007.

- Li, J., Wang, Z. F., Akimoto, H., Gao, C., Pochanart, P., and Wang, X. Q.: Modeling study of ozone seasonal cycle in lower troposphere over east Asia, J. Geophys. Res., 112, D22s25, doi:10.1029/2006jd008209, 2007.
- Lin, W. L., Xu, X. B., Zheng, X. D., Dawa, J., Baima, C., and Ma, J.: Two-year measurements of surface ozone at Dangxiong, a remote highland site in the Tibetan Plateau, Journal of Environmental Sciences-China, 31, 133-145, doi:10.1016/j.jes.2014.10.022, 2015.
- Lombardozzi, D., Sparks, J. P., and Bonan, G.: Integrating O3 influences on terrestrial processes: photosynthetic and stomatal response data available for regional and global modeling, Biogeosciences, 10, 6815-6831, doi:10.5194/bg-10-6815-2013, 2013.
- Ma, Z. Q., Wang, Y. S., Zhang, X. L., and Xu, J.: Comparison of ozone between Beijing and downstream area, Environmental Science, 32, 924-929, 2011.
- Mulchi, C. L., Slaughter, L., Saleem, M., Lee, E. H., Pausch, R., and Rowland, R.: Growth and Physiological-Characteristics of Soybean in Open-Top Chambers in Response to Ozone and Increased Atmospheric Co2, Agriculture Ecosystems & Environment, 38, 107-118, doi:10.1016/0167-8809(92)90172-8, 1992.
- Nali, C., Paoletti, E., Marabottini, R., Della Rocca, G., Lorenzini, G., Paolacci, A. R., Ciaffi, M., and Badiani, M.: Ecophysiological and biochemical, strategies of response to ozone in Mediterranean evergreen broadleaf species, Atmospheric Environment, 38, 2247-2257, doi:10.1016/j.atmosenv.2003.11.043, 2004.
- Pang, J., Kobayashi, K., and Zhu, J. G.: Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone, Agriculture Ecosystems & Environment, 132, 203-211, doi:10.1016/j.agee.2009.03.012, 2009.
- Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink, Nature, 448, 791-794, doi:10.1038/Nature06059, 2007.
- Taylor, M. D., Sinn, J. P., Davis, D. D., and Pell, E. J.: The impact of ozone on a salt marsh cordgrass (Spartina alterniflora), Environmental Pollution, 120, 701-705, 2002.
- Wang, Q. Y., Gao, R. S., Cao, J. J., Schwarz, J. P., Fahey, D. W., Shen, Z. X., Hu, T. F., Wang, P., Xu, X. B., and Huang, R. J.: Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China, Journal of Atmospheric Chemistry, 72, 19-26, doi:10.1007/s10874-015-9301-9, 2015.
- Wang, Y., Zhang, Y., Hao, J., and Luo, M.: Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution, Atmospheric Chemistry and Physics, 11, 3511-3525, doi:10.5194/acp-11-3511-2011, 2011.
- Wang, Y. H., Hu, B., Tang, G. Q., Ji, D. S., Zhang, H. X., Bai, J. H., Wang, X. K., and Wang, Y. S.: Characteristics of ozone and its precursors in Northern China: A comparative study of three sites, Atmospheric Research, 132, 450-459, doi:10.1016/j.atmosres.2013.04.005, 2013.
- Wittig, V. E., Ainsworth, E. A., and Long, S. P.: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees?

A meta-analytic review of the last 3 decades of experiments, Plant Cell and Environment, 30, 1150-1162, doi:10.1111/J.1365-3040.2007.01717.X, 2007.

- Xu, J., Zhang, X. L., Xu, X. F., Zhao, X. J., Meng, W., and Pu, W. W.: Measurement of surface ozone and its precursors in urban and rural sites in Beijing, Second International Conference on Mining Engineering and Metallurgical Technology (Memt 2011), 2, 255-261, doi:10.1016/j.proeps.2011.09.041, 2011.
- Xu, S., He, X., Chen, W., Huang, Y., Zhao, Y., and Li, B.: Differential sensitivity of four urban tree species to elevated O3, Urban Forestry & Urban Greening, 14, 1166-1173, doi:10.1016/j.ufug.2015.10.015, 2015.
- Xue, L. K., Wang, T., Zhang, J. M., Zhang, X. C., Deliger, Poon, C. N., Ding, A. J., Zhou, X. H., Wu, W. S., Tang, J., Zhang, Q. Z., and Wang, W. X.: Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China: New insights from the 2006 summer study, J. Geophys. Res., 116, D07306, doi:10.1029/2010jd014735, 2011.
- Yuan, X. Y., Calatayud, V., Jiang, L. J., Manning, W. J., Hayes, F., Tian, Y., and Feng, Z. Z.: Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea (EDU), Environmental Pollution, 205, 199-208, doi:10.1016/j.envpol.2015.05.043, 2015.
- Zhang, L., Su, B. Y., Xu, H., and Li, Y. G.: Growth and photosynthetic responses of four landscape shrub species to elevated ozone, Photosynthetica, 50, 67-76, doi:Doi 10.1007/S11099-012-0004-Z, 2012a.
- Zhang, W. W., Feng, Z. Z., Wang, X. K., and Niu, J. F.: Responses of native broadleaved woody species to elevated ozone in subtropical China, Environmental Pollution, 163, 149-157, doi:10.1016/j.envpol.2011.12.035, 2012b.
- Zhang, Y. H., Hu, M., Zhong, L. J., Wiedensohler, A., Liu, S. C., Andreae, M. O., Wang, W., and Fan, S. J.: Regional Integrated Experiments on Air Quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview, Atmospheric Environment, 42, 6157-6173, doi:10.1016/j.atmosenv.2008.03.025, 2008.
- Zheng, Y., Zhang, J., Wu, R., Zhao, Z., and Hu, C.: Effects of ozone stress on photosynthesis and physiological characteristics of winter wheat in northern China, Journal of Agro-Environment Science, 29, 1429-1436, 2010.