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Abstract. Tropospheric vertical column densities (VCDs)
of NO2, SO2 and HCHO derived from the Ozone Moni-
toring Instrument (OMI) on AURA and the Global Ozone
Monitoring Experiment 2 aboard METOP-A (GOME-2A)
and METOP-B (GOME-2B) are widely used to character-
ize the global distributions, trends and dominating sources
of these trace gases. They are also useful for the com-
parison with chemical transport models (CTMs). We use
tropospheric VCDs and vertical profiles of NO2, SO2 and
HCHO derived from MAX-DOAS measurements from 2011
to 2014 in Wuxi, China, to validate the corresponding prod-
ucts (daily and bi-monthly-averaged data) derived from OMI
and GOME-2A/B by different scientific teams. Prior to the
comparison, the spatial and temporal coincidence criteria for
MAX-DOAS and satellite data are determined by a sensi-
tivity study using different spatial and temporal averaging
conditions. Cloud effects on both MAX-DOAS and satel-

lite observations are also investigated. Our results indicate
that the discrepancies between satellite and MAX-DOAS re-
sults increase with increasing effective cloud fraction and
are dominated by the effects of clouds on the satellite prod-
ucts. In comparison with MAX-DOAS, we found a system-
atic underestimation of all SO2 (40 to 57 %) and HCHO
products (about 20 %), and an overestimation of the GOME-
2A/B NO2 products (about 30 %), but good consistency with
the DOMINO version 2 NO2 product. To better understand
the reasons for these differences, we evaluated the a pri-
ori profile shapes used in the OMI retrievals (derived from
CTM) by comparison with those derived from the MAX-
DOAS observations. Significant differences are found for the
SO2 and HCHO profile shapes derived from the IMAGES
model, whereas on average good agreement is found for the
NO2 profile shapes derived from the TM4 model. We also
applied the MAX-DOAS profile shapes to the satellite re-
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trievals and found that these modified satellite VCDs agree
better with the MAX-DOAS VCDs than the VCDs from the
original data sets by up to 10, 47 and 35 % for NO2, SO2
and HCHO, respectively. Furthermore, we investigated the
effect of aerosols on the satellite retrievals. For OMI observa-
tions of NO2, a systematic underestimation is found for large
AOD, which is mainly attributed to effect of the aerosols on
the cloud retrieval and the subsequent application of a cloud
correction scheme (implicit aerosol correction). In contrast,
the effect of aerosols on the clear-sky air mass factor (explicit
aerosol correction) has a smaller effect. For SO2 and HCHO
observations selected in the same way, no clear aerosol ef-
fect is found, probably because for the considered data sets
no cloud correction is applied (and also because of the larger
scatter). From our findings we conclude that for satellite ob-
servations with cloud top pressure (CTP) > 900 hPa and ef-
fective cloud fraction (eCF) < 10 % the application of a clear-
sky air mass factor might be a good option if accurate aerosol
information is not available. Another finding of our study
is that the ratio of morning-to-afternoon NO2 VCDs can be
considerably overestimated if results from different sensors
and/or retrievals (e.g. OMI and GOME-2) are used, whereas
fewer deviations for HCHO and SO2 VCDs are found.

1 Introduction

Nitrogen oxides (NOx ≡NO2+NO), sulphur dioxide (SO2)

and formaldehyde (HCHO) play critical roles in tropospheric
chemistry through various gas phase and multi-phase chemi-
cal reactions (Seinfeld and Pandis, 1998). In an urban and in-
dustrialized region, anthropogenic emissions from traffic, do-
mestic heating, factories, power plants and biomass burning
significantly elevate the concentrations of these (and other)
trace gases (TGs) in the boundary layer (Environmental Pro-
tection Agency, 1998; Seinfeld and Pandis, 1998). There is
strong evidence that aerosol particles formed through photo-
chemistry of NOx , SO2 and VOCs significantly contribute to
haze pollution events occurring frequently around megacities
and urban agglomerations in China, like the Jing–Jin–Ji re-
gion and the Yangtze River delta region (Crippa et al., 2014;
Huang et al., 2014; Jiang et al., 2015; Fu et al., 2014). The
aerosols also impact the local radiative forcing through di-
rect (e.g. McCormic and Ludwig, 1967) and indirect effects
(Lohmann and Feichter, 2005). Understanding global and re-
gional distributions and temporal variations of the TGs, and
further identifying and quantifying their dominant sources,
can provide a firm basis for a better understanding of the
formation mechanisms of haze pollution and for the devel-
opment of mitigation strategies.

Since 1995 a series of sun-synchronous satellites, such
as ERS-2, ENVISAT, AURA, METOP-A and METOP-B,
was launched carrying UV, visible or NIR spectrometers
with moderate spectral resolution, which allowed scientists

to determine global distributions of several important tropo-
spheric TGs including NO2, HCHO and SO2 for the first
time. The first instrument was the Global Ozone Monitor-
ing Experiment (GOME) (Burrows et al., 1999), followed by
the Scanning Imaging Absorption Spectrometer for Atmo-
spheric Chartography (SCIAMACHY) (e.g. Bovensmann et
al., 1999), the Ozone Monitoring Instrument (OMI) (Levelt
et al., 2006a, b), and the GOME-2A and GOME-2B instru-
ments (Callies et al., 2000; Munro et al., 2006, 2016). The
OMI and GOME-2A/B instruments are still in operation. A
large number of studies developed retrieval algorithms for
these instruments to acquire the tropospheric vertical col-
umn densities (VCDs) of NO2 (e.g. Boersma et al., 2004,
2007, 2011; Richter et al., 2005; Beirle and Wagner, 2012;
Valks et al., 2011), SO2 (e.g. Krueger et al., 1995; Eisinger
and Burrows, 1998; Carn et al., 2004; Krotkov et al., 2006;
Richter et al., 2006, 2009; Yang et al., 2007; Lee et al., 2009;
Nowlan et al., 2011; Rix et al., 2012; C. Li et al., 2013;
Theys et al., 2015) and HCHO (Chance et al., 2000; Palmer
et al., 2001; Wittrock et al., 2006a; De Smedt et al., 2008,
2012, 2015; Kurosu, 2008; Millet et al., 2008; Hewson et al.,
2013; González Abad et al., 2015). In this validation study
we include several products, which have been published re-
cently and are widely used: for NO2 the near-real-time OMI
DOMINO v2.0 (Boersma et al., 2007, 2011) and the GOME-
2A/B TM4NO2A (Boersma et al., 2004); for SO2 the opera-
tional OMSO2 OMI product (C. Li et al., 2013) published by
National Aeronautics and Space Administration (NASA), the
O3M-SAF operational GOME-2A product published by the
German Aerospace Centre (DLR) (Rix et al., 2012; Hassinen
et al., 2016), and the OMI and GOME-2A/B products devel-
oped by BIRA (Theys et al., 2015); and for HCHO the OMI
and GOME-2A/B products developed by BIRA (De Smedt et
al., 2008, 2012, 2015). Many users already benefit from these
products for several applications, e.g. detection and quan-
tification of emissions, identification of transport processes
and chemical transformations, and for the comparison with
model simulations (e.g. Beirle et al., 2003, 2011; Martin et
al., 2003; Richter et al., 2005; van der A et al., 2008; Herron-
Thorpe et al., 2010; Gonzi et al., 2011; Barkley et al., 2012;
Koukouli et al., 2016).

Although several studies have made efforts to im-
prove satellite retrievals, significant differences compared to
ground-based measurements were still reported by several
validation studies, e.g. a systematic underestimation of the
tropospheric VCDs of NO2, SO2 and HCHO was obtained
for OMI by > 30 % in or near Beijing, China (Ma et al., 2013;
Theys et al., 2015; De Smedt et al., 2015; Jin et al., 2016).
The satellite retrieval errors are mainly attributed to the slant
column retrievals (spectral analysis), the stratospheric cor-
rection (for NO2) and the tropospheric air mass factor (AMF)
calculations. The AMF uncertainties are related to several
factors, such as the surface albedo, the cloud and aerosol
properties, methodological assumptions on how clouds and
aerosols should be accounted for (Lin et al., 2015), the a pri-
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ori profile shape (also referred to as the shape factor (SF) in
the following), and interpolation errors of the discrete look-
up table entries (Lin et al., 2014). Thus validation studies for
satellite products using independent ground-based measure-
ments are essential to quantify uncertainties, identify dom-
inant error sources and to further improve the satellite re-
trieval algorithms.

Since about 15 years ago, the Multi-Axis Differential
Optical Absorption Spectroscopy (MAX-DOAS) technique
(Hönninger and Platt, 2002; Bobrowski et al., 2003; Van
Roozendael et al., 2003; Hönninger et al., 2004; Wagner et
al., 2004; Wittrock et al., 2004) is applied to retrieve tropo-
spheric vertical profiles of TGs and aerosols from spectra of
scattered UV and visible sunlight measured at different ele-
vation angles (e.g. Frieß et al., 2006, 2011, 2016; Wittrock
et al., 2006b; Irie et al., 2008, 2011; Clémer et al., 2010;
Li et al., 2010, X. Li et al., 2013; Vlemmix et al., 2010,
2011, 2015b; Wagner et al., 2011; Yilmaz, 2012; Hartl and
Wenig, 2013; Wang et al., 2013a, b). MAX-DOAS observa-
tions provide valuable information that can be applied for a
quantification of air pollutants (e.g. X. Li et al., 2013; Hen-
drick et al., 2014; Wang et al., 2014, 2017), a validation of
tropospheric satellite products (e.g. Irie et al., 2012, 2016;
Ma et al., 2013; Kanaya et al., 2014; Theys, et al., 2015;
De Smedt et al., 2015; Jin et al., 2016) and an evaluation
of chemical transport model (CTM) simulations (e.g. Vlem-
mix et al., 2015a). The tropospheric vertical profiles are also
valuable for the evaluation of SFs used in the satellite AMF
calculations. Here it is important to note that many studies al-
ready investigated the effect of the a priori SFs on the satel-
lite retrievals (i.e. Boersma et al., 2004; Hains et al., 2010;
Heckel et al., 2011) and demonstrated that the SF effect on
the tropospheric AMFs can dominate the systematic errors of
tropospheric satellite products, especially in highly polluted
(urban and industrial) regions (Boersma et al., 2011; Theys
et al., 2015; De Smedt et al., 2015). Nevertheless, because
profile measurements are rare, the SF effect is still not well
understood in many regions. In this study the SF effect on the
tropospheric AMF will be investigated using the vertical pro-
files of the TGs derived from the MAX-DOAS observations
in Wuxi, China, from 2011 to 2014 (Wang et al., 2017).

Wuxi is located about 130 km north-west of Shanghai
and belongs to the most industrialized part of the Yangtze
River delta (YRD) region. The YRD, including Shanghai
City and four nearby provinces, is the largest economic re-
gion in China. It is heavily industrialized and can be con-
sidered as the largest metropolitan area in Asia, with a pop-
ulation of about 150 million. Several studies already used
satellite products of the pollutants to quantify the correspond-
ing emissions (Ding et al., 2015; Han et al., 2015; Bauwens
et al., 2016) in this region. However, validation studies for
the satellite products in this region are still sparse. Chen et
al. (2009), Irie et al. (2012), Kanaya et al. (2014) and Chan
et al. (2015) validated the satellite NO2 tropospheric VCD
products using MAX-DOAS (or zenith-sky DOAS) measure-

ments in Rudong, Hefei and Shanghai. So far there are no
validation reports for SO2 and HCHO products in the YRD
region. However, several validation studies have been car-
ried out in other regions of China (e.g. Theys et al., 2015; De
Smedt et al., 2015; Jin et al., 2016).

In this study we validate daily (2 h around the satellite
overpass time) and bi-monthly averages of the tropospheric
VCDs of NO2, SO2 and HCHO derived from OMI and
GOME-2 using the MAX-DOAS observations in Wuxi, and
we discuss in particular the influence of the coincidence cri-
teria on the comparison results. Previous studies (Ma et al.,
2013; Jin et al., 2016) already presented comparison stud-
ies and discussed several aspects limiting the consistency
between satellite and MAX-DOAS observations. Concern-
ing the impact of clouds on both MAX-DOAS and satellite
retrievals, we separately evaluate the cloud effects on both
satellite and MAX-DOAS observations. Also, the weekend
effect and ratios of morning and afternoon values (represent-
ing diurnal variations) acquired by combining GOME-2 and
OMI observations are evaluated by comparison with similar
ratios derived from the corresponding MAX-DOAS results.

For most of the satellite products, aerosol information is
not considered in radiative transfer models (RTMs) used
for the AMF calculations (one exception is the OMI NO2
product (POMINO) provided by the Peking University over
China; Lin et al., 2014), but recently such aerosol effects have
drawn more and more attention. Shaiganfar et al. (2011), Ma
et al. (2013), and Kanaya et al. (2014) found negative biases
of the OMI tropospheric NO2 VCDs between 26 and 50 %
over areas with high aerosol pollution through the valida-
tion by MAX-DOAS observations. But aerosol effects on the
satellite retrievals are still not well understood. The aerosol
effects can be generally separated into two contributions:
(a) the effect of aerosols on the satellite AMF compared to
AMFs for a pure Rayleigh atmosphere (explicit aerosol cor-
rection), and (b) the effect of aerosols on the retrieval of
cloud products (often referred to as “implicit aerosol correc-
tion”, Boersma et al., 2011; Castellanos et al., 2015; Chimot
et al., 2016). These two contributions of aerosols on the satel-
lite retrievals are discussed in this study based on the aerosol
and TG profiles derived from the MAX-DOAS observations
in Wuxi and by comparing the satellite TG VCDs to the cor-
responding results from the MAX-DOAS observations.

The paper is organized as follows: in Sect. 2 we describe
the MAX-DOAS observations in Wuxi and the satellite prod-
ucts involved in this study. In Sect. 3 we compare the NO2,
SO2 and HCHO VCDs derived from MAX-DOAS with those
from the satellite instruments. We investigate in particular the
effects of clouds, SFs and aerosols on the satellite retrievals.
In Sect. 4 the conclusions are given.
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Figure 1. Wuxi city, in which the MAX-DOAS instrument is operated, is marked by the red dot in (a). Panels (b), (c) and (d) show maps of
the averaged tropospheric VCDs of NO2 from DOMINO 2, SO2 and HCHO from BIRA, derived from OMI observations over eastern China
in the period from 2011 to 2014, respectively. The black dots indicate the location of Wuxi.

2 MAX-DOAS measurements and satellite data sets

2.1 MAX-DOAS instrument and data analysis

A MAX-DOAS instrument developed by the Anhui Insti-
tute of Optics and Fine Mechanics (AIOFM) (Wang et al.,
2015, 2017) is located on the roof of an 11-storey building in
Wuxi City (Fig. 1a), China (31.57◦ N, 120.31◦ E, 50 m a.s.l.),
and operated by the Wuxi CAS Photonics Co. Ltd from
May 2011 to December 2014. Wuxi City is located in the
YRD region which is typically affected by high loads of
NO2, SO2 and HCHO (Fig. 1b, c, d). The DOAS method
(Platt and Stutz, 2008) and the PriAM profile inversion al-
gorithm (Wang et al., 2013a, b, 2017) are applied to derive
the vertical profiles of aerosol extinction (AE) and volume
mixing ratios (VMRs) of NO2, SO2 and HCHO from scat-
tered UV and visible sunlight recorded by the MAX-DOAS
instrument at five elevation angles (5, 10, 20, 30 and 90◦).
The telescope of the instrument is pointed to the north. The
data analysis and the results derived from the MAX-DOAS
measurements are already described in our previous study
(Wang et al., 2017). In that study we compared the MAX-
DOAS results with collocated independent techniques in-
cluding an AERONET sun photometer, a visibility meter, and
a long path DOAS. The comparisons were done for differ-
ent cloud conditions as derived from a cloud classification
scheme based on the MAX-DOAS observations (Wagner et
al., 2014; Wang et al., 2015). One important conclusion of
that study was that meaningful TG profiles can be retrieved
not only for clear skies, but also for most cloudy conditions
(except for heavy fog or haze and optically thick clouds).
Thus in this study we use all MAX-DOAS TG profiles ob-
tained for these sky conditions (Wang et al., 2017). Here it
is important to note that, differently from previous studies
(e.g. Ma et al., 2013; Jin et al., 2016), we derive the tropo-
spheric VCDs of the TGs by an integration of the vertical

profiles, but not by the so-called geometric approximation
(e.g. Brinksma et al., 2008). Our previous study (Wang et
al., 2017) demonstrated that the tropospheric TG VCDs from
the full profile inversion are in general more accurate than
those from the geometric approximation. The discrepancy of
the VCDs derived by both methods is systematic and can be
mainly attributed to the errors of the geometric approxima-
tion, for which the errors can be up to 30 % depending on
the observation geometry, and the properties of aerosols and
TGs.

2.2 NO2, SO2 and HCHO products derived from OMI

The OMI instrument (Levelt et al., 2006a, b) aboard the sun-
synchronous EOS Aura satellite was launched in July 2004.
It achieves daily global coverage with a spatial resolution
of 24× 13 km2 in nadir and about 150× 13 km2 at the
swath edges (Levelt et al., 2006b). The overpass time is
around 13:30 LT. In this study, we validate the operational
level 2 (Boersma et al., 2007, 2011) tropospheric NO2 VCD
(DOMINO version 2) obtained from the TEMIS website
(http://www.temis.nl). The NO2 SCDs are retrieved in the
405–465 nm spectral window using a DOAS algorithm and
are converted to NO2 tropospheric VCDs using tropospheric
AMFs from a look-up table, which is generated using the
DAK RTM (Stammes, 1994), after the stratospheric column
was subtracted. SFs of NO2 for the AMF calculations are
obtained from the TM4 CTM (Williams et al., 2009) for
individual measurements and can be downloaded from the
TEMIS website. TM4 assimilations run at a resolution of
2◦× 3◦ (latitude× longitude) and 35 vertical levels up to
0.38 hPa, and are spatially interpolated to the OMI pixel cen-
tre (Boersma et al., 2007, 2011; Dirksen et al., 2011). The
effective cloud fraction (eCF) (Stammes et al., 2008; Wang
et al., 2008) and cloud top pressure (CTP) (Acarreta et al.,
2004) are obtained from the OMCLDO2 cloud product based
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on the O4 absorption band at 477 nm assuming a Lamber-
tian cloud with an albedo of 0.8. The retrieval algorithm
for DOMINO v2 forms the basis of NO2 retrievals for the
upcoming Tropospheric Monitoring Instrument (TROPOMI)
aboard the Sentinel-5 Precursor mission (Veefkind et al.,
2012).

Two data sets of tropospheric SO2 VCDs derived from
OMI observations are validated in this study. One is the op-
erational level 2 OMSO2 planetary boundary layer (PBL)
SO2 data set (assuming SO2 mostly in the PBL) provided
via the NASA website (http://avdc.gsfc.nasa.gov). In the fol-
lowing this product is simply referred to as “OMI NASA”.
For the PBL SO2 product, the VCD is derived from the mea-
sured radiances of the OMI instrument between 310.5 and
340 nm using a principal component analysis (PCA) algo-
rithm (C. Li et al., 2013). A fixed surface albedo (0.05),
surface pressure (1013.25 hPa), solar zenith angle (30◦) and
viewing zenith angle (0◦) as well as a fixed climatological
SO2 profile over the summertime eastern US are assumed in
the PCA retrieval (Krotkov et al., 2008). The second product
is derived by a new OMI SO2 retrieval algorithm developed
by BIRA (Theys et al., 2015). In the following this product is
simply referred to as “OMI BIRA”. It forms the basis of the
algorithm for the operational level-2 SO2 product to be de-
rived from the upcoming TROPOMI instrument. SO2 SCDs
are first retrieved in a window between 312 and 326 nm us-
ing the DOAS technique and then a background correction
for possible biases is applied. The SO2 SCDs are converted
to VCDs using AMFs from a look-up table, which is gener-
ated using the Linearized Discrete Ordinate Radiative Trans-
fer (LIDORT) version 3.3 RTM (Spurr et al., 2001, 2008).
SFs for SO2 are obtained from the IMAGES CTM (Müller
and Brasseur, 1995) for individual measurements at a hori-
zontal resolution of 2◦× 2.5◦ and at 40 vertical unevenly dis-
tributed levels extending from the surface to the lower strato-
sphere (44 hPa) (Stavrakou et al., 2013, 2015). Like for the
OMSO2 data set, the cloud information is obtained from the
OMCLDO2 cloud product.

The HCHO data set validated in this study is the OMI
HCHO tropospheric VCD level 2 data retrieved by a DOAS
algorithm v14 developed at BIRA-IASB (De Smedt et al.,
2015). This algorithm will also be applied to the upcom-
ing TROPOMI instrument. HCHO SCDs are retrieved in the
spectral window between 328.5 and 346 nm using the DOAS
technique. After applying a background correction, HCHO
SCDs are converted to tropospheric VCDs using AMFs from
a look-up table generated by LIDORT with HCHO SFs ob-
tained from the IMAGES CTM for individual measurements
(Stavrakou et al., 2015). Also, for this product the cloud in-
formation is obtained from the OMCLDO2 cloud product.

Here one important aspect should be noted: different AMF
strategies are used in the DOMINO v2 NO2 product and
the BIRA SO2 and HCHO products for eCF < 10 %. For
the NO2 product the eCF and CTP are explicitly consid-
ered in the AMF simulations while for the SO2 and HCHO

products the clear-sky AMFs are applied. These differences
will be especially important for measurements in the pres-
ence of high aerosol loads (see Sect. 3.5). For eCF > 10 %,
a cloud correction based on the independent pixel approxi-
mation (IPA) (Cahalan et al., 1994) is applied for the three
TG retrievals. It should also be noted that observations of
the outermost pixels (i.e. pixel numbers 1–5 and 56–60)
and pixels affected by the so-called “row anomaly” (see
http://www.temis.nl/airpollution/no2col/warning.html) were
removed before the comparisons.

2.3 NO2, SO2 and HCHO products derived from
GOME-2

The GOME-2A and B instruments (Callies et al., 2000;
Munro et al., 2006, 2016) are aboard the sun-synchronous
Meteorological Operational Satellite platforms MetOp-A
and MetOp-B, respectively. MetOp-A (launched on 19 Oc-
tober 2006) and MetOp-B (launched on 17 Septem-
ber 2012) operate in parallel with the same equator cross-
ing time of 09:30 LT. Before 15 July 2013 GOME-2A had
a swath width of 1920 km, corresponding to a ground pixel
size of 80 km× 40 km and a global coverage within 1.5 days.
Since 15 July 2013, the GOME-2A swath width was changed
to 960 km with a ground pixel size of 40 km× 40 km. The
GOME-2A settings before 2013 are also applied to GOME-
2B.

In this study, we validate the operational level 2 tro-
pospheric NO2 VCDs derived from the TM4NO2A ver-
sion 2.3 product (Boersma et al., 2004) for GOME-
2A and B obtained from the TEMIS website. The NO2
SCDs are retrieved in the 425–450 nm spectral window by
the BIRA team with QDOAS (http://uv-vis.aeronomie.be/
software/QDOAS/). The tropospheric NO2 VCDs are ob-
tained from the SCDs using similar data assimilation pro-
cedures as for the DOMINO v2 product. However, for the
GOME-2 products the eCF and CTP are retrieved by the im-
proved Fast Retrieval Scheme for Clouds from the Oxygen
A-band algorithm (FRESCO+) based on the measurements
of the oxygen A-band around 760 nm (Wang et al., 2008),
again assuming a Lambertian cloud.

Two SO2 products derived from GOME-2A observations
are included in the study. The first one is the operational
level 2 O3M-SAF SO2 product derived from GOME-2A ob-
servations (Rix et al., 2012; Hassinen et al., 2016). In the
following the product is simply referred to as “GOME-2A
DLR”. This product is provided via the EUMETSAT product
navigator (http://navigator.eumetsat.int) or the DLR EOWEB
system (http://eoweb.dlr.de). The SO2 SCDs are retrieved us-
ing the DOAS technique in the wavelength range between
315 and 326 nm. For the conversion of SCDs to VCDs, the
AMFs are acquired from a look-up table generated using LI-
DORT 3.3. For the AMF computation, three types of SFs are
assumed as Gaussian distributions with a FWHM of 1.5 km
around three central heights of 2.5, 6 and 15 km. Because for
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the SO2 concentrations at Wuxi mostly anthropogenic pollu-
tion is relevant, only the SO2 product corresponding to the
central height of 2.5 km is included in the validation study.
The cloud information is obtained from GOME-2 measure-
ments by the OCRA and ROCINN algorithms (Loyola et
al., 2007) based on oxygen A-band observations at around
760 nm. The second product is provided by BIRA using the
same retrieval algorithm as for the OMI BIRA SO2 prod-
uct, referred to as “GOME-2A BIRA”. The same algorithm
is also used to acquire the SO2 data from GOME-2B obser-
vations. The product is referred to as “GOME-2B BIRA” in
the following. The cloud properties used in the two prod-
ucts are derived from GOME-2A/B observations using the
FRESCO+ algorithm.

The HCHO tropospheric VCD level 2 products derived
from GOME-2A and B observations (De Smedt et al., 2012,
2015) are validated in this study. The same retrieval approach
as for the OMI BIRA HCHO product is applied, but the cloud
properties are derived from GOME-2A/B observations using
the FRESCO+ algorithm.

3 Validation of the satellite data sets

In this section the daily and bi-monthly-averaged NO2, SO2
and HCHO VCDs from OMI and GOME-2 are validated by
comparisons with the tropospheric VCDs derived from the
MAX-DOAS observations. Here it needs to be clarified that
the daily and bi-monthly satellite data are the averaged values
of all satellite pixels located in the coincidence area around
the measurement site (see below). The MAX-DOAS data are
the averaged values for all measurements within 2 h around
the satellite overpass time. Also, the diurnal and weekly cy-
cles from the satellite observations are compared with those
from the corresponding MAX-DOAS observations. Finally
the influence of the SF and the effects of aerosols on the OMI
products are discussed. The SFs from the CTM used for the
OMI AMF calculations are compared to the SFs derived from
MAX-DOAS.

Averaging of individual satellite and/or MAX-DOAS ob-
servations can be advantageous for several reasons. First, es-
pecially for observations with rather large statistical uncer-
tainties (in particular for satellite observations of SO2 and
HCHO), the merging of several observations can substan-
tially reduce these uncertainties. Second, the effect of spa-
tial gradients across satellite pixels can be partly accounted
for by averaging MAX-DOAS measurements over a period
around the satellite overpass time. However, for the averag-
ing of satellite and MAX-DOAS data, reasonable selection
criteria need to be determined, which can be different for the
different TGs and satellite sensors. The effects of the selec-
tion criteria, in particular the time period used for the MAX-
DOAS measurements and the distance of the selected satel-
lite observations from the measurement site are evaluated and
discussed in detail in Sect. S1 in the Supplement. One general

finding is that the effect of the chosen time period is negli-
gible compared to the effect of the chosen distance. There-
fore it is reasonable to arbitrarily use 2 h around the satellite
overpass time, namely 12:30 to 14:30 LT for the comparisons
with OMI and from 08:30 to 10:30 LT for the comparisons
with GOME-2A/B. The distances around the measurement
site, for which satellite observations are averaged, are cho-
sen differently for the different satellite products based on the
sensitivity studies shown in Sect. S1. In the following com-
parisons, the OMI NO2 and SO2 (HCHO) data are selected
for satellite pixels with distances < 20 km (< 50 km) from the
Wuxi station. The GOME-2A/B data of the three species are
selected for distances < 50 km. It should be noted that these
findings are derived for a polluted site in China. For other
locations and conditions, different coincidence criteria might
be best suited.

3.1 Daily comparisons

The daily-averaged satellite data for measurements within
the chosen distances are compared with the daily-averaged
MAX-DOAS data within 2 h around the satellite overpass
time. To characterize the cloud effect on the comparisons,
the comparisons are performed for different eCF bins of 0–
10, 10–20, 20–30, 30–40, 40–50 and 50–100 % for NO2 and
SO2, and for eCF bins of 0–10, 10–30, 30–50 and 50–100 %
for HCHO. Note that the cloud effects on the MAX-DOAS
results are discussed in detail in Sect. S2. The most important
finding is that the cloud effects on MAX-DOAS results are
negligible for the satellite validation activities.

3.1.1 NO2

Figure 2a, b and c display scatter plots (and the parameters
from the linear regressions) of the daily-averaged NO2 tropo-
spheric VCDs derived from OMI, GOME-2A and GOME-
2B products versus those derived from the correspond-
ing MAX-DOAS measurements for eCF < 10 %. Generally
higher correlation coefficients (R2) are found for OMI than
for GOME-2A/B. The systematic biases of the satellite data
with respect to the MAX-DOAS data are quantified by the
mean relative difference (MRD) calculated following Eq. (1):

MRD=
∑n

1
(Vsi
−VMi

)
/VMi

n
. (1)

Here Vsi and VMi
represent the averaged TG VCDs from

satellite observations and MAX-DOAS measurements on
day i, respectively; n is the total number of the available
days. The MRD is only 1 % for OMI, and 27 and 30 % for
GOME-2A and B, respectively.

The R2, slopes and intercepts of the linear regressions
and the MRD, as well as the number of available days
for the three satellite products, are shown for the five eCF
bins in Fig. 3. For OMI, R2 decreases with increasing
eCF; the slopes significantly change for eCF > 50 % and the
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Figure 2. Daily-averaged NO2 tropospheric VCDs derived from OMI (a), GOME-2A (b) and GOME-2B (c) compared with the correspond-
ing MAX-DOAS data for eCF < 10 %. The colours indicate the eCF.

Figure 3. R2, slopes, intercepts, mean relative differences (and the
number of available days) derived from the comparisons of the NO2
VCDs from different satellite instruments to the MAX-DOAS re-
sults for the different eCF bins. Note that the black and red curves
represent the improved OMI VCDs with the a priori shape factors
derived from Wuxi MAX-DOAS observations (see Sect. 3.2) and
for the DOMINO 2 product, respectively.

MRD drops to −40 % for eCF > 40 %. For GOME-2A, a
steep decrease of R2 for eCF > 30 % is found. For GOME-
2B, a generally lower R2 is found for eCF > 30 %; the
MRD indicates an increasing systematic overestimation for

eCF > 30 %. Thus we conclude that the cloud effect on OMI
and GOME-2A/B NO2 data becomes significant for eCF > 40
and 30 %, respectively.

3.1.2 SO2

Figure 4a, b, c, d, and e display scatter plots of the daily-
averaged SO2 tropospheric VCDs derived from the OMI
NASA, OMI BIRA, GOME-2A DLR, GOME-2A and B
BIRA products versus those derived from the corresponding
MAX-DOAS measurements for eCF < 10 %. R2 and slopes
are more close to unity for the OMI BIRA product than for
the other products. The MRDs indicate a similar systematic
underestimation (−40 to −52 %) by all products. There are
fewer negative values in the OMI BIRA product than in the
other satellite products. It needs to be noted that the signifi-
cantly worse R2 for the OMI NASA product compared to the
OMI BIRA product could partly be attributed to the assumed
fixed measurement condition (and thus the fixed AMF) in
the NASA PCA retrievals. However, the similar slopes and
MRDs between the two OMI products indicate that the sim-
plification of the NASA PCA retrieval only slightly con-
tributes to the systematic bias of the averaged values.

The R2, slopes and intercepts of the linear regressions and
the MRD, as well as the number of the available days ob-
tained for the five satellite SO2 products, are shown for the
five eCF bins in Fig. 5. For the OMI BIRA product, a signif-
icant decrease of R2 occurs for eCF > 10 % together with a
decrease of the slopes and the MRD. A steep increase of the
MRD is found for eCF > 40 %. Therefore cloud effects on the
OMI BIRA SO2 data become considerable for eCF > 10 %.
For the OMI SO2 NASA data, R2, slope, and MRD signifi-
cantly decrease for eCF > 20 %. R2 for both GOME-2A data
are low (< 0.09) for all eCF bins; thus from the linear regres-
sions no meaningful information on the cloud effect can be
derived. Almost constant MRDs are found for both GOME-
2A SO2 products for eCF < 30 %. For eCF > 30 % largely
varying MRD are found, especially for the GOME-2A BIRA
products. Thus we conclude that the cloud effects on both
GOME-2A products are appreciable for eCF > 30 %. For the
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Figure 4. Daily-averaged OMI SO2 tropospheric VCDs from BIRA (a) and NASA (b), GOME -2A SO2 tropospheric VCDs from
BIRA (c) and DLR (d), and GOME-2B SO2 tropospheric VCDs from BIRA (e) for eCF < 10 % plotted versus the coincident MAX-DOAS
results. The colours indicate the eCF.

GOME-2B BIRA data, an obvious decrease of R2 and slope
is found for eCF > 10 %, while for eCF > 30 % largely vari-
able MRDs are found. Thus clouds can considerably impact
the GOME-2B BIRA product for eCF > 10 %, and more sig-
nificantly for eCF > 30 %.

3.1.3 HCHO

Because of the rather small atmospheric absorption of
HCHO, the DOAS fit errors often dominate the total uncer-
tainty of the HCHO satellite data (De Smedt et al., 2015).
Thus systematic effects (e.g. those caused by clouds) are
more difficult to identify and quantify than for NO2 and SO2.
The scatter plot of the OMI HCHO VCDs for individual pix-
els versus those derived from MAX-DOAS observations for
eCF < 30 % are shown in Fig. 6. One important finding is that
the R2 for data with a fit error < 7× 1015 molecules cm−2 is
better than the R2 for all data (see Fig. 6b). A similar result
is obtained for the daily-averaged OMI HCHO VCDs (see
Fig. S12 in the Supplement) indicating that the fit error dom-
inates the random uncertainty of the HCHO VCDs derived
from satellite. In contrast, the slopes of the linear regressions
for the OMI data before and after the filtering are quite sim-
ilar, as shown in Figs. 6b and S12. Thus the data screening
has no considerable impact on the analysis of the systematic
bias of the OMI HCHO products. Considering that the mean
fit error of the HCHO VCDs is 7× 1015 molecules cm−2 for
the OMI data, for further comparisons we exclude the HCHO
VCDs with fit errors > 7× 1015 molecules cm−2 for OMI.
However, for the GOME-2A/B products, the filter for the fit
error is not applied because in contrast to the OMI HCHO

Figure 5. Same as Fig. 3 but for SO2.

data we find a systematic dependence of the fit error on the
retrieved HCHO tropospheric VCD (see Fig. S13). The dif-
ferent findings with respect to the HCHO fit error for OMI
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Figure 6. (a) HCHO tropospheric VCDs for OMI pixels for eCF < 30 % are plotted against those derived from MAX-DOAS observations
with the colour map of eCF; the linear regression parameters are acquired for eCF < 30 % and for eCF < 10 %, respectively. (b) Scatter
plots are same as in (a), but with the colour map of VCD fit error; linear regression parameters are acquired for all data and for VCD fit
error < 7× 1015 molecules cm−2.

and GOME-2 are not clearly understood and should be ad-
dressed in further investigations.

If the additional filter of the fit error for the OMI product
is applied, 48 % of the total number of HCHO data is left
for comparisons. In order to still include a sufficient num-
ber of data, we use broader eCF bins (0–10, 10–30, 30–50
and 50–100 %). Figure 7a, c and d display scatter plots of
the satellite daily-averaged data versus the MAX-DOAS data
for eCF < 10 % for OMI, GOME-2A and GOME-2B data,
respectively. We found the best consistency for the GOME-
2B product, probably because of the weaker degradation of
GOME-2B during the short time after launch compared to
OMI and GOME-2A. Nevertheless, other unknown reasons
might also play a role. One interesting finding is the better
correlation of the OMI products for the eCF bin of 10 to
30 % (see Fig. 7b) compared to the eCF < 10 %. However,
for eCF of 10 to 30 % also a larger MRD of −34 % (see
Fig. 8) is found, which might be attributed to the effect of
clouds, because the clear-sky AMFs used in the retrievals for
eCF < 10 % (see the last paragraph of Sect. 2.2).

The dependencies of the results of the linear regressions
and the MRDs on the eCFs are shown in Fig. 8 for the three
satellite instruments. For OMI, a decrease of R2 occurs for
eCF > 30 %, while for GOME-2A and GOME-2B, low R2

are already found for eCF > 10 %. Gradually increasing ab-
solute values of the MRDs for all satellite instruments are
found for increasing eCF. In general cloud effects on the
HCHO products become substantial for eCF > 30 % for the
three satellite instruments. However, it needs to be noted that
our findings are derived for one location (Wuxi) and might
not be fully representative for other locations. The use of the
HCHO products with eCF < 40 % is recommended by the re-
trieval algorithm developer (De Smedt et al., 2015).

3.2 Errors of shape factors from CTM and the effect
on satellite VCD products

The SF is an input for the calculation of satellite AMF, which
is needed to convert the SCD to the VCD (Palmer et al.,
2001). Different retrieval algorithms acquire the SFs in dif-
ferent ways, mostly from a CTM for individual measure-
ments or assuming a fixed SF (see Sect. 2.2 and 2.3). The
MAX-DOAS measurements acquire the vertical profiles of
NO2, SO2 and HCHO from the ground up to the altitude of
about 4 km (depending on the measurement conditions), in
which the tropospheric amounts of the TGs are mostly lo-
cated. Thus the profiles derived from MAX-DOAS observa-
tions are valuable to evaluate the SFs used in the satellite
retrievals and their effects on the AMFs and VCDs. Because
the averaging kernels and SFs for individual satellite mea-
surements are available only for the DOMINO NO2, BIRA
SO2, and BIRA HCHO products derived from OMI observa-
tions, these three products are used to evaluate the effect of
the SF in this section.

For the three selected products, the calculation of the tro-
pospheric satellite AMFs follows the same way as introduced
in Palmer et al. (2001) as Eq. (2):

AMF=

tropopause∫
ground

BAMF(z)SF(z)dz. (2)

Here BAMF(z) is the box AMF, which characterizes the
measurement sensitivity as a function of altitude (z). The in-
tegration is done from the ground to the tropopause. The SFs
of the TGs are obtained from different CTM (TM4 for NO2,
IMAGES for SO2 and HCHO, see Sect. 2.2). The profiles
(profileM) derived from MAX-DOAS can be converted to SF
(SFM) using Eq. (3):

SFM (z)=
profileM (z)

VCDM
, (3)
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Figure 7. Same as Fig.2, but for HCHO.

Figure 8. Same as Fig. 3 but for HCHO.

where VCDM is the tropospheric VCD derived by an inte-
gration of the corresponding profileM. It needs to be noted
that only the profiles below 4 km can be reliably drawn from
MAX-DOAS observations. Thus the profileM between 4 km
and the tropopause (a fixed value of 16 km is used in this
study) is derived from the corresponding CTM profiles of
the individual satellite data sets. Therefore the SFM is de-
rived from the combined profileM using Eq. (3).

A similar relationship connects the BAMFs and averaging
kernels (Eskes and Boersma, 2003):

AK(z)=
BAMF(z)

AMF
. (4)

The SFM can replace the SF from CTM (SFC) to recalculate
the AMF using Eq. (2). A similar study was recently con-
ducted by Theys et al. (2015) and De Smedt et al. (2015)
for the OMI BIRA SO2 and HCHO products over the Xi-
anghe area. They demonstrated the improvements of the con-
sistency between OMI VCDs and MAX-DOAS VCDs when
using the SFM for the AMF calculation of the satellite prod-
ucts by 20–50 %. In our study we follow the same procedure.

3.2.1 NO2

The averaged NO2 SFC for the measurements under clear sky
with eCF < 10 % is compared to SFM in the altitude range of
up to 4 km in Fig. 9a. The differences between the averaged
SFC and SFM shown in Fig. 9b indicate that in the layer be-
low 4 km NO2 SFC is considerably larger than SFM below
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Figure 9. (a) Average NO2 SFs and standard deviations derived from the MAX-DOAS observations and from the TM4 CTM (for the
DOMINO product) for eCF < 10 %. (b) Averaged differences between the NO2 SFs from CTM (SFC) and from MAX-DOAS (SFM) for
different eCF bins. (c) Daily averages of the original DOMINO NO2 product and modified NO2 product (based on MAX-DOAS SF) plotted
against those from MAX-DOAS for eCF < 10 %. (d) Averaged BAMF for satellite observation for different eCF bins. (e) Relative difference
(RD) of satellite AMF using SFC (AMFCTM) or SFM (AMFMAX−DOAS) for different eCF bins. The error bars indicate the standard
deviation of the RDs for each eCF bin. Black columns denote the RDs derived from the averaged SFC, SFM and BAMF (shown in b and d);
red columns denote the averaged RDs for individual SFC , SFM and BAMF of each satellite observation.

0.4 km and smaller above 0.4 km. In the altitude range above
4 km, SFC is slightly larger than SFM (see Fig. S14a). The
OMI VCDs (VCDCTM) retrieved with SFC (directly derived
from the DOMINO NO2 product) and the modified OMI
VCDs (VCDSM) (based on SFM and the NO2 SCDs which
are derived from the DOMINO NO2 product) are plotted
against the VCDs derived from MAX-DOAS observations in
Fig. 9c. Very similar results for both VCDCTM and VCDSM
are found. In Fig. 9e the relative differences of the AMFs
using either SFC (AMFCTM) or SFM (AMFMAX−DOAS) are
shown. The differences are calculated in two ways: either the
relative differences are first calculated for individual mea-
surements, and then the individual relative differences are av-
eraged. Alternatively, first the AMFs of the individual mea-
surements are averaged, and then the relative differences are
calculated. The results in Fig. 9e show that for both calcula-
tions very similar results are also obtained. For eCF < 10 %
the relative differences are only 0.3 %. The small differences
can be explained by a compensation effect of the negative
and positive differences between SFC and SFM near the sur-
face and at high altitudes, respectively.

For different eCF bins, the relative differences of
AMFCTM and AMFMAX−DOAS increase systematically with
increasing eCF. This finding can be explained by the partial
AMF above 4 km (see Fig. S14c). The partial AMFCTM is
always larger than the partial AMFMAX−DOAS above 4 km

because SFC is larger than SFM. And the difference in-
creases substantially with increasing eCF. Meanwhile the
contribution of the partial AMF above 4 km to the total tro-
pospheric AMF increases with increasing eCF due to the
strong decrease of the partial AMF below. Overall the over-
estimation of the partial AMFCTM compared to the partial
AMFMAX−DOAS above 4 km becomes critical under cloudy
conditions.

In general the TM4 NO2 a priori profile shapes agree well
with the MAX-DOAS profiles, and the agreement with the
MAX-DOAS VCDs by replacing SFC with SFM in the AMF
calculation is only slightly improved for a small eCF. For
large eCF, VCDSM is systematically larger than VCDCTM by
20 % on average (see Fig. 3), consistent with the AMF dif-
ferences shown in Fig. 9e.

3.2.2 SO2

The results shown in Fig. 10a and b indicate that in the layer
below 4 km for eCF < 10 %, the SO2SFC is considerably
smaller than SFM below 1 km and larger above 1 km, respec-
tively. As can be seen in Fig. S15a, SFC is in general slightly
larger than SFM in the altitude range above 4 km. Since the
BAMFs increase with altitude (Fig. 10d) SO2AMFCTM are
on average larger than AMFMAX−DOAS by 18 % (Fig. 10e).
In contrast to NO2, the SO2 VCDSM agrees better with the
MAX-DOAS VCDs than VCDCTM, i.e. R2 and slope in-
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Figure 10. Similar to Fig. 9 but for the OMI BIRA SO2 product. Note that the SF for the OMI BIRA product is obtained from the IMAGES
CTM.

crease from 0.47 to 0.60 and from 0.55 to 0.90, respectively
(see Fig. 10c). Also, the systematic bias of VCDSM is smaller
than that of VCDCTM, i.e. the MRD is −26 % for VCDSM
and−40 % for VCDCTM (see black and red curves in Fig. 5).

For different eCF bins, the differences between SO2SFC
and SFM (Fig. 10b) as well as BAMFs (Fig. 10d) are slightly
different from each other in the altitude range below 4 km.
However, an obvious dependence of both quantities above
4 km on eCF can be seen in Fig. S15a and b. The overesti-
mation of SFC compared to SFM above 4 km increases with
increasing eCF, and the BAMF above 4 km also increases
with increasing eCF. Therefore the dependences of both
quantities on eCF dominates the different levels of agree-
ment of the partial AMFCTM and partial AMFMAX−DOAS
above 4 km for different cloud conditions, as shown in
Fig. S15c. Furthermore, the partial AMF above 4 km dom-
inates the total tropospheric AMF for large eCF due to the
decrease of the lower partial AMF with increasing eCF (see
Fig. S15c). These dependencies of partial AMFCTM and par-
tial AMFMAX−DOAS above 4 km on eCF also explain the
dependencies of differences between the total tropospheric
AMFCTM and AMFMAX−DOAS on eCF, as shown in Fig. 10e.
However, in general the dependences on eCF are smaller
than that for NO2. In addition, a better consistency between
the SO2 VCDSM and the MAX-DOAS VCDs than for the
VCDCTM can be seen in Fig. 5 for all the eCF bins.

3.2.3 HCHO

The results shown in Fig. 11a and b indicate that in the alti-
tude range below 4 km for eCF < 10 % the HCHO SFC is con-
siderably smaller below 1.7 km and larger than SFM above

1.7 km, respectively. As can be seen in Fig. S16a, the SFC
almost equals the SFM above 4 km for eCF < 10 %. Since
the BAMF increases with altitude (Fig. 11d) the HCHO
AMFCTM is on average larger than AMFMAX−DOAS by 11 %
(Fig. 11e). Like for SO2 the VCDSM agree better with the
MAX-DOAS VCD than VCDCTM, i.e. R2 and slope increase
from 0.15 to 0.21 and from 0.44 to 0.61, respectively (see
Fig. 11c). Also, the systematic bias of VCDSM is smaller
than that of VCDCTM, i.e. the MRD is −10 % for VCDSM
and −18 % for VCDCTM (see Fig. 8).

For different eCF bins, larger differences between
AMFCTM and AMFMAX−DOAS are found towards larger eCF
(see Fig. 11e). Similar to NO2 and SO2, this finding is caused
by the partial AMFs above 4 km. The dependences of differ-
ences between HCHO SFC and SFM (Fig. 11b) as well as
BAMFs (Fig. 11d) in the altitude range below 4 km on eCF
are insignificant. However, both quantities above 4 km obvi-
ously depend on eCF (see Fig. S16a and b). The overestima-
tion of SFC compared to SFM above 4 km increases with in-
creasing eCF, and the BAMF above 4 km also increases with
increasing eCF. Therefore the dependences of both quanti-
ties on eCF dominate the different levels of agreement of
the partial AMFCTM and partial AMFMAX−DOAS above 4 km
for different cloud conditions, as shown in Fig. S16c. Fur-
thermore, the partial AMF above 4 km dominates the to-
tal tropospheric AMF for large eCF due to the decrease
of the partial below-4 km AMF with increasing eCF (see
Fig. S16c). These dependencies of partial AMFCTM and par-
tial AMFMAX−DOAS above 4 km on eCF also explain the
dependencies of differences between the total tropospheric
AMFCTM and AMFMAX−DOAS on eCF, as shown in Fig. 11e.
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Figure 11. Same as Fig. 9 but for the OMI BIRA HCHO product and eCF bins of 0–10, 10–30, 30–50 and 50–100 %. Note that the SF for
the OMI BIRA product is obtained from the IMAGES CTM.

In addition, Fig. 8 shows that for all the eCF bins the consis-
tency between VCDSM and the MAX-DOAS VCD is better
than for VCDCTM.

3.2.4 Uncertainties of the SF from MAX-DOAS

The previous study on the Wuxi MAX-DOAS observations
(Wang et al., 2017) demonstrated that in general the profile
retrievals are not sensitive to altitudes above 1–2 km, where
the retrieved profiles are strongly constrained to the a priori
profiles. Thus the SFs at high altitudes could be underesti-
mated by MAX-DOAS retrievals. This effect could be con-
siderable, especially for SO2 and HCHO, because they typi-
cally extend to higher altitudes than NO2 (Xue et al., 2010;
Junkermann, 2009; Wagner et al., 2011). Because BAMFs of
satellite observations are normally larger at high altitudes, the
uncertainties of SFs from MAX-DOAS could cause an un-
derestimation of AMFMAX−DOAS, which further could cause
an overestimation of VCDSM. Since the profiles above 4 km
are not available from MAX-DOAS observation, they are
taken from the corresponding CTM simulations for the dif-
ferent satellite data sets in this study. This procedure can con-
tribute to an unknown error in the analysis of SF effects on
satellite AMF and VCD calculations.

3.3 Comparisons of the bi-monthly mean VCD

We calculate bi-monthly-averaged tropospheric VCDs for
eCF < 30 % for the coincident observations of the satellite in-
struments and MAX-DOAS (and also from the CTM simu-
lations for the OMI products) from 2011 to 2014. The results

for NO2, SO2 and HCHO are shown in Fig. 12. The numbers
of available days for each satellite product are also shown in
the bottom panels of each subfigure.

3.3.1 NO2

For OMI, good agreements with the MAX-DOAS VCDs are
found both for the DOMINO and the improved VCDs us-
ing SFs from MAX-DOAS observations with a slightly bet-
ter agreement for the improved VCDs. GOME-2A and B
VCDs are systematically larger than the MAX-DOAS VCDs
by about 5× 1015 molecules cm−2 on average. The overes-
timation could be attributed to the errors of the NO2 SFs
from TM4 (Pinardi et al., 2013). Systematic differences be-
tween the GOME2-A and B VCDs are found, which can be
partly explained by the different swath widths of both sen-
sors after 15 July 2013. For the same reason, better agree-
ment between GOME-2A and MAX-DOAS VCDs is also
found after summer 2013. The NO2 VCDs simulated by TM4
for the OMI DOMINO v2 product are much smaller than
those observed by satellite and MAX-DOAS. However, the
model data show a similar seasonality to the observational
data. The significant underestimation of the TM4 NO2 VCDs
could be due to many factors, most importantly the limited
spatial resolution of the model, which is especially relevant
for species with strong horizontal gradients such as NO2 and
SO2 (see Fig. 1). But possible errors in the emissions, trans-
port schemes and/or chemical mechanisms might also play
a role. The determination of the specific contributions of the
different error sources should be the subject of future studies.
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Figure 12. Bi-monthly-averaged tropospheric VCDs of NO2 (a), SO2 (b) and HCHO (c) derived from coincident satellite and MAX-DOAS
observations for eCF < 30 %. Also shown are the corresponding CTM results (TM4 for NO2, IMAGES for SO2 and HCHO). In all subfigures
the red and light red lines indicate the improved OMI tropospheric VCDs using the SFs from MAX-DOAS and the VCDs from the original
OMI products, respectively. The numbers of the available days are shown in the bottom panel of each subfigure.

Atmos. Chem. Phys., 17, 5007–5033, 2017 www.atmos-chem-phys.net/17/5007/2017/



Y. Wang et al.: Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products 5021

3.3.2 SO2

For SO2, large differences between the absolute values of
the satellite and MAX-DOAS results are found, but all data
sets show a similar seasonality, with minima in summer and
maxima in winter. The best agreement with MAX-DOAS re-
sults is found for the OMI BIRA VCDSM, which displays
an almost identical magnitude of the SO2 annual variation
(while still showing a large bias). Interestingly, a much bet-
ter agreement is found for the modified OMI SO2 than for
the OMI BIRA using the SF from the CTM. However, the
MAX-DOAS results are still significantly higher than the
modified OMI products by about 1× 1016 molecules cm−2

on average. Several reasons could contribute to the differ-
ences: (1) the horizontal gradient of SO2 (see Fig. 1) and the
MAX-DOAS pointing direction to the north can contribute
to the differences of about 3× 1015 molecules cm−2. (2) The
SO2 cross section at 203 K is applied in the current version
of the OMI BIRA product. It was found that the tempera-
ture dependence of the SO2 cross sections (Bogumil et al.,
2003) should also be considered using, for example, a post-
correction method (BIRA-IASB, 2016). The correction can
increase SO2 VCDs by up to 1× 1016 molecules cm−2, with
the highest absolute changes in winter. (3) The surface albedo
used in the retrieval of the OMI BIRA product is taken from
the climatological monthly minLER data from Kleipool et
al. (2008) at 328 nm. We expect an uncertainty of the albedo
of about 0.02. This will translate to an error of 15–20 % of
the SO2 VCDs. (4) Some unknown local emissions near the
station might be underestimated by the satellite observations,
but seen by the MAX-DOAS.

The BIRA GOME-2A/B and DLR GOME-2A data are
consistent with each other, but show large differences to the
corresponding MAX-DOAS results. The SO2 VCDs simu-
lated by IMAGES are systematically lower than the MAX-
DOAS observations and show only a low amplitude of the
seasonal variation. Same as for TM4 NO2, the discrepancy
of the IMAGES SO2 VCDs needs a further investigation in
future studies.

3.3.3 HCHO

Relatively good agreement between the satellite and MAX-
DOAS observations of HCHO is found for all data sets (ex-
cept GOME-2A before summer 2013). For OMI, a better
agreement is found for the modified VCDs than for the orig-
inal product, with a larger improvement in summer. GOME-
2A/B products are consistent with each other but strongly
underestimate the HCHO VCDs, especially in summer. It is
interesting to note that the CTM results have a better consis-
tency with the MAX-DOAS results than the OMI data. The
much better consistency of the IMAGES HCHO VCDs com-
pared to the SO2 VCDs with MAX-DOAS measurements is
also worth further investigation in the future. It should be
noted that GOME-2A data before summer 2013 show the

Table 1. Mean ratios for the data presented in Fig. 13.

RatioM−D RatioSat RatioM−D RatioSat
(G-2A / OMI) (G-2A / OMI) (G-2B / OMI) (G-2B / OMI)

NO2 1.25 1.62 1.20 1.61
SO2 1.02 1.02 1.01 1.09
HCHO 0.78 0.88 0.76 0.87

largest disagreement with the MAX-DOAS data. The reason
for this phenomenon is not clear, but might be related to the
different swath width in that period.

3.4 Diurnal variations characterized by combining the
GOME-2A/B and OMI observations and the
weekly cycle

Because of the morning and afternoon overpass time
of GOME-2 and OMI, respectively, several studies (e.g.
Boersma et al., 2008; Lin et al., 2010; De Smedt et al., 2015)
investigated the differences of both data sets to character-
ize the diurnal variations of the TGs. The diurnal variations
can be attributed to the complex interaction of the primary
and secondary emission sources, depositions, atmospheric
chemical reactions and transport processes. In this section
we perform a similar study, but also include MAX-DOAS
data coincident to the satellite observations. We calculate
the ratios between the bi-monthly mean tropospheric VCDs
from GOME-2A/B and OMI (RatioSat) for each species and
the corresponding ratios from the MAX-DOAS observations
(RatioM−D). The results are shown in Fig. 13. The averaged
RatioSat and RatioM−D over the whole period are listed in Ta-
ble 1. For NO2, the RatioSat for both GOME-2 instruments
show good agreement. Good agreement with the MAX-
DOAS results is also found for the seasonal variation, but the
absolute values differ. The systematic difference of RatioSat
and RatioM−D can be attributed to the known overestima-
tion of the GOME-2 A/B tropospheric VCD compared to the
MAX-DOAS results (see Fig. 12a). This finding also indi-
cates that using GOME-2 and OMI data can lead to incorrect
conclusions about the diurnal cycles of NO2, as well as for
the other TGs we investigated the ratios between the different
data sets. However, because of the larger uncertainties com-
pared to NO2, the conclusions for SO2 and HCHO should
be treated with care. For SO2, although RatioSat shows sev-
eral deviations from RatioM−D, RatioM−D and RatioSat are
consistent on average and close to unity during a whole year
indicating similar SO2 VCDs around the overpass times of
GOME-2 and OMI. For HCHO, on average good agreement
between RatioSat and RatioM−D is found for GOME-2A and
GOME-2B (except some outliers of RatioSat). Interestingly,
both RatioSat and RatioM−D are below unity, indicating lower
HCHO VCDs in the morning than in the afternoon.

We evaluate the weekly cycles of the VCDs of the TGs ob-
served by satellite instruments and the corresponding MAX-
DOAS. The weekly cycles are shown in Fig. S17. In general,
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Figure 13. Ratios between the bi-monthly mean tropospheric VCDs
from GOME-2A/B and OMI (RatioSat), as well as the ratios be-
tween the corresponding MAX-DOAS observations (RatioM−D)

for NO2 (a), SO2 (b) and HCHO (c), respectively. The light red
(dark red) and light blue (dark blue) curves are corresponding to
GOME-2A and GOME-2B results (coincident MAX-DOAS results
with GOME-2A and GOME-2B), respectively. Note that for SO2
the OMI and GOME-2A data from BIRA are used for the ratio cal-
culations. The mean ratios for the shown data sets are presented in
Table 1.

only the two GOME-2 instruments and the corresponding
MAX-DOAS measurements observed considerable weekly
cycles for NO2.

3.5 Aerosol effects on the satellite results

In this section the aerosol effects on the satellite products
are investigated. The OMI products (for SO2 the OMI BIRA
product is used) are used for this study because of their
better consistency with the MAX-DOAS results compared
to the products of the other satellite instruments. In Fig. 14
the absolute (top) and relative (bottom) differences of the
TG VCDs between OMI and MAX-DOAS observations
for individual OMI pixels are plotted against the AODs
at 360 nm derived from the MAX-DOAS observations
(Wang et al., 2017). It needs to be noted that the OMI
VCDs used in Fig. 14 are the modified values using the
SFs derived from MAX-DOAS observations in order to
isolate the aerosol effects. The left subfigures show the
comparisons for the data with eCF < 10 %, for which a
potential cloud contamination is minimized. However, the
eCF filter cannot exclude all clouds, and thus observations
with thin cirrus clouds or other clouds with small geometric
cloud fraction might still be included in the comparison,
Therefore CTP > 900 hPa is used to further exclude resid-
ual clouds from the comparisons. The comparisons for

the data with eCF < 10 % and CTP > 900 hPa are shown
in the centre column of Fig. 14. Finally, observations
with small TG VCDs (NO2 < 2× 1016 molecules cm−2,
SO2 < 2× 1016 molecules cm−2 and
HCHO < 1× 1016 molecules cm−2) are also skipped to
minimize the influence of non-polluted observations on the
comparison. The results after applying all three filters are
shown in the right part of Fig. 14.

A systematically increasing underestimation of the OMI
VCDs compared to MAX-DOAS VCDs with increasing
AOD can been seen for NO2 and SO2. This indicates the
effects of aerosols on the satellite products. However, here
one aspect needs to be considered. Besides aerosols, resid-
ual (low altitude) clouds might also still have an effect on the
comparison results. In order to quantify their potential effect,
we performed RTM simulations (for details see Sect. S3) to
evaluate the difference of TG AMFs which are calculated
for either aerosols or residual clouds. As residual clouds we
chose either homogeneous optically thin clouds covering the
whole satellite pixel or optically thick clouds covering only a
small geometric fraction of the satellite pixel. For both types
of clouds, the extinction profiles were chosen to match the
radiance and O4 SCDs at 477 nm of the aerosol cases. We
found that the differences of the AMFs for aerosols and resid-
ual clouds are generally smaller than 10 % for NO2, and 5 %
for SO2 and HCHO. It should be noted that the actual effect
of residual clouds is in general much smaller, because usu-
ally aerosols and clouds are present at the same time. Thus
we conclude that residual clouds have a negligible effect on
the comparison results shown in Fig. 14.

The dependence on AOD shown in Fig. 14 is strongest for
NO2. Besides the larger uncertainties of the HCHO and SO2
retrievals, this is probably mainly related to the fact that in
contrast to the DOMINO NO2 product, for the OMI BIRA
SO2 and HCHO products no cloud correction is performed,
i.e. a clear-sky AMF (for a Rayleigh scattering atmosphere)
is applied in cases of eCF < 10 %.

Aerosols affect the satellite TG retrievals in two ways: first
they affect the cloud retrievals of eCF and CTP and thus the
TG AMFs if a cloud correction is applied in the satellite re-
trievals. If a Lambertian cloud model is used, the effect of
this implicit aerosol correction depends systematically on the
aerosol properties (Boersma et al., 2011; Lin et al., 2014;
Wang et al., 2015; Chimot et al., 2016). For mostly scatter-
ing aerosols at high altitudes, the implicit aerosol correction
can largely account for the aerosol effect on the TG products
(Boersma et al., 2011). However, in some important cases
(for low altitude aerosols with high AOD and small SSA) the
implicit correction might even increase the errors of the AMF
Castellanos et al. (2015).

Besides the aerosol effect on the cloud retrievals and cloud
correction schemes, aerosols also directly affect the AMF
compared to AMFs for pure Rayleigh scattering conditions.
Leitão et al. (2010) and Chimot et al. (2016) found that the
influence of aerosols on the satellite retrievals mainly de-
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Figure 14. Absolute differences (a) and relative differences (b) of tropospheric VCDs of NO2, SO2 and HCHO between individual OMI
observations and MAX-DOAS observations plotted against the AODs derived from the MAX-DOAS observations. The data are differ-
ently screened in the left, centre and right panels: eCF < 10 % for the left; eCF < 10 % and CTP > 900 hPa for the centre; and eCF < 10 %,
CTP > 900 hPa, and VCD > a specific threshold for the right (see text). Note that the OMI VCDs are the modified values using SFs derived
from MAX-DOAS observations.
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pends on the relative vertical distributions of aerosols and
TGs. To further quantify both aerosol effects on the satellite
retrievals, we performed RTM simulations for typical scenar-
ios of aerosols and TGs in Wuxi.

In Fig. 15 the OMI eCF and CTP (for eCF < 10 % and
CTP > 900 hPa) are plotted against the AOD at 360 nm de-
rived from MAX-DOAS observation (similar plots for the
AOD at 340 nm derived from the nearby Taihu AERONET
station (Holben et al., 1998, 2001) are shown in Fig. S18).
The results indicate a systematic increase of eCF and CTP
with increasing AOD, but also a large scatter, especially for
AOD < 1. The systematic increase of eCF and CTP with
AOD is consistent with the model simulations in Chimot
et al. (2016). The variability of eCF and CTP can be at-
tributed to different observation geometries as well as un-
certainties of the cloud retrievals (e.g. related to measure-
ment uncertainties and/or the variability of surface proper-
ties). The frequency distributions of eCF and CTP are also
shown in Fig. 15. Considering this frequency distribution
and the variability of eCF and CTP, eCF of 5 and 10 % as
well as CTP of 900 and 1000 hPa are used in the follow-
ing for the RTM simulations to estimate the errors caused
by aerosols. As aerosol properties we chose AOD values of
0.8 and 1.5, which represent typical and high aerosol loads
at Wuxi, respectively. As vertical profile we chose an av-
erage profile derived from MAX-DOAS measurements un-
der clear-sky conditions (Wang et al., 2017), which is shown
in Fig. S19. The aerosol optical properties (single scatter-
ing albedo of 0.9 at 438 nm, asymmetry parameter of 0.72 at
438 nm, and Ångström parameter of 0.85 at the wavelength
pair of 340 and 440 nm) are taken from the AERONET ob-
servations at the nearby Taihu station (Holben et al., 1998,
2001). We use either SFs derived from the Wuxi MAX-
DOAS observations or from the CTM simulations, which are
also used for the satellite retrievals. The SFs of the TGs are
shown in Fig. S19. The surface albedo is set to 0.1 for NO2
and 0.05 for SO2 and HCHO simulations, based on the aver-
aged value of the surface reflectivity data base derived from
OMI by Kleipool et al. (2008) over Wuxi station. Tempera-
ture and pressure profiles are derived from the US standard
atmosphere data base. The RTM simulations are performed
for five typical satellite observation geometries shown in Ta-
ble 2. The TG BAMFs and AMFs were simulated for NO2 at
435 nm, HCHO at 337 nm and SO2 at 319 nm using the RTM
McArtim 3 (Deutschmann et al., 2011). Since the wavelength
range covered by the AERONET measurements does not ex-
tend to the ultraviolet range, the same aerosol properties de-
rived from the AERONET observations are used for the sim-
ulations at 319 nm (SO2) and 337 nm (HCHO) and those at
435 nm (NO2).

The simulations are performed for four scenarios:
(1) pure Rayleigh scattering conditions (BAMFclear−sky and
AMFclear−sky); (2) aerosol profiles with the AOD of 0.8 and
1.5 (BAMFexplicit and AMFexplicit); (3) Lambertian clouds at
the surface (CTP of about 1000 hPa) with an eCF of 10 and

Table 2. Observation geometry scenarios for BAMF and AMF cal-
culations with different aerosol and cloud assumptions.

Scenario Solar zenith View zenith Relative azimuth
angle [◦] angle [◦ ] angle [◦]

g1 40 30 180
g2 10 30 180
g3 70 30 180
g4 40 0 180
g5 40 30 0

5 % (BAMFlow−cloud and AMFlow−cloud); and (4) Lambertian
clouds at 1 km (CTP of about 900 hPa) with an eCF of 10 and
5 % (BAMFhigh−cloud and AMFhigh−cloud). The cases 3 and 4
represent the implicit aerosol correction. Note that we use
the same cloud model (Lambertian reflector with an albedo
of 0.8) as in the official OMI cloud and TG retrievals.

The BAMFs for the different TGs simulated for the
four scenarios at the g1 observation geometry (40◦ SZA,
180◦ RAA and 30◦ VZA) are shown in Fig. 16a. Note that the
results of scenario 3 and 4 with eCF of 10 % are shown. The
relative differences of the BAMFs for clear sky and clouds
compared to those explicitly considering aerosols (AOD of
either 0.8 or 1.5) are shown in Fig. 16b and c, respectively.
For all TGs, the clear-sky BAMFs are higher close to the sur-
face and lower for higher altitudes than the explicit aerosol
BAMFs, which is caused by the additional aerosol scatter-
ing. The BAMFs near the surface for the cloud scenarios are
either larger (“low cloud scenario”) or smaller (“high cloud
scenario”) than the aerosol AMFs. For both cloud scenarios
the BAMFs are higher than the aerosol BAMFs at higher al-
titudes. Overall the differences of the BAMFs for the cloud
scenarios compared to the aerosol BAMFs are larger than
the differences between the clear-sky BAMFs and aerosol
BAMFs. For the higher AOD (1.5) in general larger differ-
ences are found than for the small AOD (0.8).

The AMFs of NO2, SO2 and HCHO for the four scenarios
are calculated using the corresponding BAMFs and typical
SFs (shown in Fig. S19) derived from MAX-DOAS measure-
ments and CTM simulations by Eq. (2). The relative differ-
ences of the AMFs for clear sky and for two cloud scenarios
compared to the AMFs for the explicit aerosol simulations
for five different satellite observation geometries (listed in
Table 2) are shown in Fig. 17. Figure 17a and b show the re-
sults for AOD of 0.8 and 1.5, respectively. It can be seen that
the implicit aerosol correction can lead to large deviations,
especially for the “low cloud scenario”. The deviation for the
“high cloud scenario” is close to the deviation of clear-sky
AMF, and even smaller in some cases, due to the compen-
sation of the partial AMF below and above the cloud plane.
Here it should be noted that for aerosol layers reaching to
higher altitudes the errors of the high cloud scenario will
in general increase. For the “low cloud scenario” the devi-
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Figure 15. eCF and CTP from the OMI cloud algorithm for individual OMI observations are plotted against AOD at 360 nm derived from
MAX-DOAS observation (for eCF < 10 % and CTP > 900 hPa). The red bars on the right and bottom indicate the frequency of eCF, CTP and
AOD in different value intervals. The red lines are the linear regressions of the scatter plots. The correlation coefficients are shown in the
figure. The colour of the dots in (a) and (b) indicates CTP and eCF, respectively.

ation increases with increasing eCF. As already seen for the
BAMFs, the deviations of the clear-sky AMFs and Lamber-
tian cloud AMFs also increase with AOD. Overall the biases
introduced by the implicit aerosol correction (3 to 85 % for
NO2, −4 to 26 % for HCHO and −2 to 45 % for SO2) are
significantly larger than those for the clear-sky AMFs (5 to
50 % for NO2, −12 to −5 % for HCHO and −9 to 1 % for
SO2). One important finding is that the stronger overestima-
tion of the NO2 AMF for the “high cloud scenario” than for
the “low cloud scenario”, as well as for eCF of 10 % than
5 %, can explain well the observed dependence of the mag-
nitude of the underestimation of the OMI NO2 VCD on the
CTP and eCF, as shown in Fig. 14. Therefore we conclude
that for measurements at Wuxi with strong aerosol loads, the
implicit aerosol correction in general leads to larger biases of
the derived TG VCDs than the use of a clear-sky AMF.

4 Conclusions

Tropospheric VCDs of NO2, SO2 and HCHO derived from
OMI, GOME-2A/B observations are validated using MAX-
DOAS measurements in Wuxi, China, from May 2011 to
December 2014. Tropospheric VCDs and vertical profiles of
aerosols and TGs derived from the Wuxi MAX-DOAS ob-
servations using the PriAM OE-based algorithm are applied
in this validation study.

We compare the daily-averaged tropospheric VCDs from
the satellite products with the corresponding MAX-DOAS
results under clear-sky conditions (eCF < 10 %). For NO2,
good agreement (R2 of 0.73 and systematic bias of 1 %) is

found for the DOMINO v2 product. For both GOME-2 prod-
ucts (TM4NO2A), much weaker correlation (R2 of 0.33 for
GOME-2A and 0.2 for GOME-2B) is found with a similar
systematic bias of about 30 %. For SO2, the OMI BIRA prod-
uct shows a much better correlation (R2 of 0.47) than the
OMI NASA product (R2

=0.12), the GOME-2A BIRA prod-
uct (R2

= 0.07), the GOME-2A DLR product (R2
= 0.09)

and the GOME-2B BIRA product (R2
= 0.28). All of these

products systematically underestimate the SO2 tropospheric
VCDs by about 40 to 60 %. For HCHO, the best agreement is
found for the GOME-2B product with R2 of 0.53 and a sys-
tematic bias of −12 %. The OMI and GOME-2A products
have lower R2 of 0.17 and 0.18, respectively, with a similar
systematic bias of about −20 %.

In general, we expect that the VCDs from MAX-DOAS
observations have much lower uncertainties than those from
satellite observations. However, we should also consider the
total uncertainties of the MAX-DOAS VCDs of NO2, SO2
and HCHO of about 25, 31 and 54 %, respectively (Wang
et al., 2017). Moreover, MAX-DOAS has low sensitivity to
high altitudes, above about 1–2 km. This can cause an un-
derestimation of the VCDs retrieved from MAX-DOAS. The
strength of this effect depends on the vertical distribution of
the species, the atmospheric visibility and the observation ge-
ometry of the MAX-DOAS measurement. In this study we do
not discuss these issues in more detail. This should be done in
further studies. Nevertheless, the sensitivity of MAX-DOAS
observations to the boundary layer is much larger than for
satellite observations, and this is the altitude range in which
the pollutants are usually accumulated. Thus it is reasonable
to assume that the systematic differences between both data
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Figure 16. (a) Simulated BAMFclear−sky, BAMFexplicit for
AOD of 0.8 and 1.5, BAMFlow−cloud (cloud at surface) and
BAMFhigh−cloud (cloud at 1 km) of NO2 at 435 nm, HCHO at
337 nm and SO2 at 319 nm for one typical satellite observation
(SZA of 40◦, RAA of 180◦ and VZA of 30◦). An effective cloud
fraction of 10 % is used in the calculations. (b) Relative differ-
ences of BAMFclear−sky, BAMFlow clouds and BAMFhigh−clouds
compared to BAMFexplicit for AOD of 0.8. (c) Same as (b) but
BAMFexplicit for AOD of 1.5.

sets are mainly attributed to the errors of the satellite obser-
vations.

We investigated the effects of clouds on the MAX-DOAS
results and satellite products and find that the consistency
(correlations and systematic bias) of satellite data with
MAX-DOAS results deteriorates with increasing eCF. The
cloud effects become significant for eCF > 40 % for the OMI
DOMINO NO2 product, > 30 % for the GOME-2A/B NO2
products, > 10 % for the OMI BIRA SO2 product, > 20 %
for the OMI NASA SO2 product, > 30 % for the GOME-
2A/B BIRA SO2 products and > 30 % for all HCHO prod-
ucts. Here it should be noted that, except for optically thick
clouds and fog, the cloud effects on the MAX-DOAS results
are negligible. It should also be noted that these findings are
obtained for the original satellite products, namely using SF
from CTM or assumed fixed SF. In addition, the different

Figure 17. Relative differences between AMFs calculated for dif-
ferent cloud assumptions (for detail see text) and AMFs for explicit
aerosol profiles for three TGs. The labels at the x axis indicate five
different observation geometries (see Table 2). The MAX-DOAS
and CTM SFs are used for the calculations shown in the left and
right column. Explicit aerosol profiles of AOD of 0.8 and 1.5 are
used in (a) and (b), respectively.

thresholds of eCF could also be related to the properties of
the different cloud products. This effect is not discussed in
this paper, and further studies on this would be valuable. In
general, it should be noted that these results are representa-
tive for conditions like in Wuxi, and might be different for
other locations.
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In the OMI DOMINO NO2, OMI BIRA SO2 and HCHO
products, the a priori SFs of the TGs are obtained from
CTM. We compare these SFs (derived from TM4 for NO2,
and IMAGES for SO2 and HCHO) with those derived from
MAX-DOAS observation and find substantial differences.
We investigate the effect of using the MAX-DOAS SFs in
the satellite retrievals. Under clear-sky conditions, the ap-
plication of the SFs from MAX-DOAS changes the SO2
and HCHO AMFs by about 18 and 11 %, respectively, but
has almost no impact on the NO2 AMFs. We find that the
modified satellite VCDs based on the MAX-DOAS SF show
much better agreement with the MAX-DOAS results (con-
siderably higher correlation coefficients R2 and smaller sys-
tematic biases) than the original satellite data. The improve-
ment is strongest for periods with large TG VCDs, namely
for NO2 and SO2 in winter and for HCHO in summer. In
these periods, NO2, SO2 and HCHO VCD change by up to
10, 47 and 35 %, respectively. We also found that the effect
of using the MAX-DOAS SFs in the satellite retrievals in-
creases for increasing eCF. This finding is mainly caused by
the partial satellite AMF above 4 km and the significant re-
duction of the partial satellite AMF below 4 km in cloudy
situations. In addition, the low sensitivity of MAX-DOAS
above about 1–2 km could cause an underestimation of the
MAX-DOAS SFs of the TGs at higher altitudes, especially
for SO2 and HCHO. This effect could cause the underesti-
mation of the AMFs and an overestimation of the VCDs by
using the MAX-DOAS SFs.

We also compare the bi-monthly mean satellite products
to the corresponding MAX-DOAS results. The relative sea-
sonal variations of the NO2, SO2 and HCHO tropospheric
VCDs from the different satellite products agree well with
the corresponding MAX-DOAS results. The best consistency
is found for the OMI DOMINO NO2 product. A system-
atic overestimation of the NO2 VCDs is found for GOME-
2A/B NO2 products. All SO2 satellite products show sim-
ilar SO2 VCDs and a systematic underestimation of about
2× 1016 molecules cm−2. Based on the studies on the OMI
BIRA product, the systematic underestimation could be at-
tributed to a combined effect of errors of the SFs, hor-
izontal gradients of the SO2 distribution, the temperature
dependence of the SO2 cross section, and uncertainties of
the surface albedo and local emissions. The OMI NASA,
GOME-2A BIRA and DLR SO2 products show a larger ran-
dom variability than the OMI and GOME-2B BIRA SO2
products. All OMI and GOME-2A/B products systemati-
cally underestimate the tropospheric HCHO VCDs by about
5× 1015 molecules cm−2, while showing a similar season-
ality to the MAX-DOAS results. The biases found for the
bi-monthly-averaged satellite TG VCDs are consistent with
those found for the daily comparisons.

We compared the diurnal variations (ratios of morning and
afternoon values) of TGs by combining GOME-2A/B (morn-
ing overpass) with OMI (afternoon overpass) observations
with the corresponding MAX-DOAS observations. Gener-

ally higher NO2 values and lower HCHO values in the morn-
ing are acquired, but no significant diurnal cycle was found
for SO2. Consistent diurnal variations of HCHO and SO2 be-
tween satellite and MAX-DOAS observations were derived.
The combined satellite observations systematically overesti-
mate the magnitude of the NO2 diurnal variation compared to
MAX-DOAS due to the overestimation of the NO2 VCDs by
GOME-2. In addition no significant weekly cycle was found
for the three TGs in the satellite and MAX-DOAS data.

Finally we studied the effects of aerosols on the OMI prod-
ucts over the Wuxi station based on the MAX-DOAS obser-
vations. We find that the underestimation of the TG VCDs,
derived from satellite observations for mainly cloud-free ob-
servations compared to the MAX-DOAS observations, sys-
tematically increases with AOD. We also investigate the
aerosol effect based on RTM simulations. Here, in particu-
lar, it is possible to separate the aerosol effect into two con-
tributions: (a) the effect of using a clear-sky AMF instead
of an AMF explicitly taking into account the aerosol effects,
and (b) the effect of aerosols on the cloud retrievals, which
are used in the satellite TG retrievals (implicit aerosol cor-
rection). We find that for the measurements affected by high
aerosol loads in Wuxi, in general the effect of the implicit
cloud correction on the retrieved TG VCDs is much stronger
than the difference of a clear-sky AMF compared to an AMF
explicitly taking into account the aerosol extinction. We also
showed that for eCF < 10 % and CTP > 900 hPa, the effect of
residual clouds can be neglected if aerosol extinction is ex-
plicitly taken into account. Moreover, the observed underes-
timation of the OMI NO2 VCD for large AOD can be ex-
plained well by the error caused by the implicit aerosol cor-
rection. Therefore it might be reasonable to apply clear-sky
AMFs in the satellite retrievals of tropospheric TG VCDs in
cases of low cloud altitudes (CTP > 900 hPa) and low cloud
fractions (eCF < 10 %) if explicit aerosol information is not
available.
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