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Abstract. We present two new products from near-infrared
Greenhouse Gases Observing Satellite (GOSAT) observa-
tions: lowermost tropospheric (LMT, from 0 to 2.5 km) and
upper tropospheric–stratospheric (U , above 2.5 km) carbon
dioxide partial column mixing ratios. We compare these
new products to aircraft profiles and remote surface flask
measurements and find that the seasonal and year-to-year
variations in the new partial column mixing ratios signif-
icantly improve upon the Atmospheric CO2 Observations
from Space (ACOS) and GOSAT (ACOS-GOSAT) initial
guess and/or a priori, with distinct patterns in the LMT andU
seasonal cycles that match validation data. For land monthly
averages, we find errors of 1.9, 0.7, and 0.8 ppm for retrieved
GOSAT LMT, U , and XCO2; for ocean monthly averages,
we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT
LMT, U , and XCO2. In the southern hemispheric biomass
burning season, the new partial columns show similar pat-
terns to MODIS fire maps and MOPITT multispectral CO
for both vertical levels, despite a flat ACOS-GOSAT prior,
and a CO–CO2 emission factor comparable to published val-
ues. The difference of LMT and U , useful for evaluation of
model transport error, has also been validated with a monthly
average error of 0.8 (1.4) ppm for ocean (land). LMT is more

locally influenced than U , meaning that local fluxes can now
be better separated from CO2 transported from far away.

1 Introduction

The Greenhouse Gases Observing Satellite (GOSAT) has
been measuring global satellite CO2 columns since 2009,
achieving less than 0.3 ppm variability in regional biases
and 1.7 ppm single observation error versus the Total Car-
bon Column Observing Network (TCCON; Kulawik et al.,
2016), where the error is estimated as described in Table 3.
The sensitivity of near-infrared radiances to CO2 varies dif-
ferently by altitude in the strong and weak bands, resulting in
the capability of retrieving multiple pieces of vertical infor-
mation from near-infrared observations, with 3+ degrees of
freedom (DOF; i.e., independent pieces of information) for
TCCON (Connor et al., 2016; Kuai et al., 2012), 1.6 degrees
of freedom for GOSAT (this paper), and 2.0 degrees of free-
dom for OCO-2 (Kulawik, unpublished result). In this paper
we use the intermediate retrieved profile from Atmospheric
CO2 Observations from Space (ACOS) and GOSAT (ACOS-
GOSAT), processing to construct, bias correct, and validate
two partial column mixing ratios from near-infrared GOSAT
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Figure 1. XCO2 full column measurement (left) and the two par-
tial columns that we introduce (right): the lowermost troposphere
(LMT), a partial column from the surface to approximately 2.5 km,
and the partial column above 2.5 km (U ).

observations (schematically shown in Fig. 1). The partially
correlated errors and sensitivity of these two partial column
volume mixing ratios (or mole fractions) are characterized
so that they can be used for flux estimation and other science
analyses.

An important goal of carbon cycle research is to improve
top-down estimates of CO2 fluxes, which assimilate data into
models to trace the observed variability in the long-lived
tracer backwards to sources and sinks. Historically, such top-
down flux estimates have relied on surface observations (e.g.,
Peters et al., 2007; Chevallier et al., 2010), though it was pos-
tulated 15 years ago that satellite-based measurements of col-
umn CO2 could dramatically reduce top-down-based flux un-
certainties (Rayner and O’Brien, 2001; O’Brien and Rayner,
2002). Guided by this early work, most GOSAT analyses
have focused solely on total column CO2 (or XCO2). Sepa-
ration of XCO2 into two vertical columns has several advan-
tages over column XCO2 and surface observations, which
should improve our ability to accurately estimate fluxes:

– Flux estimates from column measurements rely on ob-
servations up to continental scales away (Liu et al.,
2015; Feng et al., 2016), whereas lowermost tropo-
sphere (LMT) back trajectories show a more local in-
fluence on surface fluxes, making flux estimates more
responsive to observations and less susceptible to trans-
port error, a major driver of flux uncertainties (Houwel-
ing et al., 2015; Liu et al., 2015, 2011; Chevallier et al.,
2014; Prather et al., 2008).

– Stephens et al. (2007) show that vertical gradient in
mole fraction determined from two points in the atmo-
spheric column better constrains model transport and
partitioning between northern extratropical land fluxes
and land fluxes further south since vertical transport is

an uncertainty in flux estimates (Deng et al., 2015; Lau-
vaux and Davis, 2014; Stephens et al., 2007).

– In the majority of cases, the LMT covers the entire
boundary layer, which partially mitigates one source
of flask assimilation error, the boundary layer height
(Denning et al., 1996; Gurney et al., 2002; Rayner and
O’Brien, 2001).

– GOSAT provides observations in many areas that are
sparsely covered by surface-based measurements.

In this work, we evaluate the precision and comparability
of these new LMT and U partial column products derived
from GOSAT, with the goal of providing a higher level of
information to the flux inversion estimates than is available
from the total column alone. This paper is structured as fol-
lows. We introduce the datasets used in Sect. 2 and the the-
oretical basis in Sect. 3. Section 4 describes methodology,
e.g., the coincidence criteria and GOSAT bias correction.
Section 4.1 uses back trajectories to estimate the distance
to peak sensitivity to surface fluxes for LMT and U . Sec-
tion 5 shows comparisons to aircraft observations and sur-
face sites, including maps of the two partial column mixing
ratios. Section 5.4 shows patterns of the two partial column
mixing ratios versus MOPITT multi-spectral CO retrievals,
and Sect. 5.5 looks at errors of LMT minus U . Section 6 dis-
cusses and summarizes these results.

2 Datasets

There are two datasets used for validation of the new partial
column mixing ratios. Measurements of CO2 vertical profiles
from aircraft profiles, which extend from the surface to some-
where between 5 and 13 km, can be used to directly validate
what is seen with the two GOSAT partial column mixing ra-
tios. The second dataset that is used is CO2 measurements
from remote surface flask sites, which are used to compare to
the lower GOSAT partial column, assuming that CO2 mixing
ratios in the lower 0–2.5 km are well mixed at remote sites.
TCCON, which currently measures full columns, is used to
diagnose discrepancies between aircraft and GOSAT at the
sites where both exist. We additionally show the Southern
Hemisphere, which has interesting CO2 patterns, very lit-
tle structure in the prior, and no observations used in the
bias correction. We show patterns from burning and trans-
port in the Southern Hemisphere from vertically resolved
GOSAT, vertically resolved MOPITT CO, and MODIS fire
counts. Figure 2 shows aircraft and surface validation loca-
tions, along with GOSAT coincidences, with the surface site
locations and names shown in Table 1.

2.1 GOSAT

GOSAT takes measurements of reflected sunlight in three
near-infrared bands with a circular footprint of approxi-
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Table 1. Sites used for validation in this paper.

Type Site Site name Country Latitude Longitude Matches

Aircraft AOA Aircraft Observation of Japan 28.8◦ N 148.4◦ E 77
Atmospheric trace gases, JMA

Aircraft BNE Beaver Crossing, Nebraska USA 40.8◦ N 97.2◦W 452
Aircraft CAR Briggsdale, Colorado USA 40.4◦ N 104.3◦W 1599
Aircraft CMA Cape May, New Jersey USA 38.8◦ N 74.3◦W 536
Aircraft DND Dahlen, North Dakota USA 47.5◦ N 99.2◦W 415
Aircraft ESP Estevan Point, British Columbia Canada 49.4◦ N 126.5◦W 142
Aircraft ETL East Trout Lake, Saskatchewan Canada 54.4◦ N 104.9◦W 237
Aircraft HIL Homer, Illinois USA 40.1◦ N 87.9◦W 1039
Aircraft LEF Park Falls, Wisconsin USA 45.9◦ N 90.3◦W 717
Aircraft NHA Worcester, Massachusetts USA 42.9◦ N 70.5◦W 430
Aircraft PFA Poker Flats, Alaska USA 65.1◦ N 147.3◦W 107
Aircraft RTA Rarotonga Cook Island 21.3◦ S 159.8◦W 228
Aircraft SCA Charleston, South Carolina USA 32.8◦ N 79.6◦W 764
Aircraft SGP Southern Great Plains, Oklahoma USA 36.6◦ N 97.5◦W 6066
Aircraft TGC Sinton, Texas USA 27.7◦ N 96.9◦W 941
Aircraft THD Trinidad Head, California USA 41.1◦ N 124.2◦W 226
Aircraft WBI West Branch, Iowa USA 41.7◦ N 91.4◦W 602

Surface MNM Minamitori Shima Japan 24.3◦ N 154.0◦ E 66 732
Surface MLO Mauna Loa, Hawaii USA 19.5◦ N 155.6◦W 940
Surface KUM Cape Kumukahi, Hawaii USA 19.5◦ N 154.8◦W 876
Surface GMI Mariana Islands Guam 13.4◦ N 144.6◦ E 1043
Surface CHR Christmas Island Kiribati 1.7◦ N 157.2◦W 1038
Surface ASC Ascension Island UK 8.0◦ S 14.4◦W 2125
Surface SMO Tutuila American Samoa 14.2◦ S 170.6◦W 4267
Surface EIC Easter Island Chile 27.2◦ S 109.4◦W 432
Surface SEY Mahé Island Seychelles 4.7◦ S 55.5◦ E 679

Aircraft HIPPO 2S November, 2009; Pacific Ocean 0–39◦ S 161–178◦W 156
Aircraft HIPPO 2N November, 2009; Pacific Ocean 6–41◦ S 151–179◦ E 277
Aircraft HIPPO 3S April, 2010; Pacific Ocean 16◦ S–14◦ N 160–170◦W 68
Aircraft HIPPO 3N April, 2010; Pacific Ocean 16◦ S–8◦ N 161–170◦W 71
Aircraft HIPPO 4S June, 2011; Pacific Ocean 5–15◦ N 160–164◦W 13
Aircraft HIPPO 4N July, 2011; Pacific Ocean 4-44◦ N 134◦ E–172◦W 1054
Aircraft HIPPO 5S August, 2011 3◦ S–15◦ N 160–166◦W 20
Aircraft HIPPO 5N September, 2011 18◦ S–21◦ N 156–169◦W 363
Aircraft AJAX California–Nevada USA 37.3–38.5◦ N 116–121◦W 35

mately 10.5 km diameter at the nadir (Kuze et al., 2016;
Yokota et al., 2009; Crisp et al., 2012). The ACOS v3.5
processing of GOSAT XCO2 observations is used from the
Lite range of products, with a quality flag of 0 (good), along
with the full CO2 profile, full CO2 averaging kernel matrix,
and full CO2 error matrices from ancillary GOSAT files. We
use both nadir land observations (looking straight down) and
ocean glint observations (sunglint tracking mode), but not
medium gain over land, as there is not a sufficient number
of colocated validation data to validate medium gain obser-
vations.

2.2 Aircraft profiles

2.2.1 ESRL aircraft profiles

Aircraft and ocean measurements taken by NOAA’s Earth
System Research Laboratory (ESRL) are obtained from an
observation package product (GLOBALVIEW-CO2, 2013;
Sweeney et al., 2015).

2.2.2 Department of Energy (DOE) and Lawrence
Berkeley National Laboratory (LBNL) aircraft
profiles

Aircraft observations collected over the Southern Great
Plains can be obtained from the DOE ARM archive (www.
arm.gov, search for CO2 flasks at SGP; see Table 1 for all
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Figure 2. Validation locations. The four sets of validation data shown here are ESRL aircraft profiles (orange), which occur over land (in
the US) and ocean (RTA, Rarotonga, and AOA), AJAX aircraft data (green) in the western US, the HIPPO aircraft profiles (light blue), and
remote ocean surface sites (dark blue). The matching GOSAT locations are shown as stars and the validation locations are shown as outlined
circles. The number of GOSAT observations in each set are shown as the “n=” number in the lower left of the plot.

site abbreviations) under ARM–ACME campaigns and are
described in Biraud et al. (2013). Flask-based observations
are collected twice a week, weather permitting, at an altitude
ranging from 0.2 to 5 km.

2.2.3 Aircraft profile extension and errors

Aircraft measurements are extended down to the sur-
face using the lowest measured value, and extended
to the tropopause pressure using the aircraft value at
the highest altitude. The tropopause pressure is used
from the National Centers for Environmental Predic-
tion (NCEP, http://www.esrl.noaa.gov/psd/data/gridded/data.
ncep.reanalysis.html). The CarbonTracker model (CT2015,
see below) is used to extend the profile through the strato-
sphere. The aircraft flask measurements themselves have er-
rors, but these are small compared to the other errors in the
comparisons (e.g., colocation, extending the aircraft to the
top of the atmosphere)

2.3 Remote NOAA/ESRL oceanic surface in situ
measurements

Remote surface sites are from the Earth System Research
Laboratory Observation Package Data Product surface flask
measurements (Conway et al., 1994). The “remote oceanic”
locations used in this paper are selected to have at least 97 %
ocean along a circle with a 5◦ radius around the location.
The locations are shown in Fig. 2 and Table 1. For each sta-

tion, there can be different options represented by file names
(e.g., daytime, nighttime, representative); in this study “rep-
resentative” files are used, with outliers removed if that op-
tion is available. Remote ocean sites have been selected be-
cause (a) although the vertical air mass observed by GOSAT
LMT will not match the vertical air mass observed by the
surface site, the long correlation length scales of remote lo-
cations should make the comparisons useful, and (b) these
sites are not used in development of the bias correction terms
(described in Sect. 3.5 and Appendix A) and so are an inde-
pendent test of bias correction for observations over ocean.

2.4 HIPPO aircraft profiles

The HIAPER Pole-to-Pole Observations (HIPPO) project
samples the atmosphere in a series of profiles from the sur-
face to 9–13 km, from about 80◦ N to 60◦ S. The campaigns
covered different years as well as different seasons, namely
HIPPO 1: January 2009, HIPPO 2: November 2009, HIPPO
3: March–April 2010, HIPPO 4: June–July 2011, and HIPPO
5: August–September 2011. The northbound and southbound
legs of HIPPO campaigns were separately analyzed in this
paper, e.g., 3S corresponds to the southbound leg, occur-
ring 27 March–7 April 2010, and 3N corresponds to the
northbound leg, occurring 7–16 April 2010. Frankenberg
et al. (2016) were recently successful in evaluating satel-
lite measurements of column CO2 over ocean (including
GOSAT) using HIPPO. In this paper, we look at comparisons

Atmos. Chem. Phys., 17, 5407–5438, 2017 www.atmos-chem-phys.net/17/5407/2017/

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html


S. S. Kulawik et al.: Near-infrared ACOS-GOSAT observations 5411

between GOSAT and HIPPO 2–5 (HIPPO 1 occurs prior to
GOSAT launch) using the HIPPO-identified profiles and the
CO2_X field, based on 1 s data averaged to 10 s, from two
(harmonized) sensors: CO2-QCLS and CO2-OMS. Due to
the GOSAT glint coverage span of about 40◦, and after ap-
plying quality screening, many of the comparisons had fairly
limited latitudinal spans, with the GOSAT improvement over
the prior found more in improving the bias rather than im-
proving the standard deviation. The combined campaigns
span a wide range of GOSAT latitudes.

2.5 AJAX aircraft profiles

The Alpha Jet Atmospheric Experiment (AJAX) project
(https://earthscience.arc.nasa.gov/ajax) collects in situ CO2
vertical profiles from the surface to 8 km in several loca-
tions, including Railroad Valley, NV; Merced, CA; and other
locations on the west coast. Most of the AJAX Version 4
profiles used in this paper were collected to coincide with
GOSAT overpasses. Trace gas instruments and the meteo-
rological measurement sensor are housed in an unpressur-
ized sensor pod that is mounted under the wing. A cav-
ity ring-down spectrometer (Picarro Inc. G2301-m) that has
been modified for flight conditions is routinely calibrated to
NOAA/ESRL gas standards. Calculated 1σ overall uncer-
tainties are 0.16 ppm for CO2 (Hamill et al., 2016; Tanaka
et al., 2016).

2.6 MOPITT v6 multispectral CO retrieval

In Sect. 5, we utilize satellite-based CO observations from
Measurement of Pollution in the Troposphere (MOPITT) to
understand the spatial variability in LMT and U that may be
attributed to fires. The MOPITT instrument on EOS-Terra is
in a sun-synchronous orbit with mean local time overpasses
of 10:30 and 22:30. It has global coverage in ∼ 3 days with
a 22 km× 22 km horizontal footprint. MOPITT uses gas fil-
ter correlation radiometry (GFCR) to measure atmospheric
CO at 4.6 µm (thermal infrared) and 2.3 µm (shortwave in-
frared) and is the only satellite instrument capable of simul-
taneous multispectral retrievals of CO with enhanced sensi-
tivity to near-surface CO for daytime land observations (Wor-
den et al., 2010). MOPITT CO data have been validated for
each retrieval algorithm version using aircraft in situ mea-
surements (Deeter et al., 2014). Here we use only daytime
MOPITT V6J (multispectral) data that have been filtered to
require cloud free scenes from both MOPITT and MODIS
cloud detection. We also use a measure of sensitivity to near-
surface CO computed from the trace of the averaging kernel
for the lowest 200 hPa of the atmosphere to select scenes that
contain relatively more information from the measurement.

2.7 MODIS fire counts

MODIS fire counts (found at https://lance.modaps.eosdis.
nasa.gov/cgi-bin/imagery/firemaps.cgi) are used to identify

biomass burning locations. Fire maps are created by Jacques
Descloitres with a fire detection algorithm developed by
Louis Giglio. Blue marble background image created by
Reto Stokli (Giglio et al., 2003; Davies et al., 2004).

2.8 CarbonTracker model

CarbonTracker CT2015 (http://carbontracker.noaa.gov; Pe-
ters et al., 2007) is used to extend aircraft profiles from the
stratosphere to the top of the atmosphere (similarly to in
Frankenberg et al., 2016 and Inoue et al., 2013) and to quan-
tify colocation error (similarly to Kulawik et al., 2016).

2.9 TCCON

TCCON observations, version GGG2014 (Wunch et al.,
2011a) at Lamont (Wennberg et al., 2014b) and Park Falls
(Wennberg et al., 2014a), where both aircraft and TCCON
observations have colocated measurements, are used to eval-
uate XCO2 calculated from the aircraft observations (ex-
tended as described by Sect. 3.7). Although the TCCON ob-
servations contain information that allows each measurement
to be split into two or three vertical columns, the focus of the
TCCON project has been on column observations of CO2
(and columns of other trace gases). Recent work by Kuai et
al. (2012), Dohe et al. (2013), and Connor et al. (2016) has
explored vertical profile retrievals from TCCON, but there is
not yet an operational product.

2.10 AirCore

While the boundary layer and lower free troposphere are rel-
atively well sampled by a network of in situ and flask mea-
surements over the globe, the upper troposphere and lower
stratosphere (UT–LS) is rarely sampled due to the expense
and the difficulty involved in making measurements at these
altitudes. The recent advent of the AirCore (Karion et al.,
2010; Membrive et al., 2016) has enable more frequent pro-
files that sample as high as 30 km, well into the stratosphere.
Profiles in this study were dried with MgClO4 and captured
in a long stainless steel tube coated with a thin silicate layer
(Silconert 1000) and later (within 3 h of sampling) analyzed
for CO2, CH4, and CO. Given the 3 h time interval between
sampling and analysis of the AirCore and the average rate
of molecular diffusion of CO2, the resolution of the AirCore
is better than 1 kPa for the bottom 95 % of the atmospheric
column. AirCores were used in Appendix A to estimate the
error incurred by extending aircraft CO2 profiles above 6 km.

3 LMT and U theoretical basis

In Sect. 3.1, equations are presented describing the sensitiv-
ity and errors of the new products. In Sect. 3.2, a simulation
is shown of what GOSAT is expected to see from space using
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the developed equations and aircraft profiles from the South-
ern Great Plains (SGP) aircraft site.

3.1 Equations describing sensitivity and errors

The ACOS retrievals (O’Dell et al., 2012) utilize an opti-
mal estimation approach with a priori constraints (Rodgers,
2000). It is common practice to represent the state parameter
to be retrieved on an altitude grid that is finer than the alti-
tude resolution of the instrument (e.g., Bowman et al., 2006;
Deeter et al., 2003; von Clarmann et al., 2003). A major ad-
vantage of this approach is that it allows the calculation of
diagnostics, such as averaging kernels, which can be used to
characterize the sensitivity of the measurement. Constraints
(regularization) must be applied in order to stabilize the re-
trieval (e.g., Rodgers, 2000; Tikhonov, 1963; Twomey, 1963;
Steck and von Clarmann, 2001; Kulawik et al., 2006). The
constraints may be chosen to constrain absolute values and/or
the shape of the retrieved result.

In the ACOS processing, CO2 is first retrieved as a 20-level
profile, where the GOSAT pressure levels are sigma levels,
with the fifth level approximately 2.5 km above the surface.
The retrieved CO2 profile averages 1.6 DOF with about 0.8
DOF for levels 16–20 (where level 20 is the surface) and 0.8
DOF for levels 1–15 (where level 1 is at the top of the at-
mosphere). This intermediate profile has significant altitude-
dependent biases and cannot be used scientifically as is, but
rather this profile is compacted to a single column quantity,
XCO2, as the final step in the ACOS processing. In this work,
we post-process the ACOS-GOSAT intermediate profile to
calculate and characterize the partial column mixing ratio
represented by levels 16–20, which is named LMT_XCO2
or LMT for short, and the partial column mixing ratio repre-
sented by levels 1–15, which is named U_XCO2 or U for
short. The two partial columns each have about 0.8 DOF,
meaning that they will each capture about 80 % of the true
variability of their partial column.

The equation for the linear estimate of x, the retrieved CO2
profile (Connor et al., 2008; Rodgers, 2000), is

x̂ = xa+Axx (xtrue− xa)+Axv (va − vtrue)+Gxε, (1)

where

– x is the retrieved CO2 profile, size nCO2 (20 for ACOS-
GOSAT);

– xa is the a priori profile, size nCO2 ;

– xtrue is the true value, size nCO2 ;

– Axx is the nCO2xnCO2 CO2 profile averaging kernel;

– Axv (va − vtrue) is the cross-state error representing the
propagation of error from non-CO2-retrieved parame-
ters, v (aerosols, albedo, etc.), into retrieved CO2. This
variable is called “u” in Connor et al., 2008;

– va is the interferent value (used to generate fit radi-
ances), size ninterf. For ACOS-GOSAT ninterf is 26 (27)
for ocean (land);

– vtrue is the true interferent value, size ninterf;

– Axv is size nCO2 × ninterf;

– Gx is the gain matrix, size nCO2xns, where ns is the
number of spectral points; and

– ε is the spectral error, size ns.

The pressure weighting function h (size nCO2) is used to
convert the retrieved CO2 profile to XCO2 by tracking each
level’s contribution to the column quantity.

hTXCO2
= [0.0260.0530.0530.053· · ·0.0530.0530.0530.026] (2a)

The sensitivity to the top or bottom level is half that of other
levels as these levels contribute to only one layer, rather than
two adjacent layers. The GOSAT levels are chosen such that
the pressure weighting is very similar for all layers and all
observations. However, the pressure weighting is not identi-
cal for all layers and all observations and the values used in
our analysis are the actual values in the files, with average
values shown here, rounded to two significant digits.

The LMT pressure weighting function is obtained by start-
ing with the pressure weighting function for XCO2, setting
levels 1–15 to zero, then normalizing so that the sum of all
entries adds to 1. For the U pressure weighting function, lev-
els 16–20 are set to zero, then the vector is normalized so that
the sum is 1. The LMT and U pressure weighting functions
are

hTLMT = [0000. . .00.220.220.220.220.11] (2b)

hTU = [0.0350.0690.069. . .0.0690.06900000]. (2c)

To calculate XCO2, the equation is

XCO2 = hTXCO2
· x̂. (3)

The fraction of total air in each of the partial column averages
is

fXCO2 = 1 (4a)
fLMT = 0.235 (4b)
fU = 0.765. (4c)

Combining Eqs. (1), (2a), and (3), the XCO2 estimate is

XĈO2 =XCO2+hTXCO2
Axx (xtrue− xa)+hTXCO2

Axv (vtrue− va)+hTXCO2
Gxε (5)

XĈO2 =XCO2a + axx (xtrue− xa)

+ axv (vtrue− va)+ gxε, (6)

where axx is the column averaging kernel, axx = hTXCO2
Axx

(see Appendix A of Connor, 2008).
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Similarly, to calculate the linear estimate for the two-
vector [LMT, U ], Eq. (1) is multiplied by the 2xnCO2 pres-
sure weighting function, h= [hLMT, hU ]:(

LM̂T
Û

)
=

(
LMT
Û

)
a

+hTAxx (xtrue− xa)

+hTAxv (vtrue− va)+hTGxε (7a)(
LM̂T
U

)
=

(
LMT
U

)
a

+ axx (xtrue− xa)

+ axv (vtrue− va)+ gxε, (7b)

where now axx = [hLMT,hU ]
TAxx , a (2× nCO2) matrix,

axv = [hLMT,hU ]
TAxv , a 2 by ninterf matrix, and gx =

[hLMT,hU ]
TGx , a (2× ns) matrix.

The last two terms in Eq. (6) represent the cross-state
and measurement errors, respectively, and are often jointly
called the observation error (Worden et al., 2004). The er-
ror in [LMT, U ] is estimated by taking the covariance of(

LM̂T
Û

)
−

(
LMT
U

)
True

, a (2× 2) matrix. The errors can

be calculated either from taking the covariance Eq. (6a) or
from Eq. (6b). The covariance of Eq. (6a) has a fairly simple
form in terms of the standard definitions of the error covari-
ances for the full profile, Sinterf and Smeas, which are included
in the ACOS-GOSAT ancillary products, and Ssmoothing can
be calculated from the standard equation Ssmoothing = (I −

A)Sa(I −A)T (Rodgers, 2000), with A the (nCO2 × nCO2)

CO2 profile averaging kernel and Sa the a priori covariance,
both included in the ACOS-GOSAT products.

σ 2
[LMT,U ] = hT Ssmoothingh+hT Sinterfereh+hT Smeash (8a)

=

(
hTintSsmoothhint hTintSsmoothhU
hTUSsmoothhint hTUSsmoothhU

)
(8b)

+

(
hTintSobshint hTintSobshU
hTUSobshint hTUSobshU

)
=

(
σ 2

LMT c · σLMTσU
c · σLMTσU σ 2

U

)
(8c)

Equation (7) estimates the predicted errors for LMT and
U , where σ[LMT,U ] is a (2× 2) matrix. The diagonals are
the square of the predicted error for each parameter, and
the off diagonals also depend on the correlated error, c, be-
tween these parameters. Table 2 shows the predicted errors
for LMT, U , and the error correlation between LMT and U .
The predicted errors in Table 2 are larger than the actual er-
rors, as seen later in Tables 4 and 5; error for averaged obser-
vations is estimated in Sect. 4.1.1. The a priori errors, calcu-
lated from σ 2

= hT Sah, are 34 and 9 ppm for LMT and U ,
respectively, which are much larger than the posterior errors,
indicating that these quantities are largely unconstrained by
the retrieval’s prior assumption.

Through the same process as Eqs. (6)–(7), theXCO2 error
is

σXCO2 = hTXCO2
SsmoothhXCO2 = hTXCO2

SobshXCO2 . (9)

Table 2. Predicted errors and degrees of freedom for LMT and U .
As seen in Table 3, the predicted errors are much larger than the
actual errors.

Land Ocean

LMT error (ppm) 4.3 ppm 4.4 ppm
U error (ppm) 1.7 ppm 1.7 ppm
U , LMT pred. error correlation −0.72 −0.78
LMT DOF 0.86 0.86
U DOF 0.84 0.83
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Figure 3. Sensitivity of XCO2 (black), partitioned into the LMT
(red) and U (blue) partial columns for an average land averaging
kernel. The LMT sensitivity is approximately 1 near the surface and
drops off steadily with decreasing pressure.

XCO2 can also be calculated as a function of LMT and U ,
and the XCO2 errors can be calculated as a function of the
errors in [LMT, U ]. These are shown in Eq. (9).

XCO2 = flmtLMTCO2 + fuUCO2 (10a)

σXCO2=

√(
flmt fu

)( σ2
lmt σlmtσucorr

σlmtσucorr σ2
u

)(
flmt
fu

)
(10b)

σXCO2=

√
0.232σ 2

lmt+ σ
2
u0.772

+ 2× 0.77∗0.23σlmtσucorr, (10c)

where fLMT and fU are the air masses for the LMT and U
partial columns (0.236, 0.764), respectively, σlmt is the error
for LMT, and corr is the error correlation between LMT and
U .

The normalized column averaging kernel is used to see
the sensitivity of the column to the true state at different lev-
els, with a value of 1 meaning perfect sensitivity and a value
of 0 meaning no sensitivity. The normalized column averag-
ing kernel is the column averaging kernel, a, divided by the
pressure weighting function for each layer, hXCO2 , and mul-
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tiplied by the fraction of air in the partial column.

a_normLMT[i]= (hLMT[i]ACO2 [i,j ])/hXCO2 [j ]× fLMT (11a)
a_normU [i]= (hU [i]ACO2 [i,j ])/hXCO2 [j ]× fU (11b)

Figure 3 shows the normalized column averaging kernels for
LMT, U , and XCO2 for a land scene. The ocean averag-
ing kernel is very similar. Although the LMT partial col-
umn mixing ratio sums the five levels within about 2.5 km
of the ground, the LMT has some sensitivity to the true state
at all 20 levels because the GOSAT radiances are not able
to fully resolve between CO2 within the surface to 2.5 km
versus above this. As expected, the sensitivity for LMT plus
U is equal to the sensitivity for XCO2, and the sensitivity
for LMT is weighted to the surface, whereas the sensitivity
for U is weighted to the top of the atmosphere. The nega-
tive averaging kernels for LMT in the stratosphere are par-
tially a consequence of the ACOS prior constraint, which
does not allow stratospheric variability. Actual stratospheric
variability is transferred to the closest levels that are allowed
to vary, and the surface compensates for the radiance error in-
duced by this, resulting in a negative sensitivity of the LMT
to the true state in the stratosphere. If the stratospheric truth
matches that of the a priori, then there will be no propaga-
tion of error into LMT or U . The averaging kernels shown in
Fig. 3 are similar to those calculated for TCCON in Fig. 2 of
Connor et al. (2016). As seen in Fig. 3, the quantity LMT +
U (i.e.,XCO2) has a sensitivity of 1 between the surface and
600 hPa, with sensitivity dropping off slowly with altitude
above 600 hPa. The 0.8 DOF for LMT indicates the sensi-
tivity of the retrieved LMT to the true LMT. The missing 0.2
DOF indicates sensitivity to the prior and/or sensitivity to the
U part of the true profile. Since the sensitivity of LMT and U
together is 1 near the surface, it is mainly sensitivity to the U
part of the true profile. Similarly the 0.8 DOF for U indicates
some sensitivity to the LMT and some sensitivity to the U
prior.

3.2 Seasonal behavior of LMT, U , and XCO2
estimated using only aircraft measurements and
GOSAT sensitivity (no GOSAT observations)

This section answers the following questions:

1. Do U and LMT have unique seasonal signatures?

2. How much of the XCO2 variability is due to LMT ver-
sus U variability?

3. How much does the prior influence the LMT and U re-
trievals?

This section simulates GOSAT retrievals using the linear
estimate given the aircraft in situ profiles at the SGP site
(37◦ N, 95◦W), the GOSAT prior, and the GOSAT averag-
ing kernels. This analysis assumes that the CO2 profile mea-
sured by aircraft at SGP (extended by the CarbonTracker

Figure 4. Simulated GOSAT retrievals from SGP aircraft profiles,
Eqs. (5)–(6), and the GOSAT averaging kernels. (a) Time series
of LMT (red) and U (blue) with monthly averages of LMT (red
dashed) and U (blue dashed); (b) seasonal cycle, averaging in 1-
month increments. Green dotted and dashed lines are the initial
guess or a priori (xa). (c) Same as (b) except that the prior is set
to a constant, showing that LMT and U results are not strongly in-
fluenced by the prior. (d) Same as (b) but showing U (blue) and
XCO2 (black).

model above 5.5 km) is the true CO2 profile, which is then
plugged into Eqs. (5) and (6) to calculate the LMT and U
that GOSAT would see at the SGP site, using the GOSAT
averaging kernels and priors. The measurement error and in-
terference terms are assumed to be zero for this analysis.

Using this analysis, the importance of the prior is assessed
by using either a prior that is constant in location and time
(with only a 2 ppm yr−1 secular increase) or the GOSAT
prior, in Eqs. (5) and (6). We assess how much LMT and
U contribute to the variations seen in XCO2 using the vari-
ability of the LMT and U partial columns combined with the
weighting each has in the full column. The seasonal cycles
of each partial column mixing ratio are studied by adjusting
all aircraft measurements at SGP (2009 to 2014) to a com-
mon year (2012) by applying a 2 ppm yr−1 secular trend and
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Table 3. Definition of comparison terms.

Colocation bias: the mean difference of CarbonTracker matched to the satellite minus CarbonTracker matched
to the aircraft. A persistent colocation bias indicates sampling differences. For example, a seasonal colocation
error was found to result from time-of-day difference between validation data collection time and the GOSAT
overpass (see Fig. 11). For ocean flasks, where the validation data are only at the surface, vertical colocation
bias of 0.3 ppm results from sampling difference between the model sampled with the LMT averaging kernel
and the model at the surface (see Table 4).

Colocation error, εcoloc: the standard deviation of CarbonTracker matched to the satellite minus CarbonTracker
matched to the aircraft or surface flask. This represents error introduced by the satellite not observing at the
exact time and location of the validation data. The surface flasks have an additional term, the standard deviation
of CarbonTracker sampled with the LMT averaging kernel and CarbonTracker sampled at the surface.

Correlated error: correlated error is the component of the standard deviation that does not reduce when addi-
tional GOSAT observations are averaged. Think of this quantity as a regional, daily (or a bit longer) bias. See
Eq. (11).

Random error: random error is the component of the standard deviation that reduces when more GOSAT obser-
vations are averaged. See Eq. (11).

GOSAT bias: the mean of GOSAT minus the validation data. The bias is calculated by latitude, season, and
time. Different biases at different locations can cause phantom fluxes.

GOSAT error: the standard deviation of GOSAT minus the validation data.

Predicted error: the error predicted by the GOSAT optimal estimation retrieval system.

Prior bias: the mean of the GOSAT prior minus the validation data.

True mean: the mean of all validation data at that site. For stations, the mean is averaged over time, and for each
HIPPO campaign, it is averaged over latitude and longitude.

True variability: the standard deviation of the validation data for each station or campaign. The true variability
is higher over land than ocean, or for the LMT versus U . Observations with larger error will be more useful at
locations where there is higher true variability.

(n= 1), (n= 15): this specifies how many GOSAT observations are averaged prior to the calculation of bias or
error. All GOSAT observations that are averaged match the same validation data point. The size of n matters
for errors, with larger averaged numbers resulting in smaller errors (but not reducing as fast as the square root
of n).

binning all observations by month. This method was used
rather than fitting the aircraft observations using the NOAA
fitting routine (CCGCRV; described in Thoning et al., 1989)
to estimate the seasonal cycle shape because we found that
the aircraft observations (matched to GOSAT and within the
GOSAT record) are not sufficiently smooth to result in a con-
sistent fit. Figure 4 shows the estimates of LMT, U , and
XCO2 using SGP aircraft profiles calculated as described
above. There is significant variability in the individual air-
craft measurements, seen in panel (a), but this is smoothed
out on monthly timescales, seen in the remaining panels. The
dashed lines in panel (a) represent fits using the NOAA fit-
ting software CCGCRV. Single U partial column mixing ra-
tios are rarely more than 1 ppm different from the fit, whereas
single LMT mixing ratios can be up to 5 ppm different (e.g.,
see summer, 2009; January, 2010; summer, 2011).

Figure 4b and c show the difference between the simu-
lated retrievals with the GOSAT a priori (b) versus a flat a
priori (c) for the seasonal cycle. The patterns are very sim-

ilar, indicating that the signal is primarily coming from the
data rather than the prior, with standard deviations of 0.8 ppm
for LMT and 0.3 ppm for U (these changes are fully charac-
terized when applying the GOSAT prior to the aircraft true
profile with the specified a priori vector).

Figure 4d shows U versus XCO2. At first glance U and
XCO2 look very similar, but by comparing panels (d) and
(b), the XCO2 deviations move towards LMT relative to the
prior. The seasonal variabilities ofXCO2, LMT, andU (max-
imum minus minimum) are 3.3, 4.8, and 3.3 ppm, respec-
tively. Note that the seasonal variations in LMT and U have
a 0.56 correlation, suggesting some independence between
these two variables. A straightforward calculation of vari-
ation times air fraction (Eq. 4) shows that the fraction of
variation of XCO2 resulting from variations in LMT is ap-
proximately 30 %, and the fraction of the variation in XCO2
coming from U variation is roughly 70 %. It is expected that
U has the much larger impact on XCO2 due to the fact that
the full column is 77 % LMT. A similar calculation at Park
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Table 4. Biases versus validation data. See Table 3 for terminology used in this table. Note that all data are averaged by location or campaign.
The ± represents the variability of the bias by location or campaign, a key metric in the data quality.

Type Ocean HIPPO ESRL ESRL AJAX
surface ocean ocean land land
(ppm) (ppm) (ppm) (ppm) (ppm)

Colocation bias LMT −0.3± 0.3 −0.3± 0.2 −0.3± 0.4 −0.6± 0.7 −0.6
−0.3± 0.8

U 0.1± 0.1 −0.1± 0.1 0.0± 0.2 0.0
XCO2 0.0± 0.1 −0.1± 0.1 −0.1± 0.3 −0.1

True mean LMT 391.3± 1.6 392.2± 1.6 391.7± 1.1 392.2± 3.1 393.6
U 391.1± 1.2 391.3± 1.6 391.2± 0.6 392.2
XCO2 391.4± 1.3 391.4± 1.5 391.5± 1.1 392.4

Prior bias LMT −0.8± 1.5 0.1± 2.4 −1.5± 4.5 −0.4± 1.2 −1.4
U 1.2± 0.1 −1.2± 1.6 0.6± 0.6 0.4
XCO2 0.9± 1.4 0.4± 2.3 −0.2± 0.6 −0.1

GOSAT bias LMT 1.1± 1.1 0.1± 0.3 0.3± 0.7 −0.2± 1.0 0.4
U 0.1± 0.3 0.7± 0.1 0.3± 0.9 1.0
XCO2 0.1± 0.2 0.6± 0.4 0.1± 0.9 0.7

Table 5. Standard deviations versus validation data. See Table 3 for definitions of terms. The colocation errors have been subtracted out from
the GOSAT errors.

Type Ocean HIPPO ESRL ESRL AJAX
surface ocean ocean land land
(ppm) (ppm) (ppm) (ppm) (ppm)

Colocation error LMT 0.5± 0.2 0.3± 0.1 0.3± 0.1 2.1± 0.7 1.1
0.9± 0.4

U 0.1± 0.1 0.2± 0.0 0.5± 0.3 0.1
XCO2 0.1± 0.2 0.2± 0.1 0.8± 0.3 0.2

Predicted error (n= 1) LMT 4.3± 0.2 4.3± 0.3 4.3± 0.1 4.6± 0.3 4.1
U 1.7± 0.1 1.7± 0.0 1.8± 0.0 1.7
XCO2 0.6± 0.1 0.7± 0.1 0.9± 0.1 0.8

GOSAT error (n= 1) LMT 1.7± 0.4 1.7± 0.3 1.5± 0.1 3.4± 0.7 2.9
U 0.8± 0.1 0.8± 0.0 1.3± 0.3 1.1
XCO2 0.9± 0.1 0.8± 0.1 1.7± 0.4 0.9

True variability LMT 1.3± 0.8 0.6± 0.2 0.9± 0.6 5.5± 2.0 2.8
U 0.4± 0.3 0.8± 0.8 2.0± 0.2 2.0
XCO2 0.3± 0.3 0.8± 0.8 2.5± 0.6 2.4

Prior error (n= 15) LMT 2.2± 0.9 0.5± 0.3 0.7± 0.2 2.1± 1.0 –
U 0.3± 0.1 0.5± 0.0 0.9± 0.2 –
XCO2 0.3± 0.1 0.5± 0.1 1.1± 0.6 –

GOSAT error (n= 15) LMT 0.4± 0.3 0.5± 0.1 0.4± 0.1 1.9± 1.1 –
U 0.4± 0.1 0.6± 0.1 0.7± 0.4 –
XCO2 0.3± 0.1 0.4± 0.1 0.8± 0.5 –

Falls, where the LMT seasonal cycle is 20 ppm and the U
seasonal cycle is 5 ppm, finds that 45 % of the seasonal vari-
ability in XCO2 results from U and 55 % from LMT at Park
Falls (46◦ N). Here, the high variability in LMT will have a
much larger impact on XCO2 despite the fact that it repre-
sents a smaller part of the column.

Figure 4 indicates that LMT and U do have unique sea-
sonal cycles, which result from the data rather than the prior.
The LMT partial column, which contributes to 30 % of the
variations observed in XCO2, has a much larger seasonal
variability than the U partial column or the XCO2 column,
and it has earlier seasonal cycle maximums and minimums.
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4 Methods

We test the sensitivity of the new products to surface fluxes
using back-trajectory footprints in Sect. 4.1. Section 4.2 dis-
cusses how GOSAT is compared to aircraft. Section 4.3–4.5
describe the bias correction, how the aircraft data are ex-
tended to the full atmosphere, and the coincidence criteria.

4.1 Sensitivity of the LMT and U partial column
mixing ratios to surface fluxes

To compare LMT and U sensitivity to surface fluxes, we
look at 10-day back-trajectory footprints created using the
Weather Research and Forecasting (WRF) model combined
with the Stochastic Time-Inverted Lagrangian Transport
(STILT) model (WRF-STILT; Nehrkorn et al., 2010). The
“footprint” for an observation is a map of the surface loca-
tions to which an observation is sensitive. Footprints are cre-
ated for each of the 20 GOSAT levels and are then convolved
with the LMT andU averaging kernels. The averaging kernel
estimates the sensitivity of the GOSAT measurement of each
quantity to the true state at each level. Footprint maps are
created that show the sensitivity of each type of GOSAT ob-
servation to sources and sinks. This was done for 10 GOSAT
observations in the Amazon. The average distance for the
nearest 10 % of footprints is 260 km for LMT and 790 km
for U . It is likely that there is also a very long tail in the U
sensitivity, based on the work of Liu et al. (2015) and Feng
et al. (2016).

4.2 Comparisons to aircraft

The correct way to validate GOSAT estimates of [LMT, U ]
is to compare the GOSAT observations to an estimate of
what GOSAT should observe, given its sensitivity, when the
true atmospheric state is set to the aircraft CO2 profile using
Eq. (6). The agreement should be within the GOSAT obser-
vation error as the smoothing term’s effects on the compari-
son are removed by the application of the GOSAT averaging
kernel to the validation data. The aircraft measurements are
assumed to be unbiased and have a small measurement error
compared to the errors in the GOSAT profiles.

4.3 GOSAT bias correction

The GOSAT standard XCO2 product has regional biases
and errors, which can be partially corrected using jointly re-
trieved parameters, pre-filters, or radiance properties (e.g.,
the ratio of the signal in the strong vs. weak band, retrieved
albedo slopes or values, retrieved aerosol slopes or values)
and through post-processing screening, e.g., removing fits
where the difference in the retrieved versus prior surface
pressure is greater than 4 hPa. We apply the same techniques
to the LMT partial column mixing ratio in Appendix A,
which is briefly described here. After LMT is corrected, the
corrected U partial column mixing ratio is set using Eq. (9a)

so that XCO2 is consistent with LMT and U . The purpose of
setting U this way is that (a) there is a lack of validation data
for the U partial column; thus, bias correction would be a lot
less certain, and (b) it is useful to have the new products be
consistent with current operational column results.

To correct the LMT partial column mixing ratio, a set of
pairs of true and retrieved values is compiled using validation
data. GOSAT minus true is plotted versus various GOSAT
parameters described in Appendix A, and if a slope is found
for the GOSAT error versus any parameter, then a correction
is applied for that parameter. The robustness of the correction
is tested by verifying the correction on data withheld from
the fit, as described in Appendix A. Following the initial bias
correction, GOSAT LMT is compared for closely occurring
ocean and land pairs; a constant bias term is added to the
land bias correction so that land and ocean, on average, are
consistent.

4.4 Coincidence criteria

“Geometric criteria”, defined as ±3◦ latitude, ±5◦ longitude
±1 week time, are used to select coincident GOSAT obser-
vations for particular sites. For GOSAT criteria, 5◦ latitude–
longitude, 1 h has previously been used (Kulawik et al.,
2016); however, this did not yield enough matches for air-
craft profiles. With the criteria above, the total matches range
from 64 (at Poker Flats, station ID PFA) to 4800 (at the
Southern Great Plains, station ID SGP), with median 430,
which is approximately 9 months, assuming all months are
equally well sampled throughout the time series. A tight spa-
tial criteria was selected to best capture the seasonal cycle
at a given location, especially for land where spatial vari-
ability is large. Because aircraft and surface observations are
more infrequent than TCCON, an extended temporal window
was used for the comparisons to obtain sufficient comparison
data. Other methods that were tried were dynamic coinci-
dence criteria (Wunch et al., 2011b), which consider a larger
area (±10◦ latitude, ±30◦ longitude) but also match atmo-
spheric temperature, and a variant of Basu criteria (Guerlet
et al., 2013), which used dynamic coincidences, which had
model–model differences less than 0.5 ppm. All three criteria
gave similar results overall, with different criteria performing
better at different stations, but there was no clear overall best
criteria. For HIPPO data, which mainly test latitude gradients
over ocean, the dynamic coincidence approach was used fol-
lowing Frankenberg et al. (2016). Different variations on the
dynamic coincidence criteria were tested, e.g., using temper-
ature comparisons at the surface, averaging from the surface
to 2.5 km, or weighting temperature differences by the pres-
sure weighting function. The different temperature criteria
yielded similar results overall, other than using temperature
differences at the surface, which did not work as well as the
other levels. We therefore used the standard dynamic criteria
from Wunch et al. (2011b).
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Figure 5. GOSAT versus aircraft data at the SGP site (37◦ N,
95◦W). (a, b, c) Aircraft LMT (pink) and U (blue) versus GOSAT
LMT (red) and U (black) for monthly averages of GOSAT and air-
plane matches. (a) Using no bias correction, (b) using bias cor-
rection factors derived in Appendix A. (c) Also showing Car-
bonTracker matched to GOSAT (red dotted) and CarbonTracker
matched to aircraft (pink dotted) for LMT. (d) Seasonal cycle of
GOSAT and airplane, same colors as top panels, and adding the
priors in green. (e) Seasonal cycle, but removing months where
the CarbonTracker differences seen in (b) are larger than 2.5 ppm.
(f) Same as (e) but with observations used in the bias correction
removed from the comparison.

4.5 Extension of the aircraft profile

The aircraft measurements go from the surface to between
5.5–8 km for most ESRL land and 9–13 km for HIPPO ob-
servations. As GOSAT LMT, U , and XCO2 have sensitiv-
ity above 5.5 km and even above 13 km, as seen in the av-
eraging kernel shown in Fig. 3, the aircraft profile needs
to be extended from the top measurement to the top of
the atmosphere. Four different methods of extension were
tested: extending with the GOSAT prior, extending the top
aircraft measurement through the tropopause pressure and
extending with the GOSAT prior above this, extending with
the CT2015 model, and extending the top aircraft measure-
ment through the tropopause pressure and extending with the
CT2015 model above this. The different extensions mainly
had an effect on the overall LMT, U , andXCO2 biases rather
than the standard deviation, with a spread of 0.4 ppm, as seen
in Table A4. The extension that was used in the rest of the
paper is extending the top aircraft measurement through the
tropopause pressure and extending with the CT2015 model
above this. There was no clear winner on the profile exten-
sion, and this choice was just a preference.

5 GOSAT results

Figure 5 shows GOSAT comparisons for LMT and U ver-
sus the aircraft measurements at the SGP site at 37◦ N,
95◦W, which can be compared to the simulated results
shown in Fig. 4. The GOSAT LMT and U products show
the same seasonal patterns as seen in the aircraft data.
Figure 5a shows results without bias correction (though
we do apply a constant 12 ppm correction to LMT). The
GOSAT results show a similar seasonal cycle to the air-
craft but with large and temporally correlated errors. Fig-
ure 5b shows the results with the bias correction as described
in Appendix A. Figure 5c shows CarbonTracker matched
to GOSAT (CT@GOSAT) and CarbonTracker matched to
the aircraft measurements (CT@aircraft). The difference of
CT@GOSAT and CT@aircraft estimates the colocation er-
ror. Large differences are seen between CT@GOSAT and
CT@aircraft in early 2010; summer, 2010; and summer,
2011. In Fig. 5d, the seasonal cycle is shown by transform-
ing all data to lie within 2012 using 2 ppm yr−1 adjustment
to CO2. There are systematic differences seen in the draw-
down, which is underestimated by GOSAT. However, when
months that have differences of (CT@GOSAT-CT@aircraft)
more than 2.5 ppm are removed (removing June, 2009; Octo-
ber, 2009; May, 2010; July, 2010; and August, 2010), Fig. 5e
shows agreement within the GOSAT predicted errors be-
tween GOSAT and aircraft. Figure 5f is the same as Fig. 5e
but removes all observations that were used to develop the
bias correction. There is no significant difference between
Fig. 5f and e. The authors have some concerns about apply-
ing the bias correction to parts of the world where there are
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not validation data, e.g., the land bias correction was primar-
ily used over the US. Similarly, the HIPPO observations used
for ocean bias correction are in the Pacific Ocean; thus, the
ocean bias correction in the Atlantic Ocean is less certain.

GOSAT U improves over the a priori for actual observa-
tions (Fig. 5d–f) and in simulated (Fig. 4b) results. This is
shown by the black (aircraft) vs. blue (GOSAT) in Fig. 5c,
where there is better agreement in July–November than prior
(green) vs. black (aircraft). The bias seen in theU partial col-
umn mixing ratio versus the aircraft U estimate is also found
in XCO2 versus the aircraft.

5.1 Summary of comparisons to all validation data

GOSAT LMT, U , and XCO2 are compared to aircraft pro-
files, where the aircraft profile has the GOSAT averaging
kernel applied so that the sensitivity is considered. The com-
parison locations are shown in Fig. 2. More detailed com-
parisons, showing results for each location and/or campaign,
are shown in Appendix B. Definitions of the quantities cal-
culated and compared are shown in Table 3.

Table 4 shows the biases with respect to aircraft data and
Table 5 shows the standard deviation with respect to air-
craft for single and averaged observations. The bias or stan-
dard deviation is calculated for every site (or campaign). The
mean represents the average of all site means, and the ± rep-
resents the standard deviation for the means averaged by site
(or campaign). The variability of the bias by location or time
is a key metric in the data quality. Biases that vary by season
or location cannot be corrected for and will be particularly
detrimental to the use of satellite data for inverse flux esti-
mates as the assimilation will attribute these biases to spuri-
ous fluxes.

The colocation error is estimated by comparing Carbon-
Tracker to itself at the satellite location and time and Car-
bonTracker at the aircraft location and time. For the ocean
surface sites, a vertical colocation error is estimated by com-
paring CarbonTracker with the LMT averaging kernel to Car-
bonTracker at the surface. In Tables 4–6, the top entry in the
ocean surface colocation error is from discrepancies in hori-
zontal location and time. The bottom entry is the colocation
error for sampling CarbonTracker for the LMT quantity ver-
sus CarbonTracker at the surface.

5.1.1 Bias

In Table 3, the colocation bias is largest for aircraft land,
with an overall bias of −0.6 ppm and bias variability of
0.7 ppm. This gives an approximate best case of what could
be achieved by GOSAT–aircraft comparisons. An investiga-
tion of the−2 ppm colocation bias in the LMT partial column
mixing ratio at CAR in July (during the drawdown) finds that
the GOSAT observations are always taken 3–4 h later than
the aircraft. The CarbonTracker model estimates the effect
of +3 h as resulting in a −2 ppm change in the LMT par-

tial column mixing ratio. The colocation bias reflects spatial,
diurnal, and seasonal colocation errors. Taking out the five
sites that have colocation biases > 0.5 ppm (see Appendix B,
Table B1: WBI, BNE, CAR, HIL, and CMA) reduces the
colocation bias to −0.2± 0.3 ppm.

In Table 4, the true mean by site or campaign is the mean
true value averaged by location (or campaign). The ± repre-
sents the standard deviation of the mean true value by loca-
tion (or campaign). The GOSAT retrieval must improve on
the ± at the very least to provide information on the atmo-
spheric state. The GOSAT prior bias improves over the true
variability on land but not for ocean cases for LMT. For U ,
the a priori minus true variability is the same size as the true
variability. The GOSAT bias improves over the prior in all
entries of the absolute bias, except forXCO2 for ESRL ocean
and U and XCO2 for AJAX. Issues with both U and XCO2
suggest a possible issue with the profile extension above the
aircraft. Improvement over the prior for GOSAT ± bias oc-
curs in all comparisons. Note that for ESRL land, if the five
stations with a large colocation error are taken out, the LMT
bias variability decreases from 1.0 to 0.7 ppm.

The location-dependent bias is important because this bias
variability cannot be easily corrected and will be attributed
to phantom fluxes. The LMT location-dependent bias is no
worse than the XCO2 location-dependent bias, whereas the
LMT signals are much more variable than XCO2. The bias
variability for XCO2 and U are possibly too high due to un-
certainty of the aircraft profile extension because the bias
variability is much larger than the 0.3 ppm seen in Kulawik et
al. (2016) versus TCCON. Taking out sites with large colo-
cation bias for XCO2 does not improve the GOSAT XCO2
bias variability. Taking out the top four GOSAT XCO2 bias
outliers results in a GOSATXCO2 bias variability of 0.5 ppm
for the remaining sites; however, these four sites are not the
same sites where LMT has bias issues, nor are these sites
where CarbonTracker shows a large colocation bias.

5.1.2 Standard deviation

Table 5 calculates errors versus aircraft data. The colocation
error gives an upper bound on how well we could expect
GOSAT to compare to the observations. The colocation error
is subtracted, in quadrature, from the GOSAT error to esti-
mate the GOSAT errors in the absence of a colocation error.

To reduce the colocation error, a very tight coincidence
criteria of 2◦ and 1 h was applied, yielding 146 matches, of
which 89 are at SGP and 39 at HIL. Results for these tight
coincidences are compared to the looser coincidence criteria
results for these sites. For the tighter coincidences, the LMT
colocation error is 0.3 and 0.7 ppm at SGP and HIL, respec-
tively, and the GOSAT LMT (n= 1) error is 2.6 and 2.5 ppm.
This is compared to the looser coincidence results, where
LMT colocation error is 1.8 and 2.2 ppm and GOSAT LMT
error is 3.9 and 3.8 ppm. This analysis suggests that the colo-
cation error based on CarbonTracker may be underestimated.
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Table 6. Estimated colocation, correlated, and random errors using Eq. (12). The colocation errors are taken from Table 4.

Type Ocean HIPPO ESRL ESRL
surface ocean ocean land
(ppm) (ppm) (ppm) (ppm)

Colocation error LMT 1.0± 0.4 0.3± 0.1 0.3± 0.1 2.1± 0.7
U 0.1± 0.1 0.2± 0.0 0.5± 0.3
XCO2 0.1± 0.1 0.1± 0.1 0.8± 0.3

Correlated error (ao) LMT 0.4± 0.3 0.3± 0.2 0.3± 0.2 1.7± 1.3
U 0.3± 0.2 0.5± 0.1 0.6± 0.4
XCO2 0.2± 0.2 0.4± 0.1 1.1± 0.6

Random error (b) LMT 1.6± 0.4 1.6± 0.3 1.4± 0.2 3.0± 0.6
U 0.8± 0.1 0.6± 0.1 1.2± 0.1
XCO2 0.9± 0.1 0.4± 0.1 0.8± 0.3

The GOSAT LMT (n= 1) error in Table 5 for ESRL land
(which has colocation error subtracted) is 3.4 ppm, whereas
the error when the tighter coincidence criteria are applied is
actually much less, 2.6 ppm. ForU , the GOSAT (n= 1) error
is 1.0 and 1.4, whereas it is 1.3 and 1.2 for the looser criteria.
Thus, tight versus loose coincidence criteria did not matter a
lot for U comparisons.

The next row of Table 5 is the predicted error, given by
Eqs. (7) and (9), which is on the order of 4.5 ppm for LMT,
1.7 ppm for U , and 0.7 ppm for XCO2. The actual stan-
dard deviation of GOSAT versus aircraft, however, is about
half that for LMT and U and double the predicted error for
XCO2. This is discussed in Sect. 5.1.5.

The true variability in Table 5 shows how much the dif-
ferent partial column mixing ratios vary by month. The vari-
ability of LMT over land is 5.4 ppm, about double that of U
or XCO2, and the variability of LMT at remote ocean sites is
1.1 ppm, about 50 % larger than U or XCO2 variability.

The prior standard deviation (n= 15) and GOSAT stan-
dard deviation (n= 15) look at the error of averaged GOSAT
values, which is important for understanding bias that will re-
sult from assimilating these data for flux estimates. Kulawik
et al. (2016) showed that the GOSAT error does not drop off
as the inverse square root of the number of observations, like
it would if the error were fully random. The error for 15 ob-
servation averages is about 0.4 times that of one observation
for land, with a similar factor for XCO2, LMT, and U , and it
is about 0.5 times that of one observation for ocean, similarly
for all quantities. Note that the colocation error has been sub-
tracted out (in quadrature) for both the a priori and GOSAT
errors.

The standard deviations for LMT, U , and XCO2 show im-
provement over the prior for land cases but improve only
marginally or do not improve over ocean. The location-
dependent bias, however, does show improvement for LMT
and U in Table 4. For surface ocean sites, which are only
compared to LMT, the improvement over the prior is much

better, mainly because the prior is not very good at these
sites.

5.1.3 Errors separated into colocation, random, and
correlated error

The errors between aircraft and GOSAT observations can
be parametrized by the number of GOSAT observations that
are averaged. Kulawik et al. (2016) found that the form in
Eq. (11) matched well to the observed errors.

error=
√
a2+ b2/n (12)

error=
√
ε2

coloc+ a
2
o + b

2/n, (13)

where n is the number of GOSAT observations that are aver-
aged (all of the averaged observations match a single aircraft
measurement), a is error that does not reduce with averaging,
and b is the random error. a is further split into colocation er-
ror, εcoloc, plus ao, the correlated error in Eq. (12). Correlated
error means that no matter how many observations are taken,
this error does not reduce, which can be due to interferents
or spectroscopy in combination with attributes specific to dif-
ferent locations and times.

The colocation error is the error resulting from imperfect
matching of the aircraft and satellite observations and is ap-
proximated by the standard deviation of the CarbonTracker
model at the validation location and time and the model at the
satellite observation location and time; it is tabulated in Ta-
ble 6. This term, as seen in Table 6, is comparable to or even
larger than a for LMT land cases. Some colocation schemes
(e.g., as implemented by S. Basu described in Guerlet et al.,
2013) use the model–model differences to select the best
satellite observations to match validation data. Equation (11)
is used to determine a and b, and then ao is calculated from
a and εcoloc.

The colocation error is subtracted from the correlated er-
ror to try to remove the effect of colocation on the error es-
timate. This is a statistical subtraction as no value was found
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in subtracting the colocation error for individual comparisons
(perhaps because the model is not accurate enough to capture
the colocation differences case by case). The three quantities
from Eq. (12) are shown in Table 6. For LMT the coloca-
tion error is about the same size as the correlated error for
ocean, and the colocation error is larger than correlated error
for land. For U and XCO2, the correlated errors are larger
than the colocation error for ocean and are comparable for
land.

5.1.4 Comparison of XCO2 results to previous results

We compare GOSAT XCO2 comparisons to the previous
validations using TCCON (Wunch et al., 2011b; Kulawik
et al., 2016) and HIPPO observations (Frankenberg et al.,
2016). The GOSAT comparisons to HIPPO in Frankenberg
et al. (2016) were for at least six averages and did not sub-
tract colocation error (which is only 0.1 ppm over ocean). Us-
ing Eq. (12) and Table 6, we find that the XCO2 error for
n= 6 is 0.43 ppm, in agreement with 0.45 from Frankenberg
et al. (2016). Without colocation error, theXCO2 from n= 6
is 0.42 ppm. For ESRL land, several quantities in Tables 4–6
can be directly compared to previous GOSAT–TCCON val-
idation: the colocation error (0.8 ppm) is larger than coloca-
tion for geometric coincidence (0.4 ppm) but smaller than for
dynamic coincidence (0.9 ppm) from Kulawik et al. (2016).
This makes sense as Kulawik et al. (2016) had a 1 h coinci-
dence with TCCON, whereas 7 days is used in this paper (be-
cause aircraft measurements are sparser in time than TCCON
observations). ao and b values of 0.7± 0.5 and 1.6± 0.2 ppm
in this work are consistent with 0.8 ± 0.2 and 1.6± 0.1 ppm,
for a (corrected) and b, respectively, from Table 2 of Kulawik
et al. (2016). Additionally, the predicted error of 0.9± 0.1,
which is a factor of 1.9 less than the actual error of 1.7± 0.4,
are identical to the values and relative sizes of predicted
versus actual error in Kulawik et al. (2016) at the end of
Sect. 3.1.

As discussed in Sect. 5.1.1, the location-dependent bias
found in Kulawik et al. (2016) versus TCCON sites for
XCO2 was 0.3 (after removing outlying stations north of
60◦ N and locally influenced stations). In this paper, we find
the bias variability for XCO2 to be 0.9 ppm over land and
0.3 ppm over ocean (see Table 4). One reason for the discrep-
ancy could be from the extension of the profile above the air-
craft measurement (about 5–6 km). As seen in Appendix A,
different methods for profile extension cause changes on the
order of 0.4 ppm. Another possible cause for the discrep-
ancy is that GOSAT has been extensively tested against TC-
CON and issues that show up at TCCON locations have been
previously addressed. This was tested by fitting bias correc-
tion factor for U specifically, rather than calculating bias-
correction factors for LMT and subtracting the LMT partial
column from GOSAT XCO2 to estimate U . The bias vari-
ability for U did not improve when bias correction factors
were calculated directly for U . We also compare GOSAT

XCO2 aircraft comparisons and GOSATXCO2 comparisons
to TCCON at the two sites where both validation data are
colocated: Park Falls, Wisconsin (LEF), and Lamont, Okla-
homa (SGP). Note that LEF and SGP collect data up to 3.5
and 5 km above the ground, respectively, whereas most sites
collect up to 8 km above the ground; thus, the profile exten-
sion error might be higher at these sites. Averaging over these
two sites, the GOSAT XCO2 bias versus aircraft in this work
is−0.4 ppm. The GOSATXCO2 bias versus TCCON in Ku-
lawik et al. (2016) for these two sites is −0.1 ppm. The dif-
ference between these comparisons is on the same order as
the uncertainty introduced by profile extension discussed in
Appendix A.

5.1.5 Predicted and actual error correlations

One surprising finding is that LMT and U actual errors are
less than the predicted errors, whereas the actual XCO2 er-
rors are larger than predicted, even though all three errors
are calculated from the same error covariance (see Eqs. 7–8).
Equation (9c) relates the errors in LMT, U , and XCO2. For
land, an XCO2 error of 0.9 ppm is consistent with an LMT
error of 4.6 ppm, U error of 1.8 ppm, and error correlation
of −0.8. The XCO2 actual error (1.7 ppm) is much larger
than the predicted error, whereas the LMT and U errors are
smaller than predicted.

The discrepancy between the actual and predicted errors
arises from the actual correlation of the LMT and U partial
column mixing ratio errors. The predicted error correlation
between LMT and U is −0.8. This means that values too
low in LMT should be matched with values too high in U ,
such that the total column has lower relative errors than ei-
ther partial column separately. The actual error correlation
of LMT–aircraft and U–aircraft averages+0.6, meaning that
when LMT is high, U also tends to be high, and XCO2 does
not gain precision when combining LMT and U . Thus, the
finding is that the LMT U error correlation must be changed
from the predicted value of −0.8 to the measured value of
+0.6. When the diagonal error terms are multiplied by 0.6
and the error correlation between LMT and U is set to 0.6,
to match the error correlations observed versus aircraft data,
the predicted LMT, U , and XCO2 errors are consistent with
the actual errors. Over ocean, multiplying the diagonal error
terms by 0.3 and setting the error correlation between LMT
and U to 0.6 makes the predicted and actual errors agree.

The errors in Table 5 represent the standard deviation of
GOSAT minus validation data calculated separately at each
validation location. Therefore, the errors in Table 5 do not in-
clude the bias errors from Table 4. The persistent regional bi-
ases captured in the GOSAT bias variability also reflect errors
in the GOSAT measurement and should somehow be com-
bined into the full error. These regional biases likely result
from persistent interferent errors, such as due to aerosols, or
an interaction between spectroscopic errors and local condi-
tions. Some but not all of the bias, particularly for LMT land,
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Figure 6. GOSAT XCO2 (top), U (middle), and LMT (bottom) in February (left) and July (right). Aircraft with GOSAT averaging kernels
are small squares, towers are triangles, remote ocean surface sites are circles, and TCCON are large squares (only shown on XCO2 panels).
Data are averaged over the GOSAT record.

can be attributed to colocation error (see Table 4). The cor-
relation of the LMT and U location-dependent biases (using
biases separated by location from Table B1) is also positive,
0.6, similar to the correlation of the individual errors in LMT
and U . Thus, this would not account for the discrepancy be-
tween the predicted correlation of −0.8 and actual correla-
tion of 0.6 between the LMT and U errors. Another possible
reason for the positive error correlation in LMT and U is that
it is a consequence of the bias correction. The error corre-
lation on the uncorrected data was found to be −0.8, which
supports that the bias correction modifies the error correla-
tion between U and LMT. This is the first characterization of
the effect of bias correction on the actual errors.

In summary, the single-sounding errors of GOSAT LMT
and U over land (ocean), based on the ESRL aircraft com-
parison, and subtracting colocation error, are 3.4 and 1.3 ppm
(1.5 and 0.8 ppm), respectively, with a positive correlation of
0.6. This is consistent with the XCO2 error of 1.8 (1.0) ppm
for land (ocean), using Eq. (9c). To find the error of averaged
LMT and U , the single-sounding errors can be replaced by
Eq. (11), with a and b values given in Table 6, and the same
LMT U error correlation of 0.6.

5.2 Variability within the US

The CarbonTracker model identifies 19 ecoregions within
North America (http://www.esrl.noaa.gov/gmd/ccgg/
carbontracker/CT2011_oi/documentation_assim.html). The
ESRL aircraft stations can be broadly grouped into conifer
forest: PFA, ETL, ESP, THD; grass–shrub: CAR, BNE;
crops: HIL, WBI, SGP; forest–field: DND, LEF, NHA,
CMA, SCA; and mixed: TGC. The variability at these sites
is a combination of the local activity at the site, latitude of
the site, and transport into and out of the site.

Maps of GOSAT LMT, U , and XCO2 along with aircraft,
surface, tower, and TCCON observations for February and
July are shown in Fig. 6 (converted to 2012 by subtracting
2 ppm per year secular increase). In February, the lower tro-
posphere has already reached near peak values, whereas the
U partial column continues to increase through April. In July,
there is a large gradient in the LMT, primarily west to east,
but also north to south, seen also in the stations shown in
Fig. 6. The LMT pattern agrees with aircraft (Sweeney et al.,
2015) and tower patterns, showing that GOSAT LMT is able
to see variations in the summertime CO2 depletion near the
surface due to biospheric processes. The U partial column
shows more discrepancies with aircraft than LMT, which is
in general agreement, and the same pattern of discrepancies
is also seen for XCO2 versus aircraft. At the two sites where
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Figure 7. Seasonal cycle at five sites arranged from west to east (a–e) and north to south (f–j) for GOSAT LMT (red), aircraft LMT (pink),
GOSAT LMT prior (green), GOSAT U (blue dashed), aircraft U (black dashed), and GOSAT U prior (green dashed). The seasonal cycle
minimum is marked for LMT (orange dotted) and U (blue dotted).

aircraft and TCCON are jointly observed, SGP in Oklahoma
and LEF in Wisconsin, XCO2 agrees with TCCON rather
than the aircraft. This suggests an issue with the extension of
the aircraft profile from the top aircraft measurement (about
6 km) to the top of the atmosphere.

Figure 7 shows the seasonal cycle at five sites arranged
west to east (a–e) and north to south (f–j). The seasonal cy-
cle amplitude in LMT increases for both west-to-east and
south-to-north directions. There is also a shift to later in the
seasonal cycle minimum going either east to west or north
to south, as seen by the slopes in the orange and blue dot-
ted lines. There is a consistent phase lag in the U prior, e.g.,
the green vs. black dashed lines in panel (c). The GOSAT-
retrieved U improves the phase lag, e.g., see the blue dashed
line in panel (c). The LMT prior draw-down is also too large
in panels (i) and (j), whereas the retrieved GOSAT LMT
better matches the aircraft. The seasonal cycle maximum is
harder to quantify for the LMT because LMT CO2 rises and

stays fairly flat between January and April; therefore, the
maximum can be influenced by small variations in the data,
in contrast to U or XCO2, which rise steadily until April.

5.3 Comparisons to remote surface ocean sites

Remote surface sites are useful as comparisons to LMT as
these locations are expected to have long vertical length
scales of variability near the surface. These comparisons of
LMT and remote surface ocean sites are not used for esti-
mating errors or bias corrections because there is a mismatch
in sampled vertical air mass: to compare validation data and
GOSAT LMT properly, validation values are needed at every
pressure level at which the GOSAT LMT averaging kernel
(as seen in Fig. 3) is not zero. Since there are only validation
data at the surface, the only option is to directly compare
the surface site value to the GOSAT LMT result, rather than
integrating validation results over the pressure range where
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Figure 8. GOSAT LMT compared with remote ocean surface sites.
GOSAT (red) improves over the prior (green dashed) versus surface
sites (pink) for the average over all sites (a) and at the four sites with
the most matches (b–e). XCO2 values are shown for comparison
(blue dashed).

GOSAT LMT is sensitive. The vertical colocation error is es-
timated by comparing CarbonTracker LMT (estimated with
Eq. 6b, where xtrue is set to the CarbonTracker value, xa
is the GOSAT prior, and cross-state error and measurement
error are set to zero) versus CarbonTracker surface values.
The GOSAT LMT a priori is significantly worse for remote
ocean sites as compared to North America, and this allows
the GOSAT product to show what is in the data versus the
prior. In Table 6, the colocation error for surface ocean sites
is higher than for ocean aircraft comparisons (1.0 ppm vs.
0.3 ppm, respectively), and the GOSAT bias versus ocean
surface sites in Table 4 is also higher (1.1 ppm vs. 0.1 ppm,
respectively). Because of the limited GOSAT ocean cover-
age, there are typically only about 4 consecutive months
for each station, but this is adequate to evaluate the perfor-
mance. Figure 8 shows an average over all locations, and the
four sites with the highest number of matches, arranged from

north to south. Note the improvement of GOSAT (red) over
the a priori (green) when comparing to the surface site mea-
surements (pink). Unsurprisingly, the performance of XCO2
(blue) shows that surface site observations are not suitable
for XCO2 validation. GOSAT LMT improves over the prior
in terms of the overall bias, the bias variability, and the stan-
dard deviation over the prior even without averaging; the er-
ror reduces further with averaging.

Table 6 shows estimated colocation and correlated and
random errors using Eq. (12). The colocation errors are taken
from Table 4.

5.4 Source versus outflow in biomass burning with
comparisons to MOPITT CO and MODIS fire
counts

The southern hemispheric region is of particular interest for
validation as the GOSAT prior is nearly spatially and verti-
cally constant, varying primarily by month. Figures 9 and 10
compare GOSAT LMT and U partial column mixing ra-
tios, respectively, to MOPITT multispectral CO retrievals
and MODIS fire counts to see how much fires in this part of
the world are responsible for the patterns seen in the GOSAT
partial columns. The GOSAT prior, in the left columns of
Figs. 9 and 10, is nearly constant in the Southern Hemi-
sphere. The scale needed to span the seasonal range is about
13 ppm, about half that needed to capture the seasonal vari-
ability in the US.

The pattern seen in LMT matches MODIS fire count im-
ages, shown in the right column, and matches MOPITT near-
surface CO shown in the third column. Because of the differ-
ent overpass time and the different coverage due to cloudi-
ness between these satellites, an exact match should not
be expected. In February, sub-Saharan Africa has fires and
south–central Africa does not, whereas the situation is re-
versed in August. This pattern is seen in GOSAT LMT, MO-
PITT near-surface, and MODIS fire counts. The main differ-
ences between GOSAT and MOPITT are seen in October,
where GOSAT LMT shows outflow over the Atlantic and
MOPITT near-surface CO does not. This may be because the
multispectral CO has little surface sensitivity over the ocean.

In the mid-troposphere, MOPITT CO shows enhancement
in sub-Saharan Africa in February, central Africa in August,
and outflow in October, and GOSAT-retrieved U shows the
same patterns as MOPITT. Interestingly, both MOPITT and
GOSAT show no enhancement in South America in August,
whereas the surface shows very strong enhancements in both.
MOPITT shows very little outflow in September, but strong
outflow in October. GOSAT does not have ocean coverage in
this region for September but GOSAT U shows strong out-
flow in October.

The LMT signal in the Amazon region is clearly visi-
ble by May (not shown), whereas the CO signal seen from
MOPITT (http://www.acom.ucar.edu/mopitt/MOPITT/data/
plots6j/maps_mon.html) seems to increase starting in Au-
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Figure 9. GOSAT LMT versus MOPITT and MODIS fire counts for February, August, and October, 2010. GOSAT prior (left) and retrieved
(second column) LMT compared with MOPITT multispectral CO (third column) and MODIS fire counts (right).

Figure 10. GOSAT U versus MOPITT for February, August, and October, 2010. GOSAT prior (left) and retrieved (middle) compared with
MOPITT multispectral CO (right) at 5 km. Note the biomass burning outflow seen in October for both MOPITT and GOSAT.

gust. We look at the quantitative values for the enhancements
and background values for surface CO and LMT CO2 in Ta-
ble 7 and use this to estimate 1CO /1CO2 emission ratios
for May and August.

GOSAT LMT has about 0.8 DOF and does not vary sig-
nificantly, mainly because only clear-sky observations (with
aerosols and clouds < 0.3 optical depth) are used. The MO-
PITT degrees of freedom for the near-surface varies signifi-
cantly. MOPITT enhancement for different degrees of free-
dom cutoffs are shown in different columns of Table 7. To
account for the degrees of freedom, note that if a retrieved
variable has 0.2 DOF, it will capture about 20 % of the true
variability; if a retrieved variable has 0.4 DOF, it will capture

about 40 % of the true variability. Thus, an estimate of the
emission ratio that considers the degrees of freedom is

emission ratio=
CO-CO background (ppb)

CO2−CO2 background (ppb)
× (14)

CO2 degrees of freedom
COdegrees of freedom

.

Without utilizing a model as a transfer function, the exact
ratio cannot be estimated due to the varying sensitivities with
altitude and different observation locations and times.

The emission ratio is estimated using Eq. (13) with the
information shown in Table 7. The emission ratio estimate
ranges from 6 to 7 in May and 10–15 % in August for the
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Table 7. Enhancements in CO and CO2 for May and August, 2010. The target box is 11 to 18◦ S, 60 to 56◦W, for May and 13–17◦ S,
55–60◦W, for August. The CO background box is 11 to 18◦ S, 40 to 44◦W, for May and 157.8–161.8◦W, 19–23◦ S, for August. Rarotonga
aircraft measurements are used for CO2 background. The different CO target columns are for different cutoffs for the degrees of freedom
between the surface and 200 hPa above the surface for MOPITT.

CO GOSAT LMT CO2

Background Target Target Target Target Background Target
(ppb) all DOF > (DOF > (DOF > from RTA (DOF = 0.8)

(ppb) 0.15) (ppb) 0.25) (ppb) 0.30) (ppb) (ppm) (ppm)

May 2010 Mean 68± 9 122± 49 123± 54 146± 77 182± 96 386.4 389.6± 2.5
N 1502 2023 1556 500 215 26
DOF 0.21 0.24 0.32 0.39 0.85
1 value – 54 55 88 114 – 3.2
Em. ratio 6 % 6 % 7 % 7 % – –

August 2010 Mean 91± 22 305± 171 311± 180 336± 200 372± 221 387.4 393.1± 4.8
N 2989 3881 3227 1887 1231 49
1 value (ppb) – 213.7 219.3 244.8 281.1 – 5.7
Em. ratio 15 % 13 % 11 % 10 %

Figure 11. GOSAT LMT – U (red) versus aircraft (pink) at three
sites. The dotted lines show CarbonTracker matched to GOSAT (red
dotted) or aircraft (pink dotted). Colocation error explains the dis-
crepancies in the drawdown at CAR and LEF. At CAR the discrep-
ancies are due to mismatch at the time of day the data are collected.

different MOPITT sensitivity groupings. The emission ratio
seen by the MOPITT and GOSAT LMT products are com-
pared to those estimated from aircraft observations over trop-
ical forests by Akagi et al. (2011, Table 1), which is 8.8 %.
The MOPITT /GOSAT ratio is similar to Akagi et al. (2011),
but 2–3 lower in May and 1–6 % higher in August.

5.5 Differences between LMT and U

The difference between CO2 in the free troposphere and
boundary layer can be used to evaluate model transport.
One previous finding is that surface assimilation estimates
of northern extratropical and southern hemispheric land flux
differences are correlated with the gradients between CO2 at
4 and 1 km in the assimilated model. When the model-based
vertical gradients of CO2 are larger than aircraft observa-
tions, models tend to predict too-large northern hemispheric
sinks and too-large southern hemispheric sources (Stephens
et al., 2007). Aircraft observations of CO2 at 4 and 1 km
are taken at only a few sites worldwide, primarily in the
US. Therefore, global measurements of the difference be-
tween CO2 in the free troposphere and boundary layer are
of great interest. In this section we calculate the errors for
LMT U compared to aircraft profiles and show this differ-
ence for GOSAT and CarbonTracker in the US and the South-
ern Hemisphere in 2 different months.

The error estimate for LMTU is calculated using Eq. (14).
Note that a positive correlation in the errors for LMT and U
results in a smaller error for the quantity (LMT – U ) than the
sum of the squares of LMT and U .

σ(LMT−U) =

√
σ 2

lmt+ σ
2
u − 2 · σlmtσuc (15)

Table 8a–c give the bias, standard deviation, and error with
averaging for LMT – U . In Table 8a, the GOSAT bias and
bias variability of (LMT – U ) improves over the prior for all
cases. The bias variability of 0.3, 0.9, and 0.8 ppm of (LMT
– U ) for HIPPO ocean, ESRL ocean, and ESRL land, re-
spectively, is comparable to the LMT bias variability of 0.3,
1.0, and 1.0 for the same categories. In Table 8b, the 15-
observation average standard deviation for GOSAT LMT U
is 0.6 (1.2) ppm for ocean (land), 0.2 ppm higher for ocean,

Atmos. Chem. Phys., 17, 5407–5438, 2017 www.atmos-chem-phys.net/17/5407/2017/



S. S. Kulawik et al.: Near-infrared ACOS-GOSAT observations 5427

Figure 12. LMT – U differences. Results shown for the US (top) and South America and Africa (bottom) for 2 different months, with
GOSAT on the top and CarbonTracker on the bottom. Aircraft LMT – U differences are shown in the squares. There is agreement in the US,
except for the southwestern US in July, with more differences in the Southern Hemisphere.

and 0.7 ppm lower for land than LMT. In Table 8c, the corre-
lated error is 0.5 (0.9) ppm for ocean (land), which is 0.2 ppm
higher for ocean and 0.8 ppm lower for land. The land stan-
dard deviation for LMT U is 2.3 ppm before subtracting off
the 2.1 ppm colocation error. The difference between the land
error for LMT and LMT U is due to the estimated size of the
colocation error.

Figure 11 shows the seasonal cycle of LMT U for three
sites. The differences between GOSAT and aircraft values at
the CAR site in Colorado and LEF in Wisconsin during the
drawdown can be explained by colocation error. The dotted
lines show CarbonTracker matched to GOSAT (red dotted) or
aircraft (pink dotted) locations and times. The difference be-
tween the red dotted and pink dotted lines estimate the colo-
cation error. If GOSAT were corrected by this difference, the
agreement with aircraft would be much better. The coloca-
tion bias and standard deviation are estimated in Table 7a and

7b and are large compared to the observed GOSAT errors.
The error estimates for GOSAT are corrected by the colo-
cation error. Note that the CAR aircraft measurements also
did not sample down to the boundary layer during this time
period.

The predicted error for LMT U over land in Table 8b is
2.7 ppm, whereas the actual error is 2.3 ppm. If LMT and U
had zero correlation, the predicted error (using Eq. 14) would
be 3.6 ppm. This is another corroboration of the positive cor-
relation between the LMT and U errors.

Figure 12 shows LMT – U for February and July in
the US, averaged over 2010–2014 for February and 2009–
2013 for July. LMT – U diagnoses model vertical transport
(Stephens, 2007) and transport of outflow (Deeter, 2013).
Aircraft values for LMT – U are shown as squares. The air-
craft patterns are captured by GOSAT, with discrepancies in
July for BNE, CAR, SCA, and SGP due to colocation error
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Table 8. (a) Bias terms for LMT – U . Compare to Table 4. (b) Standard deviations for LMT – U . Compare to Table 5. The predicted errors
in the table use the errors given at the end of Sect. 5.1.5. (c) Error fits for LMT – U . Compare to Table 6.

HIPPO ESRL ESRL
ocean ocean land

(a) (ppm) (ppm) (ppm)

Colocation bias −0.4± 0.2 −0.2± 0.3 −-0.6± 0.5
True mean 1.1± 0.8 0.4± 0.5 1.0± 2.7
Prior bias −1.0± 1.3 −2.8± 2.9 −1.0± 1.2
GOSAT bias 0.0± 0.4 −0.5± 0.9 −0.5± 0.8

(b)

Colocation error 0.3± 0.1 0.3± 0.1 2.1± 0.7
Predicted error (n= 1) 1.2± 0.0 1.2± 0.0 2.7± 0.0
GOSAT error (n= 1) 1.5± 0.4 1.3± 0.1 2.3± 0.5
True variability 0.5± 0.2 0.8± 0.1 4.8± 1.5
Prior error (n= 15) 0.5± 0.2 0.8± 0.1 1.4± 0.8
GOSAT error (n= 15) 0.5± 0.2 0.7± 0.1 1.2± 0.8

(c)

Colocation error 0.3± 0.1 0.3± 0.1 2.1± 0.7
Correlated error (a) 0.4± 0.2 0.6± 0.0 0.9± 0.9
Random error (b) 1.4± 0.4 1.1± 0.1 2.1± 0.7

(see CAR plot in Fig. 11). The CarbonTracker model cap-
tures the aircraft patterns very well. The main differences be-
tween GOSAT and CarbonTracker are seen in the southwest-
ern US in July (where there are no aircraft measurements).
Figure 12c–d show LMT – U for February and October in
the Southern Hemisphere. The only aircraft site in this region
is Rarotonga, where Fig. 11 shows good agreement for both
CarbonTracker and GOSAT. The patterns in the Southern
Hemisphere show more differences between CarbonTracker
and GOSAT. In February, GOSAT shows a high gradient in
the eastern Pacific and northern South America, which is not
seen in CarbonTracker, and it shows a more negative gradient
in central and southern Africa. In October large gradients are
seen by GOSAT in South America and Africa with outflow
into the Atlantic, with little seen in CarbonTracker.

LMT U is predominantly positive in this southern hemi-
spheric region in October. Vertical transport from the North-
ern Hemisphere would predominantly show up in the U par-
tial column, whereas flux from land or ocean would predom-
inantly show up in the LMT partial column. An overall posi-
tive value for LMT – U could either suggest that the overall
flux is positive in this month or that transport from the North-
ern Hemisphere was negative, though the blank space in the
Amazon due to cloudy conditions, where LMTU is expected
to be negative from plant uptake, creates uncertainty both in
this crude estimate and in the formal assimilated results from
GOSAT data.

6 Discussion and conclusions

GOSAT near-infrared observations provide information to
retrieve two partial column mixing ratios, one from the sur-
face to about 2.5 km (LMT_XCO2) and the second above
about 2.5 km (U_XCO2). The two partial columns have dis-
tinct seasonal cycles, with the LMT peaks and troughs ear-
lier than XCO2, and the U peaks and troughs later than
XCO2, with the partial columns showing similar patterns to
those observed from the NOAA aircraft (e.g., Sweeney et al.,
2015). After bias correction, shown in detail in Appendix
A, and following the same process as the bias correction
for ACOS-GOSATXCO2, both partial column mixing ratios
show agreement with aircraft, LMT shows agreement with
remote surface observations, and both show improvement
over the GOSAT prior. Single observations for land have ob-
servation errors of 3.4, 1.3, and 1.7 ppm for LMT, U , and
XCO2, respectively, and single observations for ocean have
observation errors of 1.5, 0.8, and 0.9 ppm for LMT, U , and
XCO2, respectively. These errors are significantly reduced
with averaging, though some systematic errors, generally be-
low 1 ppm, remain. The colocation errors from mismatch
of GOSAT versus validation data, as quantified by Carbon-
Tracker, makes the errors on LMT challenging to validate,
and extension of validation data to the top of the atmosphere
with modeled CO2 adds uncertainty on the order of 0.4 ppm
to the LMT bias. The value of observing two partial columns
can be seen in Fig. 8, where the GOSAT LMT agrees with re-
mote surface sites, whereas neither the prior norXCO2 agree
with the surface site, and Figs. 9–10, where surface versus
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tropospheric CO2 are distinguished for source and outflow of
African biomass burning emissions in August and October.
The observed LMT CO2 enhancements with MOPITT mul-
tispectral CO and emission ratios are compared to Akagi et
al. (2011), with our emission ratio 2–3 lower in May and 1–
6 % higher in August. The LMT minus U difference, which
can be used to evaluate model transport error (e.g., Stephens
et al., 2007), has also been evaluated with monthly average
error of 0.8 (1.4) ppm for ocean (land). The new LMT partial
column mixing ratio allows the local boundary air to be dis-
tinguished from the free troposphere and captured in the U
partial column mixing ratio, and it better disentangles local
versus remotely influenced signals.

Data availability. Data used in this paper can be
downloaded from https://drive.google.com/open?id=
0B6HOmFgiFzh2NXFsUXlabnFRUDA. Because this is a re-
search product, collaboration with Susan Kulawik is expected in
the use and further development of this product.
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Appendix A: Bias correction

The ACOS-GOSAT XCO2 product undergoes bias correc-
tion (Wunch et al., 2011), which significantly improves the
errors (Kulawik, 2016). We apply this same technique to cor-
rect the LMT product. Land nadir mode (land) and ocean
glint mode (ocean) are bias corrected separately for LMT.
Following the LMT correction, U is corrected by subtracting
the LMT partial column from XCO2 corrected for ACOS-
GOSAT, thus maintaining consistency between the [LMT,U ]
partial columns and the totalXCO2 column after bias correc-
tion. This is done because theXCO2 bias correction has been
checked against TCCON, which has sensitivity throughout
the entire column, and because there is uncertainty in the
true U used for validation, which is calculated from aircraft
extended with the CarbonTracker model above about 5 km,
composing a large part of the U partial column.

To determine the LMT bias correction, GOSAT and
aircraft data are matched using dynamic coincidence criteria
(Wunch, 2011), and the difference between GOSAT LMT
and aircraft LMT is calculated for all pairs in either land
or ocean groups versus each potential parameter. In order
to identify the critical bias-predicting parameters for those
cases for which this difference has a clear slope, a bias
correction is applied iteratively, where the strongest param-
eter dependence is corrected before the next parameters
are tested. At the end all parameters are fit simultaneously.
Filters are applied to flag the data as bad when the bias
is significant even after correction. The parameters con-
sidered for bias correction are: delta_grad_co2, albedo_1,
albedo_2, albedo_3, albedo_ slope_1, albedo_slope_2,
albedo_slope_3, aod_dust, aod_ice, aod_total, b1offset,
ice_height, surfacePressure_xa, surfacePressureDiff,
co2_ratio, dp_cld, h2o_ratio, s32, xco2_error, LMT_ dofs
(degrees of freedom for LMT), u_dofs (degrees of freedom
for U ), xco2_dofs, asza, lza, and delta_ grad_co2_prime.
These parameters are described in the ACOS-GOSAT v3.5
user’s guide, with the exception of delta_grad_co2_prime,
which is defined as delta_grad_co2 with the value set to 50
when it is greater than 50 for land and the value set to −10
when it is greater than −10 for ocean. Two figures of merit
were considered for the cutoffs and bias fits, (1) bias vari-
ability by location and season and (2) the single-observation
standard deviation. The former is the standard deviation of
the biases calculated in four seasons and for each location
and campaign. For both of these figures of merit, smaller is
better.

By far the strongest bias is related to delta_grad_CO2.
This parameter is the difference between the retrieved CO2
and a priori dry-air mole fraction between the surface and
vertical level 13 (approximately 630 hPa for soundings near
sea level), and it represents the slope of the retrieved CO2
profile in the troposphere. The resulting coefficient for this
term is 0.396 for ocean and 0.310 for land soundings. This
indicates that, for ocean, approximately 40 % of the CO2 at-

tributed to the surface should be moved from LMT toU . This
indicates that possibly (a) the troposphere is constrained too
much relative to the surface, (b) there is an issue with the
forward model, such as systematic errors in spectroscopy,
or (c) there is some other retrieval artefact. The bias cor-
rection coefficient for delta_grad_CO2 for simulated OCO-2
land data is 0.29, very similar to the value of 0.31 for actual
GOSAT data (Kulawik, unpublished result). The simulated
runs have no spectroscopic error or other forward model er-
rors; thus, the need for delta_grad_CO2 correction is likely
not driven by forward model errors but could be a conse-
quence of the way the CO2 profile is constrained in the re-
trieval through the constraint matrix, which allows a lot of
variability near the surface and damps variability in the mid-
troposphere. This could prejudice the retrieval system to at-
tribute radiance variations to CO2 variations at the surface
rather than elsewhere in the profile, with the delta_grad_CO2
correction factor undoing this tendency. This relationship
should be explored further using a simulated system with dif-
ferent constraint matrices.

The filtering cutoffs and bias terms are shown in Table A1.
The errors are calculated by the bootstrap method (Rubin,
1981). The effects of the cutoffs and bias corrections from
Table A1 on biases and standard deviations are shown in Ta-
ble A2.

The overall land bias is not zero because the land bias con-
stant correction undergoes a final step to harmonize land and
ocean observations by matching GOSAT values for pairs of
close land and ocean observations. The results (using the fi-
nal bias correction) for different matching criteria are 1◦ and
1 h (25 matches, bias −0.54 ppm in LMT and −0.96 ppm in
XCO2), 2◦ and 24 h (295 matches, 0.17 ppm in LMT and
−0.61 ppm in XCO2), 4◦ and 48 h (4095 matches, 1.17 ppm
in LMT and−0.09 ppm inXCO2), and with dynamic coinci-
dence criteria (422,542 matches, 0.29 ppm in LMT,−0.42 in
XCO2). Using the assumption that there is no bias in XCO2,
the 4◦, 48 h result is used, and 1.17 ppm is added to the
LMT constant bias for land. This constant bias is subtracted
from LMT, and then the LMT partial column is subtracted
from XCO2 to generate the corrected U partial column. The
1.2 ppm change in the land bias to match ocean results gives
an idea of the size of the uncertainty in the bias.

As seen from Table A3a and b, all bias corrections are
superior to the uncorrected dataset, and all correction tests
perform similarly in the bias standard deviation and mean
standard deviation, but with variability in the overall bias,
depending on the development set that is used. The overall
bias has some uncertainty on the order of 0.5 ppm.

Another potential error source that is quantified is the ef-
fect of different profile extension schemes above aircraft ob-
servations. The ESRL aircraft measurements go up to 5–
8 km aboveground, and the HIPPO observations go up to 9–
13 km aboveground. Four different profile extension meth-
ods are tried above the aircraft: (1) using the GOSAT a pri-
ori profile, (2) extending the top aircraft measurement to the
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Table A1. Filtering and bias corrections. Note that observations over land and ocean are corrected separately.

Parameter Ocean filtering Ocean bias Land filtering Land bias
correction correction

albedo_2 0.0215< val < 0.024 −1272.02± 50 – –
albedo_slope_2 val < 8e-6 – – –
aod_dust val < 0.01 – – –36.03± 1
aod_total val < 0.25 – – –
h2o_ratio 0.96 < val < 1.02 – – –
co2_grad_delta −40 < val < 17 0.396330± 0.004 – 0.310± 0.003
constant – 52.674± 6 – 0.01259± 0.4
b1_offset – −1.2520± 0.05 – –
surfacepressure_xa – −0.0381105± 0.006 – –
s32 – 17.0742± 3 – –
surfacepressurediff – 0.869280± 0.05 – –
albedo_1 – 144.458± 9 – –
co2_grad_delta_prime – −0.171350± 0.01 – −0.027± 0.005
dofs_LMT – – val > 0.68 –
xco2_error – – val < 1.4 6.02± 0.3
albedo_slope_3 – – −1.5×10−4 < val < 2.0×10−4 –
xco2_dofs – – val > 1.3 –
ice_height – – val >−0.1 –
surfacePressureDiff – – –4 < val < 2 –
albedo_3 – – – −11.66± 0.7
dp_cld – – – 0.219± 0.01

∗ Parameters also used in ACOS-GOSAT XCO2 bias correction.

Table A2. (a) Effects of bias corrections and quality flags on land comparisons (ESRL aircraft land observations). (b) Effects of bias
corrections and quality flags on ocean comparisons (HIPPO and ESLR ocean dataset stations and campaigns: tgc, rta, aoa, 2S, 2N, 3S, 3N,
4S, 4N, 5S, 5N).

n lmt bias lmt bias lmt stdev u bias u stdev
(a) (ppm) var. (ppm) (ppm) var. (ppm) (ppm)

Original (XCO2 flags) 15143 13.54 2.79 7.70 1.61 3.05
All quality flags (see Appendix A) 12714 13.37 2.30 7.55 1.27 2.98
Bias correction (see Appendix A) 12714 −1.18 1.43 3.47 0.79 1.36
Fit U separately 11978 – – – 0.70 1.43

(b)

Original (XCO2 flags) 9836 1.73 3.46 3.77 0.78 0.85
With cutoffs (see Appendix A) 6143 1.47 1.92 3.18 0.63 0.69
Bias correction (see Appendix A) 6143 0.04 0.68 1.60 0.38 0.79
Fit U separately 6143 – – – 0.35 0.60

The fit parameters are tested for robustness by using a subset of the dataset to determine the fit and then testing the fit on the independent
subset. For the ocean data, HIPPO campaigns 2N, 3S, 4, and 5 are used to develop bias correction, and HIPPO 2S and 3N are used for
testing. For land data, stations bne, car, cma, dnd, esp, etl, hil, and hip are used for development, and stations lef, nha, pfa, sca, sgp, tgc, thd,
and wbi are used for testing.

tropopause pressure with the GOSAT prior above this, (3) us-
ing the CT2015 model, and (4) extending the top aircraft
measurement to the tropopause pressure with the CT2015
model above this. Table A4 shows the land and ocean charac-
teristics with each profile extension type. The main effect is
on the overall bias (up to 0.4 ppm) in the comparisons. One
issue is likely in the top 4 levels, from which a difference

between a priori and the true profile would propagate as a
bias.

Table A5 compares the extension with AirCore versus Car-
bonTracker. AirCore measures from the surface up to as high
as 13 hPa, meaning that all but the top GOSAT pressure level
is measured. Eight AirCore observations are found to match
aircraft and GOSAT observations within 3◦ longitude, 5◦ lat-
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Table A3. (a) Bias correction robustness test for LMT observations
over ocean. Comparisons to aircraft data are tested using (1) no bias
correction, (2) bias correction using the test dataset, (3) an indepen-
dent dataset, and (4) the entire dataset. (b) Bias correction robust-
ness test for LMT observations over land. Same as Table A3a but
for land.

(a)

Bias correction testing Mean bias Bias SD mean SD

No correction 0.69 0.69 2.97
Subset tested on itself −0.04 0.33 1.47
Independent subset −0.26 0.46 1.58
All data used −0.14 0.49 1.54

(b)

No correction 13.00 2.47 7.54
Subset tested on itself 0.16 1.55 3.68
Independent subset 1.05 1.24 3.67
All data used 0.50 1.51 3.65

itude, and 7 days. Six of the matches are at SGP and two
are at CAR. For these matches, the aircraft observations are
extended either with AirCore (using CarbonTracker at only
the top pressure level) or CarbonTracker. The finding is sim-
ilar to the finding from Table A4 that there is uncertainty
in the overall bias of 0.4 ppm, but that the standard devia-
tion is not affected by which extension is used. The reason
for the 0.4 ppm bias is that the CarbonTracker stratosphere is
high compared to AirCore for these eight observations. This
propagates into a high bias in the true U and a low bias in
the true LMT through the averaging kernel. Because there is
uncertainty in the true value of the stratosphere that is used
to extend the aircraft profiles, there is some uncertainty in the
overall bias of GOSAT LMT and U on the order of 0.4 ppm.

Table A4. Effect of profile extension. GOSAT corrected as described in Table A1 and compared to aircraft data with profile extended four
different ways: (a) using the GOSAT prior, (b) extending the aircraft to the tropopause pressure, with the GOSAT prior above this, (c) using
the CT2015 model, and (d) extending the aircraft to the tropopause pressure, with the CT2015 above this.

Profile extension LMT LMT Bias LMT U bias U Bias SD U SD
bias SD SD SD

(a) prior −0.90 1.37 3.46 −0.38 0.70 1.25
(b) extend+ prior −0.99 1.44 3.47 −0.20 0.79 1.35
(c) CT2015 −1.20 1.39 3.47 −0.02 0.66 1.26
(d) extend+CT2015 −1.18 1.43 3.47 −0.05 0.79 1.36

Table A5. Effect of profile extension, part 2. Extension of the air-
craft with CarbonTracker versus extension with AirCore.

Profile extension LMT LMT U bias U SD
bias SD

(a) CT2015 0.3 3.1 −0.2 1.0
(b) AirCore 0.0 3.1 0.2 1.0

There were several ways that the developed bias correc-
tion was insulated from the validation: (1) the bias correction
uses dynamic coincidence criteria (Wunch, 2011), whereas
the comparisons to validation data use geometric coincidence
criteria (±5◦ latitude and longitude, and±1 week). The over-
lap between these two sets is about 50 %. (2) Remote ocean
surface sites were not used to develop the bias correction.
These locations are expected to have good mixing between
the surface and 2.5 km, but since we do not have profiles
at these locations, these observations are not used for direct
validation. These comparisons between GOSAT and remote
surface sites show excellent improvement over the GOSAT
prior. (3) No data over the southern hemispheric biomass
burning are used in the bias correction, and GOSAT com-
pares very well to MOPITT in this region. (4) Comparisons
were made, taking out observations used in the bias correc-
tion at SGP, where there are plenty of matches. These com-
parisons were as good as the full set.

The mean and standard deviation of the bias correction is
−11.4± 7.6 and 2.7± 2.7 ppm for LMT and U land, respec-
tively and −1.0± 3.1 and −1.7± 0.9 ppm for LMT and U
ocean, respectively. The mean and standard deviations of the
bias correction for XCO2 are −0.6± 1.0 ppm for land and
−0.6± 0.6 for ocean. The bias corrections are larger for the
partial columns than forXCO2; the size and variability of the
bias correction is an indication of its importance.
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Appendix B: Detailed comparisons by site and
campaign

In addition to the averaged results provided previously, Ta-
ble B1 below breaks down the validation results for each in-
dividual station. This table could be useful for diagnosing
outliers in the comparisons, looking at correlations of site-
to-site biases or standard deviations in LMT and U .
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Table B1. Actual and predictions of errors by station and campaign. See Table 3 for definitions of the quantities calculated in Table B1.

Location Latitude, Colocation a b GOSAT GOSAT Pred. Colocation True Prior GOSAT True Prior GOSAT
longitude error corr. rand. prior bias error error bias mean bias bias stdev error error

error error (n= 1) (n= 1) (n= 1) (n= 1) (n= 15) (n= 15)
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

(a) LMT vs. surface ocean flasks at remote sites

BMW 32◦ N, 65◦W 0.4 0.9 2.5 4.6 2.6 4.2 −0.8 391.8 −3.0 −1.4 3.3 2.8 1.1
MID 28◦ N, 177◦W 0.8 1.5 1.8 4.2 2.3 4.3 0.1 389.9 −2.4 −0.2 2.2 4.5 1.5
MNM 24◦ N, 154◦ E 0.3 0.8 1.6 3.8 1.8 4.2 0.2 393.2 −3.8 −0.6 1.6 2.8 0.9
MLO 20◦ N, 156◦W 0.8 1.0 1.4 2.6 1.7 4.5 −0.6 390.9 −2.1 −0.3 1.7 2.2 1.0
KUM 20◦ N, 15◦ 5W 0.7 1.5 1.2 2.6 1.9 4.5 −0.6 390.0 −1.1 0.7 1.7 2.5 1.5
GMI 13◦ N, 145◦ E 0.5 0.7 1.6 2.8 1.8 4.4 0.0 394.8 −2.9 0.9 1.2 1.9 0.8
CHR 2◦ N, 157◦W 0.3 0.8 1.4 1.6 1.6 4.4 −0.2 392.1 −0.8 0.4 1.1 1.9 0.9
SEY 5◦ S, 56◦ E 0.4 1.3 1.8 2.2 2.2 4.0 −0.3 391.4 −0.2 0.7 1.3 0.8 1.3
ASC 8◦ S, 14◦W 0.3 1.0 1.5 1.7 1.8 4.4 −0.4 390.4 0.1 1.5 0.7 2.5 1.1
SMO 14◦ S, 171◦W 0.5 0.5 1.7 2.2 1.8 4.2 −0.5 390.6 0.0 0.6 0.5 2.2 0.7
EIC 27◦ S, 109◦W 0.5 0.8 1.2 2.1 1.4 4.2 −0.4 389.7 0.7 2.7 0.7 1.9 0.8

Average 0.5± 0.2 1.0± 0.3 1.5± 0.2 2.6± 0.8 1.8± 0.3 4.3± 0.2 −0.3± 0.3 391.3± 1.6 −1.2± 1.5 0.7± 1.0 1.3± 0.5 2.3± 0.9 1.1± 0.3

(b) LMT vs. ESRL aircraft

PFA 66◦ N, 147◦W 1.6 5.0 1.6 2.1 5.3 5.1 0.1 388.0 1.9 0.3 8.2 1.5 5.0
ETL 54◦ N, 105◦W 2.2 2.6 2.6 3.6 3.7 4.8 −0.3 388.7 −1.0 −0.6 6.9 3.5 2.7
ESP 49◦ N, 126◦W 3.2 3.2 4.6 4.1 5.6 5.0 0.0 386.1 −2.4 −0.2 4.4 3.6 3.4
DND 47◦ N, 99◦W 1.4 2.9 2.4 3.8 3.8 4.5 −0.1 390.0 −0.6 −0.7 7.8 5.0 3.0
LEF 46◦ N, 90◦W 2.6 3.5 2.2 3.7 4.1 4.7 −0.3 392.1 −0.9 −1.4 6.8 4.5 3.5
NHA 43◦ N, 71◦W 1.6 1.9 3.5 2.8 4.0 4.8 −0.3 393.3 −0.1 0.1 7.7 2.6 2.1
WBI 42◦ N, 91◦W 2.8 1.9 2.9 2.6 3.5 4.5 −1.5 393.3 −0.7 −0.9 5.1 2.3 2.1
THD 41◦ N, 124◦W 2.2 2.7 3.5 2.5 4.4 4.6 0.3 389.5 −1.5 0.9 3.9 2.5 2.8
BNE 41◦ N, 97◦W 2.1 2.4 3.0 3.3 3.9 4.4 −1.3 393.2 −2.5 −2.2 5.0 3.1 2.5
CAR 41◦ N, 104◦W 2.7 2.7 3.3 3.6 4.2 4.2 −2.2 393.0 −2.7 −2.6 3.5 3.3 2.8
HIL 40◦ N, 88◦W 2.2 2.2 3.0 3.4 3.8 4.5 −0.9 396.3 −2.0 −2.4 5.7 3.1 2.4
CMA 39◦ N, 74◦W 1.8 1.8 3.7 3.0 4.1 4.8 −0.6 394.9 −0.7 −0.5 6.1 2.3 2.0
SGP 37◦ N, 98◦W 1.8 2.7 2.9 4.1 3.9 4.3 −0.5 394.3 −1.5 −0.7 4.2 3.7 2.8
SCA 33◦ N, 79◦W 1.0 1.1 3.2 2.3 3.3 4.8 −0.5 395.6 0.3 −1.3 2.9 1.8 1.3
AOA 29◦ N, 148◦ E 0.4 0.7 1.2 1.1 1.4 4.2 −0.5 392.4 −5.0 −0.8 1.5 0.9 0.8
TGC 28◦ N, 97◦W 1.1 1.5 2.5 2.7 2.9 4.2 −0.1 394.9 −0.2 0.0 2.7 2.3 1.7
RTA 21◦ S, 160◦W 0.4 0.2 1.6 1.0 1.6 4.3 0.0 390.9 1.3 0.7 0.7 0.7 0.5

Average land 2.0± 0.6 2.5± 1.2 3.0± 0.7 3.2± 0.6 4.0± 0.7 4.6± 0.3 −0.5± 0.7 392.2± 3.1 −1.0± 1.2 −0.8± 1.0 5.4± 1.8 3.0± 1.0 2.7± 0.9

Ave. land, corrected 1.5± 1.2 2.4± 0.6 3.4± 0.7 −0.5± 01.2 −0.3± 1.0 2.2± 1.0 1.7± 0.9

AOA, RTA Average ocean 0.4± 0.0 0.4± 0.5 1.4± 0.3 1.1± 0.1 1.5± 0.1 4.3± 0.1 −0.3± 0.4 391.7± 1.1 −1.9± 04.5 −0.1± 1.1 1.1± 0.6 0.8± 0.1 0.7± 0.2

(c) U vs. ESRL aircraft

PFA 66◦ N, 147◦W 0.5 1.3 1.1 1.3 1.7 1.8 0.1 392.0 1.8 1.5 2.4 1.0 1.3
ETL 54◦ N, 105◦W 0.4 1.0 1.2 1.6 1.6 1.8 0.1 390.8 1.3 0.9 1.8 1.7 1.1
ESP 49◦ N, 126◦W 1.2 2.0 1.1 1.6 2.3 1.8 0.4 389.9 1.7 2.2 2.1 1.9 2.0
DND 47◦ N, 99◦W 0.6 0.7 1.3 1.6 1.5 1.8 0.2 390.5 0.8 0.4 2.2 1.8 0.8
LEF 46◦ N, 90◦W 0.5 0.5 1.2 1.4 1.3 1.8 0.0 391.3 0.4 0.1 2.1 1.5 0.6
NHA 43◦ N, 71◦W 0.5 0.8 1.2 1.3 1.5 1.8 0.0 391.5 0.4 0.3 2.5 0.9 0.8
WBI 42◦ N, 91◦W 0.4 0.6 1.1 0.8 1.2 1.8 −0.2 391.2 0.3 −0.2 2.1 0.6 0.7
THD 41◦ N, 124◦W 0.9 1.0 1.2 1.2 1.6 1.8 0.4 390.5 1.4 1.8 1.9 0.8 1.1
BNE 41◦ N, 97◦W 0.4 0.6 1.2 1.1 1.3 1.7 −0.1 391.2 0.4 −0.4 2.0 1.1 0.7
CAR 41◦ N, 104◦W 0.6 0.8 1.3 1.0 1.5 1.7 −0.2 391.1 0.4 0.0 2.0 1.0 0.8
HIL 40◦ N, 88◦W 0.5 0.7 1.1 1.1 1.3 1.8 −0.1 392.1 −0.4 −0.9 2.0 0.9 0.8
CMA 39◦ N, 74◦W 0.3 0.5 1.4 0.9 1.5 1.8 −0.1 391.5 0.3 0.1 2.1 0.5 0.6
SGP 37◦ N, 98◦W 0.4 0.5 1.1 0.8 1.2 1.7 0.0 391.4 0.0 −0.4 1.7 0.7 0.6
SCA 33◦ N, 79◦W 0.2 0.4 1.1 0.5 1.2 1.8 −0.1 391.8 0.2 −0.8 1.6 0.3 0.5
AOA 29◦ N, 148◦ E 0.2 0.6 0.4 0.5 0.8 1.7 −0.1 392.4 0.0 0.6 1.4 0.5 0.6
TGC 28◦ N, 97◦W 0.2 0.3 1.0 0.5 1.1 1.7 0.0 391.6 0.4 −0.3 1.9 0.5 0.4
RTA 21◦ S, 160◦W 0.2 0.5 0.7 0.5 0.8 1.7 0.0 390.1 2.3 0.8 0.2 0.5 0.5

Average land 0.5± 0.3 0.7± 0.4 1.2± 0.1 1.1± 0.4 1.4± 0.3 1.8± 0.0 0.0± 0.2 391.2± 0.6 0.6± 0.6 0.3± 0.9 2.0± 0.2 1.0± 0.2 0.8± 0.4

Ave. land, corrected 0.6± 0.4 0.5± 0.0 1.3± 0.3 0.6± 0.6 0.3± 0.9 2.0± 0.2 0.9± 0.2 0.5± 0.4
AOA, RTA Average ocean 0.2± 0.0 0.6± 0.1 0.6± 0.2 1.0± 0.4 0.8± 0.0 1.7± 0.0 −0.1± 0.1 391.3± 1.6 −1.2± 1.6 0.7± 0.1 0.8± 0.8 0.5± 0.0 0.6± 0.1

(d)XCO2 vs. ESRL aircraft

PFA 66◦ N, 147◦W 0.7 2.1 1.2 1.4 2.4 1.3 0.2 391.1 1.8 1.2 3.8 1.0 2.1
ETL 54◦ N, 105◦W 0.7 1.3 1.5 1.9 2.0 0.9 0.0 390.3 0.7 0.6 2.8 2.1 1.4
ESP 49◦ N, 126◦W 1.5 2.2 2.0 1.9 2.9 0.9 0.4 389.0 0.8 1.6 2.4 2.1 2.2
DND 47◦ N, 99◦W 0.7 1.0 1.6 2.0 1.9 0.9 0.1 390.4 0.5 0.2 3.1 2.4 1.1
LEF 46◦ N, 90◦W 0.9 1.1 1.5 1.7 1.8 1.0 0.0 391.4 0.1 −0.3 2.7 2.0 1.2
NHA 43◦ N, 71◦W 0.7 0.9 1.7 1.5 1.9 1.0 −0.1 391.9 0.3 0.3 3.5 1.2 1.0
WBI 42◦ N, 91◦W 0.9 0.8 1.4 1.0 1.6 0.8 −0.5 391.7 0.0 −0.3 2.3 0.8 0.9
THD 41◦ N, 124◦W 1.1 1.2 1.7 1.1 2.1 0.9 0.4 390.3 0.7 1.6 2.2 1.0 1.3
BNE 41◦ N, 97◦W 0.6 0.8 1.5 1.2 1.7 0.7 −0.4 391.7 −0.3 −0.8 2.2 1.3 0.9
CAR 41◦ N, 104◦W 1.0 1.0 1.7 1.1 2.0 0.8 −0.6 391.5 −0.3 −0.7 2.1 1.2 1.1
HIL 40◦ N, 88◦W 0.8 1.0 1.5 1.6 1.8 0.9 −0.3 393.1 −0.7 −1.3 2.4 1.3 1.0
CMA 39◦ N, 74◦W 0.6 0.6 1.9 1.2 2.0 0.9 −0.2 392.3 0.0 0.0 2.8 0.8 0.8
SGP 37◦ ◦ N, 98◦W 0.7 0.9 1.4 1.2 1.7 0.8 −0.1 392.1 −0.3 −0.5 1.9 1.1 1.0
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Table B1. Continued.

Location Latitude, Colocation a b GOSAT GOSAT Pred. Colocation True Prior GOSAT True Prior GOSAT
longitude error corr. rand. prior bias error error bias mean bias bias stdev error error

error error (n= 1) (n= 1) (n= 1) (n= 1) (n= 15) (n= 15)
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

SCA 33◦ N, 79◦W 0.3 0.3 1.5 0.7 1.6 0.9 −0.2 392.7 0.2 −0.9 1.7 0.6 0.5
AOA 29◦ N, 148◦ E 0.2 0.5 0.6 0.5 0.8 0.6 −0.2 392.4 −1.2 0.3 1.4 0.5 0.6
TGC 28◦ N, 97◦W 0.4 0.5 1.2 0.9 1.4 0.7 0.0 392.3 0.3 −0.3 1.9 0.9 0.6
RTA 21◦ S, 160◦W 0.1 0.3 0.8 0.5 0.9 0.7 0.0 390.3 2.0 0.8 0.2 0.4 0.4

Average land 0.8± 0.3 1.0± 0.5 1.6± 0.2 1.5± 0.4 1.9± 0.4 0.9± 0.1 −0.1± 0.3 391.5± 1.1 −0.3± 0.6 −0.0± 0.9 2.5± 0.6 1.3± 0.6 1.1± 0.5

Ave. land, corrected 0.7± 0.5 0.5± 0.0 1.7± 0.4 −0.2± 0.6 0.1± 0.9 1.1± 0.6 0.6± 0.5

AOA, RTA Average ocean 0.2± 0.1 0.4± 0.1 0.7± 0.1 1.1± 0.4 0.9± 0.1 0.7± 0.1 −0.1± 0.1 391.4± 1.5 0.4± 2.3 0.6± 0.4 0.8± 0.8 0.5± 0.1 0.5± 0.1

(e) LMT GOSAT HIPPO ocean

2◦ S 30–0◦ S 0.3 0.3 1.5 0.5 1.5 4.0 −0.1 390.9 2.0 −0.4 0.5 0.4 0.5
2◦ N 15–5◦ S 0.4 0.3 1.6 0.5 1.6 4.1 −0.1 390.7 2.2 −0.2 0.4 0.5 0.5
3◦ S 10◦ S–10◦ N 0.2 0.0 2.4 0.7 2.4 4.3 −0.4 393.5 −0.1 0.0 1.2 0.3 0.6
3◦ N 5◦ S–10◦ N 0.5 0.3 1.9 0.5 1.9 3.9 −0.4 393.4 −0.1 −0.4 0.6 0.4 0.6
4◦ S 10◦ N 0.1 0.5 1.5 0.5 1.6 4.6 −0.5 394.5 −3.0 0.2 0.3 0.4 0.6
4◦ N 15–30◦ N 0.3 0.4 1.5 1.2 1.5 4.2 −0.3 393.4 −4.2 −0.5 0.5 0.8 0.5
5◦ S 0–20◦ N 0.4 0.6 1.5 1.4 1.6 4.5 −0.2 390.7 −0.1 −0.4 0.6 1.0 0.7
5◦ N 10◦ S–20◦ N 0.5 0.5 1.3 1.1 1.4 4.5 −0.3 390.6 2.0 0.3 0.7 0.8 0.6

Average 0.3± 0.1 0.4± 0.2 1.6± 0.3 0.8± 0.4 1.7± 0.3 4.3± 0.3 −0.3± 0.2 392.2± 1.6 −0.2± 2.4 −0.2± 0.3 0.6± 0.3 0.6± 0.3 0.6± 0.6

(f) U GOSAT HIPPO ocean

2◦ S 30–0◦ S 0.1 0.6 0.8 0.4 1.0 1.6 0.1 390.0 2.6 0.1 0.3 0.4 0.7
2◦ N 15–5◦ S 0.2 0.2 0.7 0.2 0.7 1.6 0.1 390.1 2.6 0.7 0.2 0.2 0.2
3◦ S 10◦ S–10◦ N 0.1 0.3 0.9 0.6 1.0 1.7 0.0 391.6 0.9 0.3 1.0 0.6 0.4
3◦ N 5◦ S–10◦ N 0.3 0.1 0.8 0.4 0.8 1.6 0.1 391.1 1.3 0.4 0.4 0.3 0.2
4◦ S 10◦ N 0.1 0.2 0.8 0.2 0.8 1.8 0.3 392.8 −0.2 0.2 0.2 0.2 0.3
4◦ N 15–30◦ N 0.1 0.2 0.7 0.3 0.7 1.6 −0.1 392.9 −0.3 0.2 0.2 0.2 0.3
5◦ S 0–20◦ N 0.1 0.3 0.8 0.3 0.9 1.8 0.1 390.4 1.2 −0.2 0.2 0.2 0.4
5◦ N 10◦ S–20◦ N 0.2 0.3 0.7 0.3 0.8 1.8 0.1 390.2 1.8 0.0 0.3 0.2 0.4

Average 0.1± 0.1 0.3± 0.2 0.8± 0.1 0.3± 0.1 0.8± 0.1 1.7± 0.1 0.1± 0.1 391.1± 1.2 0.3± 1.1 0.2± 0.3 0.4± 0.3 0.3± 0.1 0.4± 0.1

(g)XCO2 GOSAT HIPPO ocean

2◦ S 30–0◦ S 0.1 0.4 0.8 0.2 0.9 0.5 0.0 390.2 2.5 0.0 0.2 0.2 0.5
2◦ N 15–5◦ S 0.1 0.0 0.7 0.2 0.7 0.5 0.0 390.2 2.5 0.5 0.2 0.2 0.2
3◦ S 10◦ S–10◦ N 0.1 0.2 1.1 0.6 1.1 0.7 −0.1 392.0 0.6 0.2 1.1 0.5 0.3
3◦ N 5◦ S–10◦ N 0.3 0.0 0.9 0.4 0.9 0.5 0.0 391.6 1.0 0.2 0.5 0.2 0.2
4◦ S 10◦ N 0.1 0.3 0.9 0.2 0.9 0.8 0.1 393.2 −0.9 0.2 0.2 0.2 0.4
4◦ N 15–30◦ N 0.1 0.1 0.7 0.3 0.8 0.6 −0.1 393.1 −1.2 0.0 0.2 0.1 0.2
5◦ S 0–20◦ N 0.1 0.3 0.9 0.5 1.0 0.7 0.0 390.5 0.9 −0.2 0.3 0.3 0.4
5◦ N 10◦ S–20◦ N 0.2 0.3 0.8 0.5 0.8 0.8 0.0 390.3 1.8 0.0 0.3 0.3 0.4

Average 0.1± 0.2 0.2± 0.2 0.9± 0.1 0.4± 0.2 0.9± 0.1 0.6± 0.1 0.0± 0.1 391.4± 1.3 0.9± 1.4 0.1± 0.2 0.4± 0.3 0.3± 0.1 0.3± 0.1

(h) AJAX

LMT 1.1 2.2 3.1 4.1 −0.6 393.6 −2.0 −0.2 2.8
LMT, corrected∗ 1.9 2.9 −1.4 +0.4
U 0.1 0.9 1.1 1.7 0.0 392.2 0.4 1.0 2.0
XCO2 0.2 0.6 0.9 0.8 −0.1 392.4 −0.1 0.7 2.4 – –
∗ AJAX profiles are colocated within 1 h and 1◦ and therefore do not have multiple GOSAT matches to average.
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