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Abstract. The volatility of organic aerosols (OA) has
emerged as a property of primary importance in understand-
ing their atmospheric life cycle, and thus abundance and
transport. However, quantitative estimates of the thermody-
namic (volatility, water solubility) and kinetic parameters
dictating ambient-OA gas-particle partitioning, such as satu-
ration concentrations (C∗), enthalpy of evaporation (1Hvap),
and evaporation coefficient (γe), are highly uncertain. Here,
we present measurements of ambient-OA volatility at two
sites in the southeastern US, one at a rural setting in Al-
abama dominated by biogenic volatile organic compounds
(BVOCs) as part of the Southern Oxidant and Aerosol Study
(SOAS) in June–July 2013, and another at a more anthro-
pogenically influenced urban location in North Carolina dur-
ing October–November 2013. These measurements applied a
dual-thermodenuder (TD) system, in which temperature and
residence times are varied in parallel to constrain equilibrium
and kinetic aerosol volatility properties. Gas-particle parti-
tioning parameters were determined via evaporation kinetic
model fits to the dual-TD observations. OA volatility param-
eter values derived from both datasets were similar despite
the fact that measurements were collected in distinct settings
and seasons. The OA volatility distributions also did not vary
dramatically over the campaign period or strongly correlate
with OA components identified via positive matrix factoriza-
tion of aerosol mass spectrometer data. A large portion (40–
70 %) of measured ambient OA at both sites was composed
of very-low-volatility organics (C∗ ≤ 0.1 µg m−3). An effec-
tive 1Hvap of bulk OA of ∼ 80–100 kJ mol−1 and a γe value
of ∼ 0.5 best describe the evaporation observed in the TDs.

This range of 1Hvap values is substantially higher than that
typically assumed for simulating OA in atmospheric models
(30–40 kJ mol−1). TD data indicate that γe is on the order of
0.1 to 0.5, indicating that repartitioning timescales for atmo-
spheric OA are on the order of several minutes to an hour un-
der atmospheric conditions. The OA volatility distributions
resulting from fits were compared to those simulated in the
Weather, Research and Forecasting model with Chemistry
(WRF/Chem) with a current treatment of secondary organic
aerosol (SOA) formation. The substantial fraction of low-
volatility material observed in our measurements is largely
missing from simulations, and OA mass concentrations are
underestimated. The large discrepancies between simulations
and observations indicate a need to treat low-volatility OA
in atmospheric models. Volatility parameters extracted from
ambient measurements enable evaluation of emerging treat-
ments for OA (e.g., secondary OA using the volatility basis
set or formed via aqueous chemistry) in atmospheric models.

1 Introduction

Organic aerosol (OA) is a dominant component of atmo-
spheric fine particulate matter (PM2.5) (Jimenez et al., 2009;
Zhang et al., 2007), which is linked to adverse human health
and uncertain climate effects. Atmospheric OA is a complex
mixture of thousands of individual organic compounds orig-
inating from a range of natural and anthropogenic sources.
Primary OA (POA) is emitted directly into the atmosphere.
Secondary OA (SOA) is formed in the atmosphere via oxi-
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dation reactions of gas-phase organic species; it may also be
formed by reactions in the particle (condensed) phase (Kroll
and Seinfeld, 2008). A large fraction of SOA in many parts
of the globe, e.g., in the southeastern US, is formed from
biogenic volatile organic compounds (BVOCs) (Goldstein
et al., 2009; Goldstein and Galbally, 2007). However, the
mechanisms responsible for SOA production from BVOCs
(Budisulistiorini et al., 2015; Goldstein and Galbally, 2007;
Marais et al., 2016; Xu et al., 2015a, b), its chemical com-
position, and many important physical properties are largely
undetermined (Goldstein et al., 2009; Schichtel et al., 2008;
Weber et al., 2007). Therefore, their representation in current
atmospheric and climate models are highly uncertain (Hal-
lquist et al., 2009; Liao et al., 2007; Pye et al., 2015; Pye and
Seinfeld, 2010).

One of the major sources of uncertainty in predicting
SOA concentrations in atmospheric models arises from the
poor understanding of gas-particle partitioning of chemical
species comprising SOA (Hallquist et al., 2009; Jimenez et
al., 2009; Seinfeld and Pankow, 2003). Gas-particle parti-
tioning plays a central role in determining life cycle of OA
and thus its atmospheric abundance, transport, and impacts
(Donahue et al., 2006; Jimenez et al., 2009). At equilibrium,
the volatility of organic species, specifically saturation va-
por pressure (or equivalently, saturation concentration, C∗;
µg m−3), plays a vital role in determining their gas-particle
partitioning. (Donahue et al., 2006; Pankow, 1994). Solu-
bility of organic species in water may also be critical for
gas-particle partitioning for many species (Hennigan et al.,
2009), especially in places with higher relative humidity, in
the southeastern US, for example. Enthalpies of vaporiza-
tion (1Hvap) dictate the change in partitioning with temper-
ature (Donahue et al., 2006; Epstein et al., 2010). Although
gas-particle partitioning is determined by the basic thermo-
dynamic properties of OA species – their C∗, 1Hvap, and
solubility – these, along with the impacts of nonideal mix-
ing on individual species, are generally unknown for ambient
OA. Under changing conditions, gas-particle partitioning is
also influenced by the kinetics of gas-particle exchange, for
example due to barriers to mass transfer in solid or viscous
particles or molecular accommodation at a particle surface
(Kroll and Seinfeld, 2008). The overall kinetic limitation to
mass transfer during repartitioning is typically described by
an evaporation coefficient (γe) (also often called mass ac-
commodation coefficient), which is highly uncertain for am-
bient OA and can dictate timescales for partitioning (Saleh et
al., 2013). Though current models assume OA to be at equi-
librium within a model prediction time step (several minutes
to an hour) during atmospheric simulations, several studies
have indicated that partitioning timescales could be as long
as days or months (γe� 0.1) due to a highly viscous and/or
glassy aerosol (Vaden et al., 2011; Zobrist et al., 2008).

Quantitative measures of ambient-OA gas-particle parti-
tioning parameters are needed to provide inputs for, and to
evaluate, atmospheric models. However, methods to quan-

titatively determine ambient-OA volatility are in their in-
fancy and the resulting estimates of parameters dictating OA
volatility are highly uncertain (Cappa and Jimenez, 2010).
Thermodenuder (TD) systems have been previously applied
to measure ambient-OA volatility (Burtscher et al., 2001;
Huffman et al., 2009; Lee et al., 2010; Paciga et al., 2016;
Xu et al., 2016). A TD system measures evaporation of sam-
pled aerosol at various temperature perturbations by system-
atically comparing the size distribution and/or aerosol mass
concentration measured after heating in a TD and at a ref-
erence (“bypass”) condition (Huffman et al., 2008). Several
efforts have been made to infer ambient-OA volatility dis-
tributions by fitting observed evaporation in a TD using a
model of evaporation kinetics (Cappa and Jimenez, 2010;
Lee et al., 2010). However, since OA evaporation in a TD is
dictated by a large number of independent parameters (e.g.,
C∗, 1Hvap, and γe) (Cappa and Jimenez, 2010; Lee et al.,
2010), it is difficult to constrain all parameters with a one-
dimensional perturbation (e.g., varying TD temperature) to
the initial equilibrium. Saha et al. (2015) showed that oper-
ating two TDs in parallel (dual-TD), varying both temper-
ature and residence time, can provide tighter constraint on
estimates of volatility parameter values (C∗, 1Hvap, and γe)

for single-component OA via kinetic model fits to the obser-
vations. In Saha and Grieshop (2016), this approach was ap-
plied to determine volatility and phase-partitioning parame-
ter values for laboratory α-pinene SOA. The resulting param-
eters are consistent with recent observations of low-volatility
SOA (Jokinen et al., 2015; Zhang et al., 2015) and evapora-
tion rates (Vaden et al., 2011; Wilson et al., 2015) observed
by several techniques. TD perturbations alone cannot give in-
sights into the solubility of OA components, though they may
be used to do so in concert with other techniques (Cerully et
al., 2015).

This paper describes the application of the dual-TD ap-
proach during ambient observations from two different set-
tings in the southeastern US. Measurements at a rural site
during the Southern Oxidant and Aerosol Study (SOAS-
2013) (https://soas2013.rutgers.edu/) leverage the range of
complementary measurements available during this large
field study. To provide a contrast, measurements were
also taken several months later under cooler conditions in
Raleigh, US, a small metropolitan area in a similar ecologi-
cal zone but with stronger influence from local anthropogenic
emissions. The objectives of the study were to (i) determine
a set of volatility parameter values, such as OA volatility
distribution using the volatility basis set (VBS) framework
(Donahue et al., 2006, 2012), 1Hvap, and γe, that describe
observations; (ii) examine the variability and consistency in
ambient-OA volatility distributions across diverse settings
and conditions; (iii) examine relationships between extracted
volatility distributions and OA composition and source con-
tributions; and (iv) evaluate a model treatment of OA volatil-
ity by comparing the measured OA volatility distribution
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with that simulated by a chemical transport model using a
current implementation of the VBS framework.

2 Methods

2.1 Measurement sites

Ambient OA volatility measurements were conducted at two
locations in the southeastern US, one in a forested rural set-
ting and another in an urban location. During the Southern
Oxidant and Aerosol Study (SOAS-2013) field campaign,
6 weeks (1 June to 15 July 2013) of continuous measure-
ments were conducted in rural Alabama. The SOAS field
campaign occurred in summer 2013 at several locations in
the southeastern US in order to study the interaction of bio-
genic and anthropogenic atmospheric compounds with a fo-
cus on BVOCs and organic aerosols. The measurements re-
ported here are from the main SOAS ground site (32.903◦ N,
87.250◦W) near Talladega National Forest and Centreville,
Alabama. The Centreville, Alabama, site is an ideal location
to study volatility of OA dominated by secondary OA from
BVOC precursors (Warneke et al., 2010) in the presence of
a range of anthropogenic influences. An additional 4 weeks
(18 October to 20 November 2013) of ambient-OA volatility
measurements were conducted at the North Carolina State
University (NCSU) main campus (35.786◦ N, 78.669◦W) in
Raleigh, US. The NCSU site, while in an area with plenti-
ful tree cover and BVOC emissions, receives a substantially
stronger influence from anthropogenic emissions due to its
location within the Raleigh metro area. Section 3.1 includes
further comparison between two study areas. Hereafter, the
two datasets are referred to as Centreville and Raleigh.

2.2 Dual-thermodenuder operation and sampling
strategy

Measurements were collected using the dual-TD experimen-
tal setup introduced in Saha et al. (2015) and are only briefly
described here. Two TDs operated in parallel, one at various
temperature settings (temperature stepping TD, TS-TD) with
a fixed, relatively longer residence time (Rt) and another at
fixed temperature and various Rt settings (variable residence
time TD, VRT-TD). The TS-TD temperature settings were
40, 60, 90, 120, 150, and 180◦ with∼ 50 s Rt, while the VRT-
TD operated at 60 or 90◦ with Rt varying between 1 and 40 s
(five to eight settings). All Rts reported here are calculated
assuming plug flow at room temperature. Temperature ef-
fects on Rt were included during modeling of evaporation ki-
netics (discussed below) as Rt (TTD)=Rt (Tref)×(Tref/TTD),
where Tref and TTD are the reference temperatures (e.g., room
temperature) and TD temperature in K, respectively (Cappa,
2010). The time to run through all temperatures and Rt steps
during measurements was ∼ 4–5 h.

A schematic of the experimental setup is shown in Fig. 1.
Three scanning mobility particle sizers (SMPS, TSI Inc,
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Figure 1. Dual-thermodenuder aerosol volatility measurement
setup used during field campaigns at two sites in the southeast-
ern US. TS-TD: temperature stepping TD, VRT-TD: variable resi-
dence time TD, Rt: residence time, EFC: extra flow control, ACSM:
aerosol chemical speciation monitor, SMPS: scanning mobility par-
ticle sizer.

Model 3081 DMAs, Model 3010/3787 CPCs) simultane-
ously measured aerosol size distributions (10–600 nm) in
three parallel lines (two TDs and one bypass). An aerosol
chemical speciation monitor (ACSM, Aerodyne Research
Inc.) alternated between the bypass and TS-TD lines at∼ 20–
30 min intervals using an automated three-way valve system.
The ACSM measured the submicron aerosol (∼ 75–650 nm)
mass concentration of nonrefractory chemical species (or-
ganic, sulfate, nitrate, ammonium, and chloride) (Ng et al.,
2011a).

All aerosol instruments and TD inlets were inside a
temperature-controlled (25◦C± 2) trailer in Centreville and
laboratory room in Raleigh. Ambient air was continuously
sampled through a sampling inlet located on the rooftop of a
trailer or building (∼ 5 m above ground level). The sampling
inlet included a PM2.5 cyclone (URG Corp, 16.7 L min−1)

followed by an∼ 8 mm inner diameter copper sample line. A
silica gel diffusion dryer upstream of TD inlets and aerosol
instruments maintained relative humidity (RH) < 30–40 %.
The dryer is required for instrument operation under hu-
mid ambient conditions but may induce some loss of water-
soluble OA components (El-Sayed et al., 2016).

2.3 Quantifying OA evaporation

Evaporation of bulk OA at a particular TD operating temper-
ature and residence time is described in terms of mass frac-
tion remaining (MFR). OA MFR is the ratio of OA mass con-
centration measured after passing through TD to that mea-
sured via the bypass (room temperature) line. For quantita-
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tive assessment of aerosol volatility, such as during modeling
of aerosol evaporation, the initial OA concentration (COA)

and particle size are also needed. Empirically estimated par-
ticle loss correction factors as a function of TD tempera-
tures and residence times (Saha et al., 2015) and instrumental
inter-calibration factors were applied in MFR calculations.
To get directly comparable SMPS concentration data from
three SMPSs running in parallel with our dual-TD system,
we ran them periodically in parallel on the bypass line to de-
termine intercalibration factors. Further details on SMPS in-
tercomparison are discussed in Saha et al. (2015). Since the
VRT-TD line was only measured with the SMPS (Fig. 1),
it only provided information on evaporation of submicron
aerosol in terms of its volume concentration. We estimated
the OA MFR from VRT-TD and SMPS data assuming mea-
sured aerosol volume was only comprised of OA and am-
monium sulfate (AS). This is a reasonable assumption un-
der these conditions because more than 90 % of measured
aerosol volume concentrations can be explained by OA+AS
for both sites (see Supplement, Fig. S1). Our calculations
also assumed that AS did not evaporate at the VRT-TD oper-
ating temperatures (60 or 90 ◦C) (Fig. S2). For further details
on the estimation of approximate OA MFR from VRT-TD
and SMPS data, see Sect. S1.

2.4 Determining OA gas-particle partitioning
parameters

We apply a previously described volatility parameter extrac-
tion framework (Saha et al., 2015; Saha and Grieshop, 2016)
to extract a set of volatility parameter (C∗, 1Hvap, γe) val-
ues via inversion of dual-TD data using an evaporation ki-
netics model. The evaporation kinetics model used here is
that described in Lee et al. (2011). The approach is briefly
outlined below. The resulting fit describes OA using a log10
volatility basis set (VBS) framework (Donahue et al., 2006,
2012), where material is lumped into volatility bins separated
by orders of magnitude in C∗ space at a reference tempera-
ture (Tref). The volatility distribution extracted using this ap-
proach is an empirical estimate describing the bulk volatility
behavior of OA, assuming absorptive partitioning (Donahue
et al., 2006, 2012). The VBS approach is based on an ef-
fective saturation concentration (C∗) where the activity co-
efficient is assumed to be lumped into the saturation concen-
tration. In the VBS approach, total OA concentration (COA;
µg m−3) is modeled using Eq. (1).

COA = Ctot
∑
i

fi

(
1+

C∗i

COA

)−1

(1)

Here, Ctot is the total organic material (vapor+ aerosol) in
phase equilibrium with COA and fi is the fraction of Ctot in
each volatility (log10C

∗) bin. Thus, fi = Ctot,i/Ctot describes
the distribution of organics in volatility space and is usually
called the volatility distribution.

The Clausius–Clapyeron equation (Eq. 2) is used to repre-
sent temperature-dependent C∗.

C∗i (T )= C
∗

i (Tref)exp
[
−
1Hvap,i

R

(
1
T
−

1
Tref

)]
Tref

T
, (2)

where R is the gas constant and 1Hvap is the enthalpy of
vaporization.

To extract the volatility distribution of OA from ambi-
ent measurements, we select lower- and upper-C∗ (Tref)

bins of 10−4 and 101 µg m−3, respectively. A reference tem-
perature (Tref) of 298 K is assumed. All C∗ values re-
ported in this paper should be considered at 298 K, unless
otherwise specified. The selection of the lower and upper
bins are determined by the highest TD operating tempera-
ture (180 ◦C) and the average ambient-OA loading (COA ∼

5 µg m−3), respectively. With these C∗ bin limits, materials
with C∗ < 10−4 µg m−3 are lumped into the lowest bin, while
materials with C∗ > 10 µg m−3 are not represented. Note, if a
C∗ bin of 100 µg m−3 is included, Eq. (1) indicates that less
than 5 % of the material in this bin will be in the condensed
phase at COA ∼ 5 µg m−3. Therefore, C∗ bins > 10 µg m−3

are not well constrained by our TD data and are not included
in our analysis.

The general approach to fitting a volatility parameteriza-
tion employed in this study is similar to that applied to labo-
ratory aerosol systems (Saha et al., 2015; Saha and Grieshop,
2016). Briefly, the kinetic model tracks both particle- and
gas-phase concentrations of model species (each represented
by a VBS bin) as they proceed through TD operated at a
particular temperature and residence time. The model takes
inputs of several aerosol properties (e.g., C∗ distribution,
1Hvap, diffusion coefficient (D), surface tension (σ), molec-
ular weight (MW), and density (ρ)), total aerosol loading
(COA), and particle diameter (dp) and determines how much
aerosol mass concentration will evaporate for a set of in-
put parameters at a particular TD temperature and residence
time. Non-continuum effects on mass transfer are repre-
sented using the Fuchs–Sutugin correction factor, which de-
pends on γe. The model is applied to extract OA properties
such as the volatility distribution, 1Hvap, and γe as fitting
parameters by matching measured and modeled evaporation
data. Values ofD, σ , MW, and ρ generally have a smaller in-
fluence on observed evaporation (Cappa and Jimenez, 2010;
Saha et al., 2015) and are approximated from literature val-
ues (Table S1). Volume median diameter was used as a rep-
resentative dp. For simplicity, a large (1Hvap, γe) space
was considered for fitting a fi distribution of measured OA.
Following previous work (Epstein et al., 2010; May et al.,
2013), a linear relationship was assumed between1Hvap and
log10C

∗ with1Hvap,i = intercept-slope (log10C
∗

i,298), where
intercept and slope are fit parameters. Values for 1Hvap
intercept= [50, 80, 100, 130, 200] and slope= [0, 4, 8,
11] kJ mol−1 were applied along with γe = [0.01, 0.05, 0.1,
0.25, 0.5, 1]. γe was assumed constant over all bins and is an
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effective parameter representing all kinetic limitations within
the condensed phase and at the particle surface.

A distribution of fi was solved for each combination of
(1Hvap, γe) applying the nonlinear constrained optimization
solver “fmincon” in MATLAB (Mathworks, Inc.) by first fit-
ting TS-TD data; accepted solutions were then further refined
by fitting VRT-TD observations. A constraint of6fi = 1 was
used. The goodness of fit was quantified in terms of the sum
of squared residual (SSR) values. For the campaign-average
fit, an acceptance threshold value for SSR was selected based
on observed variability (± one standard deviation) in mea-
surements. A parameter set (fi , 1Hvap, and γe) was con-
sidered a finally accepted solution if it optimally reproduced
both TS-TD and VRT-TD observations within the observed
variability. Raw data at each (T , Rt) condition were averaged
over 20–30 min. At given TD operating conditions (T , Rt),
we defined ±1 standard deviation of MFR data (20–30 min
resolution) from the whole campaign as an indicator of the
observed variability. The best fit is defined as that with the
lowest SSR value among all the accepted combinations.

2.5 Simulation of OA in a chemical transport model

Considering that VBS-based parameterizations are becom-
ing common means to improve the performance of OA pre-
diction in chemical transport models (CTMs) (Farina et al.,
2010; Lane et al., 2008b; Matsui et al., 2014; Murphy et al.,
2011; Shrivastava et al., 2013), measurements of OA volatil-
ity provide a useful means by which to evaluate these sim-
ulations. We compared OA volatility distributions measured
in this study to those resulting from CTM simulations us-
ing a current VBS-based parameterization implemented in
a modified version of the Weather, Research and Forecast-
ing model with Chemistry (WRF/Chem) v3.6.1 (Wang et
al., 2015; Yahya et al., 2016). The WRF/Chem simulation
uses the Carbon Bond version 6 (CB6) gas-phase mecha-
nism (Yarwood et al., 2010) coupled by Wang et al. (2015)
to the Model for Aerosol Dynamics for Europe – Volatility
Basis Set (MADE/VBS) (Ackermann et al., 1998; Ahmadov
et al., 2012; Shrivastava et al., 2011). The CB6-MADE/VBS
treatment includes semivolatile POA and SOA, as well as a
fragmentation and functionalization treatment for multigen-
erational OA aging based on Shrivastava et al. (2013). The
fragmentation and functionalization treatment in this case as-
sumes 25 % fragmentation for the third and higher genera-
tions of oxidation (Shrivastava et al., 2013). The ranges of
C∗ values used in WRF/Chem simulation are defined based
on current SOA and semivolatile POA parameterizations and
were 100 to 103 µg m−3 for ASOA (anthropogenic SOA)
and BSOA (biogenic SOA), 10−2 to 106 µg m−3 for POA
and 10−2 to 105 µg m−3 for SVOA (semivolatile OA), where
SVOA refers to oxidized OA from evaporated POA. The
semiempirical correlation for 1Hvap by Epstein et al. (2010)
was used to estimate temperature-dependent partitioning.

The simulations are performed at a horizontal resolution of
36 km with 148×112 horizontal grid cells over the continen-
tal US domain and parts of Canada and Mexico and a vertical
resolution of 34 layers from the surface to 100 hPa. Anthro-
pogenic emissions in 2010 were based on the 2008 National
Emissions Inventory (NEI) from the Air Quality Model Eval-
uation International Initiative (AQMEII) project (Pouliot et
al., 2015). Biogenic emissions are simulated online by the
Model of Emissions of Gases and Aerosols from Nature v2.1
(MEGAN2.1) (Guenther et al., 2012). The chemical initial
and boundary conditions (ICs and BCs) come from the mod-
ified Community Earth System Model/Community Atmo-
sphere Model (CESM/CAM v5.3) with updates by He and
Zhang (2014) and Gantt et al. (2014). The meteorological ICs
and BCs come from the National Center for Environmental
Protection Final Analysis (FNL) data.

3 Results

3.1 Overview of campaign characteristics

The two field campaigns were conducted in settings with
distinct local emission sources and metrological conditions.
The Centreville campaign was during summer (T = 24.7±
3.3 ◦C, RH= 83.1± 15.3 %). Local organic emissions sur-
rounding the Centreville site are dominated by BVOCs
since this site is located in a forest and biogenic emissions
substantially increase with temperature (Lappalainen et al.,
2009; Tarvainen et al., 2005; Warneke et al., 2010). In con-
trast, Raleigh measurements were in a setting with substan-
tially stronger anthropogenic emissions during fall and win-
ter (T = 12.7± 6.0 ◦C, RH= 65.7± 18.8 %). Comparison of
long-term data from an air quality monitoring station near
the Raleigh site shows substantially higher NOx (5–10-fold)
and CO (2–4-fold) concentrations relative to those observed
at Centreville (see Fig. S3). However, the Raleigh–Durham
metropolitan area has plentiful tree cover and thus substan-
tial local BVOC emissions. For instance, α- and β-pinene
concentrations measured in summer at Centreville and Duke
Forest (about 40 km northwest of the Raleigh site) are in
the same range (Fig. S4). However, since the Raleigh cam-
paign was conducted at lower temperature conditions, local
BVOC emissions are expected to be lower by a factor of 3
to 4 (Fig. S4). Measurements in such diverse but similar eco-
logical settings allow us to examine the consistency of OA
volatility under varying levels of biogenic and anthropogenic
influence.

Figures S5–S7 show average meteorological conditions,
submicron aerosol size distributions, chemical composi-
tion, and their temporal variations over the campaign pe-
riods. Ambient submicron particle number concentrations
(10–600 nm) were higher in Raleigh (Centreville: 1500–
3000 cm−3, Raleigh: 3000–6000 cm−3) and particle size
was relatively smaller (volume median diameter, Centre-
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ville: 275± 30 nm, Raleigh: 227± 34 nm) (Fig. S6). Organic
species were the dominant component in nonrefractory sub-
micron aerosol (PM1) as measured by the ACSM at both
sites (Centreville: 71± 10 %, Raleigh: 76± 8 %). The cam-
paign average ± 1 standard deviation of ACSM-derived OA
mass concentrations was 5.2± 3.0 µg m−3 in Centreville and
6.7± 3.6 µg m−3 in the Raleigh campaign, assuming a col-
lection efficiency (CE) of 0.5. After applying the coarse
tracer (m/z)-based factor analysis approach to decompose
OA mass spectra (Ng et al., 2011b), the majority of OA
measured at both sites was oxygenated OA (OOA). While
approximately 7 % of campaign-averaged OA mass concen-
tration in Raleigh was classified as hydrocarbon-like OA
(HOA), the HOA contribution at the Centreville site was
negligible. Positive matrix factorization (PMF) results from
high-resolution mass spectra collected at the Centreville site
(Xu et al., 2015a, b) and their linkage with the measured OA
volatility are discussed in Sect. 3.3 and 3.4 below.

3.2 Observed campaign-average evaporation of OA

Figure 2 shows the campaign-average OA MFR as a func-
tion of TD temperature and residence time. (1-MFR) at a
TD temperature and residence time indicates what fraction
of bulk OA mass evaporates at that condition. It is important
to note that MFR at a given temperature is not a consistent
descriptor of OA volatility because it depends on many pa-
rameters related to TD experimental conditions (e.g., Rt) and
sampled aerosol (e.g., COA, dp). Therefore, MFR data should
not be interpreted as a direct measure of OA volatility or even
directly compared (unless experiments are conducted under
identical conditions).

Figure 2a (MFR vs. temperature, frequently called a ther-
mogram plot) shows TS-TD measurements from this study
along with one other measurement from SOAS (Hu et al.,
2016) and several previous field and laboratory measure-
ments. The campaign-average OA MFRs measured at the
two sites in the southeastern US, under relatively consis-
tent COA ∼ 5 µg m−3, were found to be quite similar. Ap-
proximately 60–70 % of OA mass evaporated after heat-
ing at 100◦C with a residence time of 50 s. The campaign-
average T50 and T90 (temperature at which 50 and 90 %
of OA mass evaporates, respectively) with a residence time
of 50 s were ∼ 78 and ∼ 180◦C, respectively. Data from α-
pinene chamber SOA experiments collected using the same
dual-TD setup at atmospheric conditions (dark ozonolysis,
COA ∼ 5 µg m−3), described in Saha and Grieshop (2016),
are also shown. Relative to the ambient observations, the lab
SOA data show similar evaporation behavior in the lower
temperature range (40–90 ◦C) but relatively greater evapo-
ration at higher temperatures.

Figure 2b and c show the campaign-average-estimated OA
MFRs at various residence times with the VRT-TD operated
at 60 and 90 ◦C, respectively. Results show increased evapo-
ration with longer residence time. In Fig. 2a, data are color

T = 60 °C T= 90 °C

605040302010

α-pinene SOA

(a)

(b) (c)

Figure 2. Measured (solid symbols) and modeled (solid, thick
lines) campaign-average organic aerosol (OA) mass fraction re-
maining (MFR) as a function of TD temperatures (T ) and res-
idence times (Rt). The solid symbol shows mean value and the
error bar is ± one standard deviation of all campaign data at
each (T , Rt) condition. Model lines are shown using the best
fit volatility parameter values from campaign-average TD data
fit (parameter values listed in Table 1). TD measurement data
from the Centreville site collected by the University of Colorado
group at SOAS-2013 (Hu et al., 2016) are also shown. Mea-
surements from several previous field studies are shown with
various open symbols: Hyytiala/2008–2010, Finland (Häkkinen
et al., 2012); ClearfLo/2012, London (Xu et al., 2016); MILA-
GRO/2006, Mexico City (Huffman et al., 2009); SOAR-1/2005,
Riverside, California (Huffman et al., 2009); FAME/2008, Fi-
nokalia, Greece (Lee et al., 2010); MEGAPOLI/2009–2010, Paris,
France (Paciga et al., 2016). Chamber α-pinene SOA (dark ozonoly-
sis, COA ∼ 5 µg m−3, VMD∼ 140 nm) evaporation data are shown
from Saha and Grieshop (2016). In panel (a), data are color coded
by TD residence times used during measurements. The legend
shown next to panel (a) applies to all panels (a–c).

coded by the TD residence time used in each study. A sub-
stantial effect of residence time on the observed evaporation
is consistent with that observed across TD measurements
from several previous field studies (Häkkinen et al., 2012;
Huffman et al., 2009; Lee et al., 2010; Paciga et al., 2016; Xu
et al., 2016). This effect of residence time on observed MFR
strongly suggests that comparisons of OA volatility across
studies should not be made based on measured MFRs. Doing
so may bias inferences about differences in aerosol volatil-
ity. Observed evaporation depends on TD residence time and
many physical and chemical properties of sampled aerosol
(Cappa, 2010; Riipinen et al., 2010; Saleh et al., 2011), un-
less the aerosol reaches equilibrium inside a TD (saturates
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Table 1. Best fit OA volatility parameter values extracted from this study along with several previous field and lab studies.

Study Centreville Raleigh FAME MILAGRO (Cappa and AP-SOA (Saha and
(this study) (this study) (Lee et al., 2010) Jimenez, 2010) Grieshop, 2016)

Campaign average 5.2 6.7 2.8 17 5
COA (µg m−3)

Note a b a b c d c d e

γe 0.5 0.5 0.5 0.5 0.05 1 1 1 0.1 0.1 0.1

1Hvap (kJ mol−1) 100 100 100 100 80 80 100 100 100 100 [80,11]f

logC∗ (µg m−3) fi

−6 0.06 0.04
−5 0.06 0.04
−4 0.14 0.18 0.14 0.16 0.06 0.27 0.04 0.21 0.03
−3 0.05 0.05 0.06 0.05 0.2 0.07 0.11 0.04 0.07 0.07
−2 0.06 0.08 0.08 0.13 0.2 0.2 0.07 0.11 0.05 0.09 0.03
−1 0.15 0.13 0.12 0.20 0.2 0.3 0.08 0.12 0.06 0.10 0.12
0 0.29 0.33 0.28 0.20 0.3 0.3 0.10 0.15 0.1 0.18 0.18
1 0.31 0.23 0.32 0.26 0.3 0.16 0.24 0.2 0.35 0.57
2 0.34 0.43

Mean C∗ (µg m−3) 0.21 0.12 0.20 0.10 0.50 0.05 0.32 0.03 1.5 0.1 1.16

C∗eff (µg m−3) 1.8 1.4 2.0 1.5 1.3 0.3 9.4 1.9 13.8 2.8 3.5

a Campaign-average dual-TD data fit with campaign-average COA and dp.
b Unified fit of individual measurements from whole campaign (MFR, COA, dp; 20–30 min resolution data).
c The fi distribution derived from Ci,tot = a1 + a2 exp[a3(log(C∗)− 3)]; fi = Ci,tot/6Ci,tot; a1, a2, and a3 coefficients were taken from Table 1 of Cappa and
Jimenez (2010). log10C

∗ bin ranged from −6 to +2, as in Cappa and Jimenez (2010).
d Same as c, but only considered log10C

∗ bin range of −4 to +1 to be consistent with the bin ranges used in this study. To do so, materials in log10C
∗ <−4 bins are

assigned to −4 bin, material at log10C
∗
= 2 bin is excluded, and distribution is renormalized to make 6fi = 1.

e Chamber-generated SOA from low-COAα-pinene ozonolysis experiment applying renormalization approach described in note d to the distribution given in Saha
and Grieshop (2016) Supplement, Table S5.
f 1Hvap (kJ mol−1)= 80− 11logC∗ (µg m−3).

the gas phase across the volatility range). The equilibration
time of aerosol in a TD is dictated by many parameters, in-
cluding particle size distribution, diffusion coefficient (D),
and evaporation coefficient (γe) and is typically several min-
utes or more under atmospheric (low COA) conditions (Saleh
et al., 2011, 2013).

Following the method of Saleh et al. (2013), the estimated
characteristic equilibration times for the sampled aerosol in
the Centreville and Raleigh measurements are 147–470 and
150–450 s, respectively, assuming unhindered mass transfer
(γe = 1). These calculations are based on the interquartile
ranges of particle number concentrations (Np) and condensa-
tion sink diameter (dcs)measured in Centreville (Np ∼ 1500–
3000 cm−3, dcs ∼ 125–170 nm) and Raleigh (Np ∼ 3000–
6000 cm−3, dcs ∼ 80–105 nm), and D = 3.5× 10−6 m2 s−1

and MW= 200 g mol−1. The condensation sink diameter
(dcs) is estimated following Lehtinen et al. (2003); further
detail is given in the Supplement. A factor-of-10 reduction in
γe relative to ideal accommodation (γe = 0.1) increases equi-
libration time by 1 order of magnitude. The observed contin-
uous downward slope of MFR vs. residence time (Fig. 2b,
c) suggests that equilibrium was not reached in the TD dur-

ing the maximum Rt of 50 s. This result implies that TD
measurements in an ambient setting are essentially a mea-
sure of the evaporation rate of sampled aerosol, rather than
one of volatility, an equilibrium thermodynamic property.
Therefore, an evaporation kinetic model is needed to extract
volatility parameter values from ambient TD data.

3.3 Extracted OA volatility parameter values

Figure 3 presents the results of the extraction process used to
determine parameters dictating gas-particle partitioning (fi ,
1Hvap, γe); the example shown is for a fit to the Centre-
ville campaign-average data, though the same process was
conducted for all fits. Figure S8 shows a similar plot for the
Raleigh dataset. Fitting results show that a broad range of
γe (0.05 to 1) can reproduce the TS-TD observation within
observed variability (i.e., error bars in Fig. 2) for several
1Hvap combinations (accepted TS-TD fits are shown with
filled inner circles). The inclusion of VRT-TD data provides
additional constraints for parameter fitting. Only the points
with white crosses (x) in Fig. 3 recreate both TD datasets; a
larger-sized “x” represents a better fit. Thus, VRT-TD data

www.atmos-chem-phys.net/17/501/2017/ Atmos. Chem. Phys., 17, 501–520, 2017



508 P. K. Saha et al.: Quantifying the volatility of organic aerosol
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Figure 3. Extraction process of OA gas-particle partitioning param-
eter (1Hvap, γe and fi) values. A fi distribution was solved for
each combination of (1Hvap, γe) via evaporation kinetic model fits
to campaign-average dual-TD observations during the Centreville
campaign. A relationship of 1Hvap = intercept–slope (log10C

∗ @
298 K) was assumed (e.g., 50–0 on x axis represents intercept= 50
and slope= 0). Symbols and colors represent the goodness of fit.
Points with filled inner circles recreate TS-TD observations and
points with a white cross (x) recreate both TD datasets to within
observational variability. Crosses represent the overall goodness of
fit including both TS-TD and VRT-TD observations, with larger size
corresponding to a better fit.

help to narrow the possible solution space. Figure 3 shows
that 1Hvap = 100 kJ mol−1 and γe = 0.5 provide the overall
best fit for the Centreville dataset. For the Raleigh dataset,
1Hvap of both 80 (marginally better) and 100 kJ mol−1 with
γe = 0.5 provide similarly good fits (Fig. S8). For simplicity,
1Hvap = 100 kJ mol−1 and γe = 0.5 are considered as best
estimates for both datasets for the next portion of the paper.

These results are inconsistent with a very small value of
OA evaporation coefficient (e.g., γe� 0.1) that would indi-
cate significant resistance to mass transfer during evapora-
tion, which has been previously suggested based on dilution
(Grieshop et al., 2007, 2009; Vaden et al., 2011) and heating
(Lee et al., 2011) experiments. Our best estimate of γe ∼ 0.5
is consistent with the observations of Saleh et al. (2012), in
which they report an γe ∼ 0.28 to 0.46 for ambient aerosols
in Beirut, Lebanon, via measured equilibration profiles of
concentrated ambient aerosols (COA ∼ 200–300 µg m−3) af-
ter heating in a TD at 60 ◦C. Our results show that an ef-
fective γe ∼ 0.1 to 1 can explain dual-TD data to within ob-
served variability, suggesting that there is no extreme resis-
tance to mass transfer such as what might be encountered due
to a glassy-solid or highly viscous aerosol. Some previous
assertions of highly inhibited evaporation (Grieshop et al.,
2007; Vaden et al., 2011) were likely biased as they assumed

volatility distributions based on smog-chamber yield exper-
iments that likely overestimated the volatility and thus ex-
pected evaporation rate of lab OA (Saha and Grieshop, 2016;
Saleh et al., 2013).

Our fitting results show that a 1Hvap intercept of 80–
130 kJ mol−1 and slopes of 0 or 4 kJ mol−1 can be used to
explain campaign-average observations (Figs. 3, S6). These
1Hvap values are consistent with those of atmospherically
relevant low-volatility organics such as dicarboxylic acids
(Bilde et al., 2015) but distinct from those typically as-
sumed (30–40 kJ mol−1) for atmospheric modeling (Farina
et al., 2010; Lane et al., 2008b; Pye and Seinfeld, 2010). The
low enthalpies assumed in models are based on temperature-
sensitivity observations from smog chamber SOA experi-
ments (Offenberg et al., 2006; Pathak et al., 2007; Stanier
et al., 2008). The semiempirical correlation-based fit from
Epstein et al. (2010) (1Hvap = 130−11log10C

∗) has steeper
log10C

∗ dependence than those able to explain our observa-
tions (Figs. 3, S8). The Epstein et al. (2010) correlation was
determined from range of compounds with known 1Hvap.
Several recent studies of complex OA systems (May et al.,
2013; Ranjan et al., 2012) have found that a correlation
other than that from Epstein et al. (2010) better explains
observations. For example, Ranjan et al. (2012) reported
1Hvap = 85−11logC∗ for gas-particle partitioning of POA
emissions from a diesel engine; May et al. (2013) reported
1Hvap = 85− 4logC∗ for biomass burning POA emissions.
Similar to these and other studies, our 1Hvap correlation for
ambient OA is an empirical estimate that best explains our
observations.

Although several 1Hvap and γe combinations can recre-
ate observations from both TDs within variability (Figs. 3,
S8), to enable comparison of C∗ distributions we adopt our
best estimates of 1Hvap and γe (1Hvap = 100 kJ mol1 and
γe = 0.5) for further analysis of data from both campaigns;
corresponding campaign-average fi distributions are the ba-
sis for model fits shown in Fig. 2. The campaign-average fi
distribution was derived by fitting campaign-average dual-
TD observations (Fig. 2) and using campaign-average COA
and dp. A fi distribution was also fit based on all the in-
dividual measurements from the campaign (MFR, COA, dp;
20–30 min time resolution) using1Hvap = 100 kJ mol−1 and
γe = 0.5; we term this the unified fit. The campaign-average
and unified fi distributions for the Centreville and Raleigh
datasets are listed in Table 1. In addition to the volatility
distribution (fi), we also show estimates of mean C∗ (C∗,
estimated as C∗ = 10

∑
fi log10C

∗
i ) to quantify the center of

mass (central tendency) of different volatility distributions.
Another way to collapse a distribution to a single value (also
reported in Table 1) is the effective C∗ (C∗eff) of the ensem-
ble, estimated as C∗eff =

∑
xiC
∗

i , where xi is the condensed-
phase mass fraction contributed by each C∗i bin and6xi = 1.
While the volatility parameter values reported in Table 1 are
the best fit results, other parameter sets can reproduce ob-
servations within variability. Application of fi distributions
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Figure 4. (a) Comparison of individual observations from the Centreville campaign and corresponding modeled MFRs applying the extracted
fi distribution from the campaign-average fit (r2

= 0.83; RMSE: 0.11). MFR data collected by other groups during the Centreville campaign
are also shown: University of Colorado TD (CU TD, blue squares) (Hu et al., 2016) and Georgia-Tech TD (GT TD, cyan triangles) (Cerully
et al., 2015), along with corresponding MFRs modeled applying volatility parameterizations from this study with the campaign-average
COA and dp. Figure S9 shows an extended data figure of panel (a), including a similar plot using the fi distribution from the unified fit and
analysis results for the Raleigh dataset. (b) Comparison of the SOAS campaign-average OA volatility distribution (showing only condensed
phase) derived from this study (dual TDs, kinetic evaporation model fits), Hu et al. (2016) (TD; method of Faulhaber et al., 2009), and
Lopez-Hilfiker et al. (2016) (FIGAERO-CIMS). Error bars on data from this study are ± 1 standard deviation of distributions extracted over
the campaign period (Fig. 6).

reported in Table 1 must be with reported γe and 1Hvap val-
ues. Sensitivities of the estimated volatility parameter values
to assumed values ofD, σ , MW, and ρ are discussed in Saha
et al. (2015) and Saha and Grieshop (2016). These assumed
parameters have relatively minor effects on observed evapo-
ration in a TD compared to C∗, γe, and 1Hvap.

The extracted campaign-average and unified-fit OA
volatility distributions (fi) and corresponding C∗ and C∗eff
from Centreville and Raleigh datasets are quite similar (see
Table 1). A large portion of the measured OA (40–70 %)
at both sites is composed of very-low-volatility organics
(LVOCs, C∗ ≤ 0.1 µg m−3; Donahue et al., 2012). It is some-
what surprising that results from two field campaigns, which
occurred in distinct scenarios with varying levels of bio-
genic and anthropogenic emissions, result in such similar
OA volatility distributions. This finding is consistent with
those of Kolesar et al. (2015a), who report similar mass ther-
mograms for laboratory SOA formed from a variety of an-
thropogenic and biogenic VOCs under different oxidant (O3,
OH) conditions. Our extracted ambient-OA volatility dis-
tributions are also comparable to those previously derived
from TD measurement in Mexico City (Cappa and Jimenez,
2010) and Finokalia, Greece (Lee et al., 2010). However, the
ambient-OA volatility distributions determined here are rela-
tively less volatile than those from chamber-generated fresh
SOA from α-pinene ozonolysis (Table 1).

Figure 4a demonstrates a forward modeling exercise to
show how the extracted average volatility parameter values
(fi ,1Hvap, and γe, those listed in Table 1) can reproduce in-
dividual measurements from the whole Centreville campaign
as well as TD data from other groups (Cerully et al., 2015;
Hu et al., 2016) during SOAS. The results show that a sin-

gle set of volatility parameter values (campaign average fit
fi , γe = 0.5 and 1Hvap = 100 kJ mol−1) reproduce individ-
ual observations from the whole campaign within approxi-
mately ±20 % (coefficient of determination, r2

= 0.83; root
mean squared error, RMSE = 0.11). These parameter values
also closely reproduced the measured campaign-average OA
MFRs from the University of Colorado TD (Rt∼ 15 s) (Hu
et al., 2016) and Georgia Tech TD (Rt∼ 7 s) (Cerully et al.,
2015) collected during the Centreville campaign (see solid
blue squares and cyan triangles in Fig. 4a). MFRs reported
in Cerully et al. (2015) are for the total submicron aerosol
species. These were converted to OA MFRs, applying the
method given in Supplement Sect. S1 to enable direct com-
parison with modeled OA MFRs.

Figure 4b shows a comparison of the extracted campaign-
average OA volatility distribution from this study with those
from two other independent approaches during the Centre-
ville campaign (Hu et al., 2016; Lopez-Hilfiker et al., 2016).
Hu et al. (2016) report OA volatility distributions from ob-
served evaporation in a TD during the Centreville campaign
fit using the method given by Faulhaber et al. (2009). In
this method, TD evaporation observations at different tem-
peratures are translated to a volatility distribution using an
empirically derived calibration curve based on evaporation
of known compounds and their C∗ (Faulhaber et al., 2009).
Our derived distribution from dual-TD observations coupled
with evaporation kinetic model is comparable to that from
Hu et al. (2016), although this distribution is slightly less
volatile than ours. Lopez-Hilfiker et al. (2016) derived an OA
volatility distribution from Centreville measurements with
the FIGAERO-CIMS (Filter Inlet for Gases and Aerosols-
Chemical Ionization Mass Spectrometer), which thermally
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desorbs filter-bound aerosol into a CIMS. The FIGAERO-
derived distribution is several orders of magnitude less
volatile than ours; all OA in it has C∗ ≤ 10−4 µg m−3. There-
fore, in Fig. 4b the Centreville campaign-average COA of
∼ 5 µg m−3 is assigned to the log10C∗ ≤−4 bin to enable
direct comparison with TD-ACSM/AMS measurements (this
study and Hu et al., 2016). However, in reality FIGAERO-
CIMS observations accounted for ∼ 50 % of AMS organic
mass concentrations measured at Centreville (Lopez-Hilfiker
et al., 2016), indicating that half the OA was not quantified.
The discrepancy between FIGAERO- and TD-based distri-
butions would be reduced if this unmeasured OA was dis-
tributed in higher-volatility bins, thus reassigning material
shown in the lowest-volatility bin in Fig. 4b. Lopez-Hilfiker
et al. (2016) reported that heating OA at higher temperatures
has the potential to introduce artifacts into quantification of
its volatility, for example if it causes oligomer decomposition
leading to artificially high volatility. If this occurs, this may
bias any heating-based measurement approaches, including
TD measurements.

A test for these various parameter values is to use them to
recreate data from other (non-heating-based) perturbations of
gas-particle partitioning. Figure 5 shows evaporation kinetics
of OA upon continuous stripping of vapors under isother-
mal (25 ◦C) conditions simulated using volatility parame-
ter values from multiple independent approaches. The sim-
ulation framework used here is described elsewhere (Saha
and Grieshop, 2016). The shaded region in Fig. 5 shows the
prediction range applying dual-TD-derived parameter values
from this study within estimated uncertainty ranges (cam-
paign average and unified fits of fi , γe = 0.1 to 1) with initial
COA values from 2 to 10 µg m−3 and dp = 100 and 150 nm.
Simulations are also shown with the OA volatility distri-
bution from Hu et al. (2016) and FIGAERO-CIMS-derived
OA volatility distribution (Lopez-Hilfiker et al., 2016) from
Centreville measurements. The room temperature evapora-
tion data from Vaden et al. (2011) measurements of ambi-
ent aerosols during the Carbonaceous Aerosols and Radiative
Effects Study (CARES-2010) field campaign in Sacramento,
California, are also shown. This study attributed the observed
slower-than-expected evaporation to extreme kinetic limita-
tions to mass transfer (γe� 0.1). Although a direct com-
parison of observations collected in California and simula-
tions based on volatility distributions from Centreville is not
ideal, the consistency of volatility behavior across our and
other sites (Fig. 2, Table 1) suggests it is reasonable. Fig-
ure 5 shows that these data fall within the range of values
simulated using our TD-estimated volatility parameter val-
ues (γe ≥ 0.1). The Hu et al. (2016) volatility distribution
with γe = 1 also recreates these data. In contrast, simulations
with the FIGAERO-CIMS-derived OA volatility distribution
(Lopez-Hilfiker et al., 2016) from Centreville measurements
(assuming γe = 1) predict almost zero evaporation (dashed
black line in Fig. 5). This distribution thus appears to be in-
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Figure 5. Isothermal evaporation kinetics of OA at 25 ◦C (room
temperature) upon continuous stripping of vapors. Shaded region
shows the evaporation kinetic model prediction range applying TD-
derived volatility parameter values from this study; solid line shows
the mean estimate. Dashed lines show model predictions using the
OA volatility distribution derived using alternative approaches dur-
ing the Centreville campaign (Hu et al., 2016; Lopez-Hilfiker et al.,
2016). Symbols show experimental data from Vaden et al. (2011)
collected during the CARES-2010 field campaign in California.

consistent with our observations and those from room tem-
perature evaporation experiments.

3.4 Temporal variation of OA volatility

A time series of OA volatility distributions extracted over the
campaign period is shown in Figs. 6 (Centreville) and S10
(Raleigh). The volatility distributions (fi) were extracted as
described above from ∼ 6 h windows with fixed 1Hvap =

100 kJ mol−1 and γe = 0.5 based on the best estimates from
campaign-average fits. The average and 95 % confidence in-
tervals of C∗ (µg m−3) are 0.18 (0.05–0.54) and 0.16 (0.04–
0.43) for the Centreville and Raleigh datasets, respectively,
in line with values from the campaign-average and unified
fits. The OA volatility distributions do not vary dramatically
over the campaign period for either site.

Ambient OA concentrations (COA) are shown in Fig. 6a
(Centreville) and S10a (Raleigh). Figure 6b shows a time se-
ries of the fractional contribution of isoprene-derived OA and
more-oxidized oxygenated OA (MO-OOA) (Xu et al., 2015a,
b) to total OA during the Centreville campaign. In a few low-
COA instances, C∗ was found to be higher, but there was no
strong relation between these two quantities (see Fig. S12,
scatter plot of mean C∗ vs COA). The relative contribution of
MO-OOA to COA in many of these higher-C∗ instances was
low, likely leading to more-volatile aerosol during these pe-
riods. Isoprene was the dominant biogenic VOC (> 80 % of
total VOC mass) measured during the Centreville campaign
(Xu et al., 2015b) and is the biogenic VOC with greatest
global emissions (Sindelarova et al., 2014). Isoprene-derived
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Figure 6. Time series of (a) ambient organic aerosol concentrations, COA; (b) fractional contribution of isoprene OA and more-oxidized
oxygenated OA (MO-OOA) to total OA determined from PMF analysis; and (c) OA volatility distribution (fi) and mean C∗ (open black
circles) during the Centreville campaign. All data are averaged over ∼ 6 h (the time resolution of fi distribution). Panel (d) shows a scatter
plot of mean C∗ versus isoprene-OA fraction in COA. Figure S10 shows similar analysis results for the Raleigh dataset.

OA contributed ∼ 17–18 % to the campaign-average COA at
the Centreville site during the SOAS (Hu et al., 2015; Xu
et al., 2015a, b), while MO-OOA contributed ∼ 39 % (Xu
et al., 2015a, b). Lopez-Hilfiker et al. (2016) reported that
isoprene-derived OA was more volatile than the remaining
OA using FIGAERO-CIMS measurements at the Centreville
site. This result contradicts Hu et al. (2016), who reported
a lower volatility of isoprene-derived OA than the bulk OA
using TD measurements at the same site. Since our derived
volatility distributions are for the bulk OA, we cannot make
a specific comment on the volatility of isoprene-derived OA.
However, if the volatility of isoprene-derived OA differs sub-
stantially from the remaining bulk, OA volatility might be ex-
pected to covary with the fractional contribution of isoprene-
OA to COA. Figure 6c shows extracted bulk-OA volatility
distributions and their mean C∗ over the Centreville cam-
paign period. Figure 6d shows a scatter plot of mean C∗ vs.
the fractional contribution of isoprene-OA to COA; the two
show no correlation. Neither were statistically significant re-
lationships found between the isoprene-OA fraction and fi in
any particular C∗ bin (see Table S2). These results indicate
that the effective volatility of isoprene OA may not be sub-
stantially different than the remaining bulk OA. If there is a
difference, we are not able to detect it in our fits, potentially
due to covarying contributions from other OA components.

Diurnal trends in OA volatility distributions are shown in
Figs. 7 (Centreville) and S11 (Raleigh). Results show that

OA appeared less volatile in the afternoon than early in
the morning for both sites (Centreville: campaign-average
C∗ (µg m−3) in the morning ∼ 0.25, afternoon ∼ 0.13 and
Raleigh: morning ∼ 0.2, afternoon ∼ 0.12). This trend is
consistent with previous field measurements in Mexico
City (MILAGRO) and Riverside (SOAR-1) (Huffman et al.,
2009). Figure 7a shows diurnal trends of OA factors derived
from PMF analysis during the Centreville campaign (Xu et
al., 2015a, b). Less-oxidized oxygenated OA (LO-OOA, av-
erage O : C∼ 0.63) dominated in the early morning (∼ 40–
50 %), while more-oxidized oxygenated OA (MO-OOA, av-
erage O : C∼ 1.02) was the largest OA component in the af-
ternoon (∼ 50 %). Xu et al. (2015a) hypothesized that ox-
idation of monoterpenes forms a large portion of observed
LO-OOA in the southeastern US via NOx and O3 (NO3 rad-
ical) pathways, and that organo-nitrates contribute substan-
tially to LO-OOA (20–30 %). Laboratory chamber experi-
ments also suggest that nitrate-containing species make a sig-
nificant contribution to SOA formed during terpene photoox-
idation and/or ozonolysis under high-NOx conditions (Ng
et al., 2007; Presto et al., 2005) and from reactions with
nitrate radicals (Boyd et al., 2015). Lee et al. (2011) ob-
served greater evaporation in a TD of α-pinene and β-pinene
ozonolysis SOA formed under high-NOx conditions than un-
der low-NOx conditions. Thus, the higher volatility observed
in the morning can likely be linked with the prevalence of
LO-OOA and possible contributions from organo-nitrates. In
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Figure 7. Campaign-average diurnal trends for the Centreville mea-
surements of (a) concentrations of total OA and OA factors, (b) OA
volatility (fi and mean C∗), and (c) OA MFR after heating at
60, 90, and 120 ◦C with a TD residence time of 50 s. Figure S11
shows similar analysis results for the Raleigh dataset. PMF factors
in panel (a) are LO-OOA: less-oxidized oxygenated OA; MO-OOA:
more-oxidized oxygenated OA; and isoprene-OA: isoprene-derived
OA (for details on OA factors analysis see Xu et al., 2015a, b).

contrast, bulk OA was dominated by MO-OOA in the after-
noon. That OA is relatively less volatile in the afternoon is
consistent with the observation that OA volatility often de-
creases with increased oxidation (during functionalization)
(Jimenez et al., 2009). Figure 8 shows scatter plots of C∗ vs.
LO-OOA and MO-OOA fractions of OA during the Centre-
ville campaign. Although the average slopes of the scatter
plots show an increase (decrease) of C∗ with increasing LO-
OOA (MO-OOA) fraction these correlations are not strong
(correlation coefficient, r ∼ 0.5). Similar levels of correla-
tion were found with effective C∗ (Fig. S13). A poor cor-
relation between C∗ and OA factors is also observed in the
Raleigh dataset. For example, Fig. S14 shows scatter plots
of C∗ vs. tracer (m/z)-based HOA fraction and OOA frac-
tion estimates (Ng et al., 2011b) with an average slope of
−0.3± 0.16 (r ∼ 0.2) for HOA and −0.12± 0.11 (r ∼ 0.1)
for OOA.

3.5 Average volatility and oxidation state of OA

Figure 9 explores the link between average carbon oxida-
tion state, OSc, calculated as 2×O : C – H : C (Kroll et al.,
2011), and C∗. O : C and H : C are estimated from an em-
pirical parameterization of the OA elemental ratio from unit
mass resolution data, given by Canagaratna et al. (2015)
as a function of f44 (O : C= 0.079+ 4.31× f44) and f43
(H : C= 1.12+ 6.74× f43− 17.77× f 2

43), respectively. f44
and f43 are the fractional ion intensity at m/z 44 and 43, re-
spectively, taken from ACSM measurements. The estimated
OA elemental ratios using the empirical parameterizations
above are in relatively good agreement with those deter-
mined via elemental analysis of the high-resolution mass
spectra data (HRToF-AMS) collected by other groups during
SOAS. For example, our estimated campaign-average O : C
during the Centreville campaign (0.68± 0.07) is within 1–2
standard deviations of that determined in Xu et al. (2015b)
(∼ 0.78).

The scatter plot of OSc vs. C∗ (Fig. 9) shows a mild
downward trend, which suggests that lower-volatility OA is
associated with higher oxidation state. However, the cor-
relation is not statistically robust (r < 0.3). This is consis-
tent with the observations of Xu et al. (2016) and Paciga et
al. (2016) who reported weak association between average
oxidation state and volatility for OA measured in the Lon-
don and Paris areas, respectively. The campaign-average OSc
during the Centreville measurements (−0.18± 0.15) was
higher than in Raleigh (−0.42± 0.16) (p value� 0.0001),
whereas campaign-average C∗ values were essentially iden-
tical (Centreville: 0.18± 0.14, Raleigh: 0.16± 0.12 µg m−3;
p value > 0.1).

3.6 Application of measured volatility distribution to
evaluate simulated OA in a CTM

Figure 10 compares the measured and simulated OA volatil-
ity distributions at Centreville for June 2013. The simulated
OA volatility distribution in the C∗ bins between 100 and
101 µg m−3 agrees reasonably well with observations. The
model predicts a dominance of BSOA in the two bins, con-
sistent with observations in the Centreville region. However,
large discrepancies exist between the observed and simulated
OA volatility distribution in the C∗ bins between 10−2 and
10−1 µg m−3. The model tends to greatly underpredict the
OA concentrations in this volatility range. WRF/Chem did
not reproduce the observed portion of the mass of OA in
the lower C∗ bins, from 10−4 to 10−1 µg m−3, because the
VBS SOA module in this version of WRF/Chem does not
treat volatility in this range. Consistent with the measure-
ment results from this study, a number of laboratory (Ehn
et al., 2014; Jokinen et al., 2015; Kokkola et al., 2014; Zhang
et al., 2015) and field (Hu et al., 2016; Lopez-Hilfiker et
al., 2016) studies have reported that a significant fraction of
SOA from biogenic precursors is low-volatility. These low-
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Figure 8. Scatter plot of mean C∗ versus (a) LO-OOA fraction, and (b) MO-OOA fraction in total OA concentration during the Centreville
campaign.
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sured during the Centreville and Raleigh campaigns. Dots are cam-
paign data, dashed lines are linear regression fits of data, and sym-
bols are the campaign average with error bar showing ± 1 standard
deviation.

volatility materials are missing in the WRF/Chem simula-
tion.

The simulated total OA mass concentration (COA)was un-
derpredicted by a factor of 2 to 3 at Centreville during the
SOAS period. Several factors may contribute to this under-
prediction. Comparison of WRF/Chem predictions of most
relevant meteorological variables and major precursor VOCs
with measurements collected during the SOAS shows a rela-
tively good agreement. For example, the mean biases for sim-
ulated temperature at 2 m, relative humidity at 2 m, and wind
speed at 10 m are −0.9 ◦C, −0.8 %, and 0.3 m s−1, respec-
tively. The normalized mean bias (NMB) of the simulated
planetary boundary layer height (PBLH) is −38 %, which
would tend to bias OA concentrations high, suggesting that
the underprediction in PBLH is not responsible for the un-
derpredictions of OA. In terms of VOC concentrations, the
model performs well for β-pinene and formaldehyde with

Figure 10. Comparison between measured OA volatility distribu-
tions and those simulated in WRF/Chem over the Centreville re-
gion. Bar height is mean and error bar is ± 1 standard deviation
of distributions extracted from measurements and simulations for
June 2013. The inset shows a two-bin comparison (bin 1: C∗ ≤
1 µg m−3 and bin 2: C∗ = 10 µg m−3). Simulated OA components
include ASOA (anthropogenic-SOA), BSOA (biogenic-SOA), POA
(primary-OA), and SVOA (semivolatile OA formed via oxidation of
evaporated POA).

NMBs of −8.5 and −4.3 %, respectively, but it underpre-
dicts α-pinene with an NMB of −51.7 % and significantly
overpredicts limonene with an NMB of 249 % (figure not
shown). The WRF/Chem simulation only considers the SOA
formed from a few BVOCs, including isoprene, α-pinene, β-
pinene, limonene, humulene, and ocimene, and does not ac-
count for contributions from other BSOA precursors such as
other sesquiterpenes. Therefore, underestimation of precur-
sor VOC emissions and missing precursors may contribute to
OA underprediction. Other sources of uncertainty in the VBS
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treatment in WRF/Chem include the coarse spatial resolution
in the model simulation, the assumed fraction of OA added
for each oxidation or aging step, the assumed fragmented
and functionalized percentages of organic condensable va-
pors, and the uncertainties in the dry- and wet-deposition ve-
locities of SOA and SOA precursors. These factors can also
contribute to the discrepancies between the model and ob-
served COA at Centreville.

One likely contributor to the model’s underprediction is
issues with the SOA yield parameterizations in the model.
Smog chamber growth-experiment-derived mass yield coef-
ficients (i.e., distributions of product mass yield in differ-
ent volatility and/or C∗ bins) (Pathak et al., 2007) are used
to model SOA in a CTM. The estimated SOA yield from
a traditional smog chamber experiment could be underesti-
mated due to wall losses of condensable vapors. For exam-
ple, Zhang et al. (2014) showed up to a factor of 4 yield
underestimation for toluene SOA due to this effect. The
high- and low-NOx mass yields used in WRF/Chem simu-
lations for ASOA and BSOA are based on traditional smog
chamber yield experiments taken from Lane et al.(2008a).
These distributions do not consider mass yields from the
C∗ bins 10−4 to 10−1 µg m−3, where a significant portion
of the OA mass was observed. The substantial amounts of
low-volatility materials are typically missing in these tradi-
tional yield-measurement-based distributions (Kolesar et al.,
2015b; Saha and Grieshop, 2016). Our recent dual-TD-based
effort to determine the SOA mass yield distribution for α-
pinene ozonolysis (Saha and Grieshop, 2016) indicates that
products are substantially less volatile than the parameteriza-
tions used in current models (including that discussed above).
This α-pinene product distribution suggests a factor of 2–
4 greater SOA yield under atmospherically relevant condi-
tions compared to traditional distributions from smog cham-
ber growth experiments. Updating SOA mass yield coeffi-
cient data is likely required for all known precursors and may
lead to large improvements in model predictions of both COA
and OA volatility distributions.

The WRF/Chem simulation used the semiempirical1Hvap
correlation derived by Epstein et al. (2010) (1Hvap = 130−
11log10C

∗, 298 K), which gives higher values, with a steeper
log10C

∗ dependence than our TD-derived values (∼ 80–
100 kJ mol−1). The difference in 1Hvap values used in
WRF/Chem and our TD-derived values should not have a
significant effect on the comparison shown in Fig. 10. This
is because the modeled–measured OA volatility compari-
son was made at temperatures (SOAS campaign-average
T = 24.7 ◦C, WRF/Chem-simulated campaign-average T =
23.8 ◦C) very close to the VBS reference temperature
(25 ◦C). Murphy et al. (2011) also reported a low sensitiv-
ity of 1Hvap when predicting surface OA loading during the
FAME-08 study using a 2D-VBS framework. However, the
effect of 1Hvap could be significant when simulating OA
loading at low ambient temperatures and high altitudes.

4 Conclusions and implications

This paper presents results from ambient-OA volatility mea-
surements from two sites in the southeastern US under di-
verse conditions. Measurement campaigns were conducted
at a BVOC-dominated forested rural setting during summer
and another more anthropogenically influenced, but forested
urban location under cooler conditions. This study applied a
dual-thermodenuder (dual-TD) setup that varied temperature
and residence time in parallel. Ambient OA gas-particle par-
titioning parameter (C∗, 1Hvap, γe) values were extracted
by fitting observed dual-TD data using an evaporation ki-
netic model. The OA volatility distribution derived via in-
verse modeling is sensitive to 1Hvap and γe values. The ad-
dition of variable residence time TD (VRT-TD) data pro-
vided tighter constraints on the extracted parameter values.
A 1Hvap of ∼ 100 kJ mole−1 and γe of 0.5 best explain ob-
servations collected at both sites under diverse conditions.
An effective γe value of ∼ 0.1 to 1 can explain observed
evaporations within variability, while a very small γe value
(γe� 0.1) cannot fit the observations from both TDs. The
Epstein et al. (2010) 1Hvap correlation, which was deter-
mined based on measured properties of a variety of known
compounds, also did not reproduce the evaporation observed
in this study.

While measurement campaigns were conducted under dif-
ferent meteorological conditions at locations with varying
levels of biogenic and anthropogenic emissions, the OA
volatility distributions derived are found to be very similar. A
substantial amount of OA (40–70 %) at both sites was found
to be of very low volatility (C∗ ≤ 0.1 µg m−3) and will re-
main predominantly in the particle phase (effectively non-
volatile) under typical atmospheric conditions. OA volatility
distributions also did not vary substantially over the cam-
paign period. Our derived OA volatility parameterizations
appear to be broadly consistent with observations of room
temperature evaporation (Vaden et al., 2011) during CARES-
2010 in California. The observed consistency in OA volatil-
ity across diverse settings is an important finding, which im-
plies that OA in the atmosphere formed from a variety of
sources can exhibit similar volatility properties and chemi-
cal signatures. This result also suggests that measurements of
OA volatility distributions such as derived here provide good
diagnostics for overall model representativeness but may not
be as useful for diagnosing differences across sites and con-
ditions.

The diurnal profile of extracted OA volatility showed that
bulk OA was less volatile in the afternoon than early in the
morning. This trend is consistent with the prevalence of LO-
OOA (less oxidized) in the morning and MO-OOA (more
oxidized) in the afternoon. However, while average O : C
and/or oxidation state (OSc) of bulk OA is often considered
linked to volatility, in our datasets correlations between mean
oxidation state (OSc) and mean volatility (C∗) were weak
(r < 0.3). This observed weak correlation and the fact that at-
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mospheric OA is a complex mixture of organics with a broad
range of volatilities and oxidation states reinforces the need
to measure and understand the distribution of both volatility
and oxidation states. The two-dimensional VBS framework
(Donahue et al., 2012) offers one way to constrain these pa-
rameters in atmospheric models. While determination of OA
volatility distributions was the focus of this study, future ef-
forts should also measure distributions of volatility and oxi-
dation states comprising ambient OA.

The gas-particle partitioning parameters (C∗, 1Hvap, γe)
extracted from these measurements have important implica-
tions for the treatment and evaluation of OA in current atmo-
spheric models. Since a CTM incorporating the VBS frame-
work predicts OA concentrations in each volatility (log10C

∗)

bin (i.e., OA volatility distribution), comparison of simulated
and measured OA volatility distribution is a useful means for
model evaluation beyond only comparing total OA concen-
tration (COA). Here, we compared our measured OA volatil-
ity distribution with that simulated by WRF/Chem. This eval-
uation indicates that OA volatility distributions predicted in
WRF/Chem are inconsistent with measurements over the C∗

range from 10−4 to 10−1 µg m−3. This may give important
clues towards the root causes of the model’s underestima-
tion of COA by a factor of 2 to 3. In comparison to our
TD-derived OA volatility distribution and other recent evi-
dence (Ehn et al., 2014; Hu et al., 2016; Jokinen et al., 2015;
Kokkola et al., 2014; Lopez-Hilfiker et al., 2016; Saha and
Grieshop, 2016), low-volatility materials are mostly missing
from the WRF/Chem predictions. Recent evidence of SOA
from aqueous-phase oxidation in presence of abundant par-
ticle water (Carlton and Turpin, 2013; Marais et al., 2016),
formation of oligomers, and large molecular compounds di-
rectly in the gas phase (Ehn et al., 2014) and via condensed-
phase chemistry (Kroll et al., 2015; Kroll and Seinfeld, 2008)
suggest that complex and multiphase formation and evolu-
tion processes produce SOA in the atmosphere. Many of
these processes can produce very-low-volatility organics and
most are not included in current CTMs. These low-volatility
organics appear to make significant contributions to the at-
mospheric OA budget and cloud condensation nuclei forma-
tion (Jokinen et al., 2015).

The 1Hvap and γe values extracted here for atmospheric
OA in the southeastern US also have important implica-
tions for predicting OA concentrations in a CTM. First, a
1Hvap value of 30–40 kJ mol−1 (Farina et al., 2010; Lane et
al., 2008b; Pye and Seinfeld, 2010) is typically assumed for
modeling OA in a CTM, which is substantially lower than
that suggested by our TD observations (∼ 100 kJ mol−1). An
increase of assumed 1Hvap value can increase atmospheric
OA burden and lifetime for a particular input volatility dis-
tribution (Farina et al., 2010), especially at low ambient tem-
peratures and high altitudes. Finally, a value of γe ≥ 0.1 in-
dicates a gas-particle repartitioning timescale (Saleh et al.,
2013) on the order of minutes to an hour under atmospher-
ically relevant conditions (Np ∼ 1000–5000 cm−3). There-

fore, the equilibrium phase-partitioning assumption typically
made in CTMs should be reasonable for a prediction timestep
of ∼ 1 h.

5 Data availability

Some of the data used in this study are publicly available
at https://data.eol.ucar.edu/dataset/373.049 (Grieshop et al.,
2017). Other data can be obtained from the authors upon re-
quest (apgriesh@ncsu.edu).

The Supplement related to this article is available online
at doi:10.5194/acp-17-501-2017-supplement.
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