

Supplement of

Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

Bin Yuan et al.

Correspondence to: Bin Yuan (bin.yuan@psi.ch, yuanbin501@gmail.com)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1. CAFO facilities and environmental conditions during measurements

1	6
	LU

Table S1. Animal types and maximum permitted livestock for investigated sites

S:4- 4	Maximum permitted	Wind speed during	Van speed downwind
Site type	livestock capacity, head	measurements, m/s	the facility, m/s
Dairy farm #1	6,100	5.0±1.2	4.7±0.7
Dairy farm #2	7,500	4.7±1.6	17±2.3
Beef feed yard #1	54,000	4.8±1.3	6.7±1.8
Beef feed yard #2	98,000	5.5±1.3	24±0.8
Sheep feed yard	95,000	5.5±1.3	4.3±0.5
Chicken house	>110,000	7.5±1.2	5.5±0.7

17 18

Table S2. Meteorological conditions during mobile measurements

Parameters	Average±standard deviation
Temperature, °C	10.7±0.6
Relative humidity, %	23.6±1.7
Wind speed, m/s	5.6±1.8
Wind direction, degree	120±14

19

20 2. Combustion sources

Mobile measurements of CAFOs in this study were mainly performed in rural regions with little traffic. The CAFO facilities were usually in the right-hand side of the driver for most of the measurements, which ensures that on-road vehicle traffic (if any) would not come between the mobile laboratory and CAFO facilities. Thus, we do not expect contributions of on-road vehicle emissions to our measurements shown in Figure 1-2 and Figure S2-S3.

26 However, carbon monoxide (CO), a tracer of combustion emissions, were significantly 27 higher than background (~100 ppb) in several plumes sampled downwind of CAFOs (Figure S1). 28 CO concentrations were up to 600 ppb in a plume downwind of the beef feed yard #1 (Figure 29 S1A). This CO plume was from the feed mill area, implying that the plume might be as the result 30 of operation of equipment used in the feed mill. The highest CO concentrations downwind of the CAFOs in this study were observed downwind of the sheep feed yard (up to 5 ppm, Figure S1B). 31 32 This CO plume from the sheep feed yard was close to a narrow spike of ethanol as well. Ethanol 33 was possibly due to emissions from a silage pile. In these CO plumes, we observed some 34 enhancements of carbon dioxide (CO₂), whereas the enhancements of various VOCs were small 35 (if any), compared to the enhancements as the results of emissions from other sources. Thus, we 36 conclude that combustion sources were negligible for VOC emissions shown in this study.

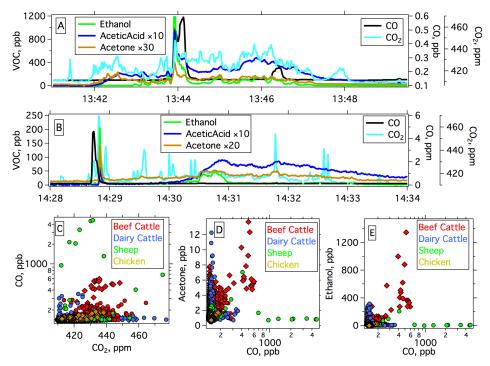


Figure S1. (A and B) Time series of CO, CO₂, ethanol, acetic acid and acetone downwind of the

40 beef feed yard #1 (A) and the sheep feed yard (B). (C, D and E) Scatterplots of CO₂, acetone and

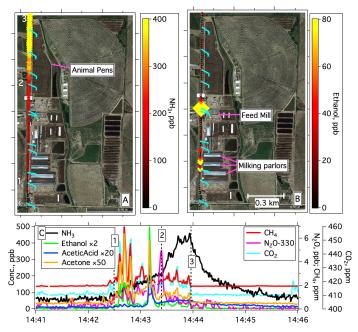
41 ethanol versus CO from different CAFOs.

42 **3.** VOC distributions for dairy farm #2

43 Figure S2 shows measurements downwind of the other dairy farm (dairy #2). In addition

44 to NH₃ emissions from animal+waste and ethanol emissions from the feed mill, high

45 concentrations of ethanol were observed downwind of three milking parlors. CH_4 , acetone and


46 dimethyl sulfide (DMS) were also enhanced in these plumes, whereas acetic acid was only

47 moderately elevated and NH₃ was not enhanced. Emission compositions from the milking parlors

48 are clearly different from feed storage/handling.

Figure S3 shows measurements downwind of a chicken house. NH₃ concentrations
measured downwind the chicken house were the lowest among the six CAFOs. An ethanol
plume was observed downwind of the feed mill, similar to other CAFOs. CH₄ concentrations
were not elevated, as chickens are not emitters for CH₄. The increase of acetone and acetic acid
was clear in the feed mill plume, but the enhancements of the two VOCs were low when NH₃

54 concentrations were high.

56 Figure S2. (A and B) Drive track of mobile laboratory color- and size-coded by NH₃ (A) and

- 57 ethanol (B) concentrations downwind of a dairy farm (dairy #2). The prevailing wind is shown
- by wind barbs (light blue flags) in the map. (C) Time series of NH_3 , CH_4 , CO_2 , N_2O , ethanol,
- 59 acetic acid and acetone measured downwind of the dairy farm. Numbers (1-3) in (A) and (C) are
- 60 used to allow alignment of the mobile laboratory locations on the map with the corresponding
- 61 time series in panel C.

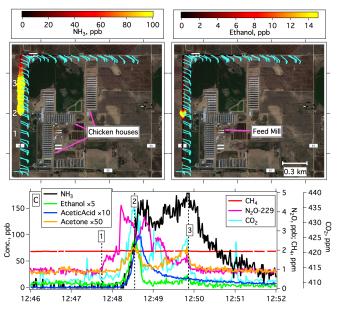


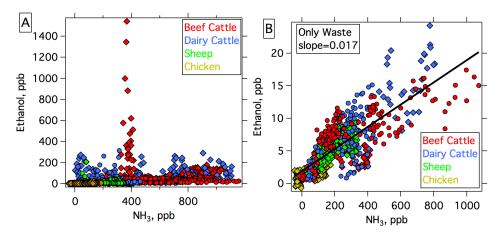
Figure S3. (A and B) Drive track of mobile laboratory color- and size-coded by NH₃ (A) and

- 64 ethanol (B) concentrations downwind of a chicken house. The prevailing wind is shown by wind 65 barbs (light blue flags) in the map. (C) Time series of NH_3 , CH_4 , CO_2 , N_2O , ethanol, acetic acid
- C_{1} and extension of the map: (c) time series of $V(V_{3}, C(V_{2}), V_{2})$, channel, accelerated

allow alignment of the mobile laboratory locations on the map with the corresponding time seriesin panel C.

69 4. Calculation of ethanol from feed storage/handling and milking parlors

As shown in the main text, ethanol can be used as a tracer for emissions from feed


71 storage+handling, but there is some ethanol attributable to animal+waste emissions that needs to

be taken into account. Scatterplots of ethanol versus NH_3 from these CAFOs are shown in Figure S4A. The correlation between ethanol and NH_3 was low (*R*=0.24), indicating different sources

74 for the two species. The data points that were clearly influenced by emissions of feed

storage+handling and milking parlors are removed from the scatterplots and data points that are

- 76 only influenced by animal+waste are shown in Figure S4B. The correlation coefficient between
- ethanol and NH₃ increases to 0.79. The emission ratio of ethanol to NH₃ ($ER_{C_2H_5OH/NH_3}$) can be
- estimated from the slope of the scatterplot in Figure S4B $(0.017 \pm 0.001 \text{ ppb/ppb})$.

79

80 Figure S4. Scatterplots of ethanol versus NH₃ from mobile laboratory measurements: (A) all

data; (B) only data when animal+waste emissions are large. The data points with clear influence
from feed storage+handling and milking parlors are removed from (B), based on the spatial data

83 shown in Figure 1-2 and Figure S2-S3.

84 Ethanol concentrations from feed emissions ($[C_2H_5OH]_{Feed}$) are calculated by subtracting 85 the contribution of ethanol from animal+waste ($ER_{C_2H_5OH/NH_3} \times [NH_3]$) from measured ethanol 86 concentrations ($[C_2H_5OH]$).

$$[C_2H_5OH]_{Feed} = [C_2H_5OH] - ER_{C_2H_5OH}_{/_{NH_3}} \times [NH_3] \qquad Eq. (S1)$$

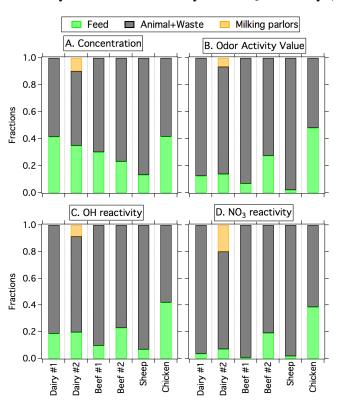
As shown in section 3.1 and (section 1 in SI), ethanol was elevated downwind of the
milking parlors in one of the two dairy farm (dairy #2). For this dairy farm, ethanol
concentrations that are not from animal+waste can be calculated as:

91
$$[C_2H_5OH]_{non-waste} = [C_2H_5OH] - ER_{C_2H_5OH}_{/_{NH_3}} \times [NH_3] Eq. (S2)$$

92 We can further separate ethanol concentrations related to milking parlors and feed 93 storage/handling for this facility. We assume that all of the enhancements of $[C_2H_5OH]_{non-waste}$

except those downwind of the milking parlors were due to feed storage+handling emissions (see

95 Figure S1).


96 Using this information, a third term can be added in the multivariate linear fits for dairy
97 farm #2 to obtain the relative fractions from emissions of milking parlors as well:

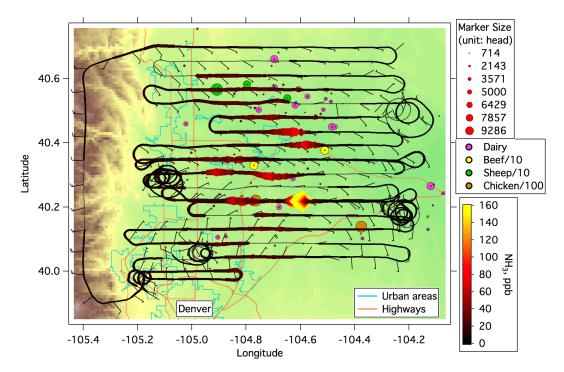
98
$$[VOC] = ER_{C_2H_5OH} \times [C_2H_5OH]_{Feed} + ER_{NH_3} \times [NH_3] + ER_{C_2H_5OH}' \times [C_2H_5OH]_{Milk}$$

99
$$+ [bg] Eq. (S3)$$

100

101 5. Contribution of different sources to total VOC concentrations, odor activity values, 102 OH reactivity and NO₃ reactivity

In addition to total VOC concentrations, we also calculated the fractional contribution of
 different sources to odor activity value, OH reactivity and NO₃ reactivity (Figure S5).


105

106 Figure S5. The relative contributions of emissions from feed storage+handling, animal+waste

and milking parlors (only for dairy farm #2) to total VOC concentrations (A), odor activity

values (B), OH reactivity (C) and NO₃ reactivity (D) for the investigated CAFOs.

109 6. Flight track of NOAA WP-3D on April 13, 2015

112 Figure S6. Flight track of NOAA WP-3D on April 13, 2015 during the SONGNEX campaign.

113 The flight track is color- and size-coded using NH₃ concentrations. Wind directions at flight

levels are also shown. The locations of CAFOs sites in northeastern Colorado are also shown inthe graph.

116

117 7. Emission ratios and relative fractions from different sources

118 The obtained emission ratios and relative fractions from different sources for the

investigated CAFO facilities in this study are tabulated in Table S3-S8.

120 Table S3. Emissions ratios (ER) from site-integration analysis and multivariate analysis, along

with the relative fractions from feed storage+handling to different VOC species for dairy farm#1.

	Site integrated ED	ER from multivar	iate analysis	Percentage
VOCs	Site-integrated ER	Animal+waste relative	Feed relative to	fractions from
	to NH ₃ , ppt/ppb	to NH ₃ , ppt/ppb	ethanol, ppt/ppb	feed, %
Acetic Acid	5.11	0.00±0.32	25.33±1.60	100
Propionic	0.84	0.00±0.11	6.71±0.55	
Acid				100
Butyric Acid	0.28	0.00 ± 0.02	2.18±0.11	100
C5 Acid	0.04	0.00 ± 0.00	0.16±0.01	100
C6 Acid	0.02	0.00 ± 0.00	0.05 ± 0.01	100
C7 Acid	0.00	0.00 ± 0.00	0.01 ± 0.00	85.3
Ethanol	127.92	17.05±0.49	1000 ± 0.00	93.2
Methanol	50.48	4.04 ± 2.32	308±11	89.3
CH ₃ CHO	2.69	0.69 ± 0.08	16.16±0.37	72.0
Acetone	1.86	0.69 ± 0.09	5.43±0.42	46.1
MEK	0.42	0.16±0.02	1.32±0.10	48.3
Acrolein	0.26	0.04±0.01	1.45±0.07	80.8
MVK+MACR	0.10	0.05 ± 0.01	0.21±0.03	32.4
C4H6O2	0.16	0.10 ± 0.01	0.14±0.04	12.8
Phenol	0.56	0.57 ± 0.02	0.25±0.09	4.6
Cresol	0.34	0.31±0.01	0.00 ± 0.05	0.0
H_2S	12.64	1.58 ± 1.27	0.00±6.22	0.0
CH_4S	0.17	0.09 ± 0.01	0.10±0.05	10.9
C_2H_6S	0.50	0.26±0.03	0.86±0.14	26.3
C_3H_8S	0.00	0.00 ± 0.00	0.01±0.01	57.4
DMDS	0.01	0.00 ± 0.00	0.01±0.01	25.3
DMA	0.01	0.01±0.00	0.00±0.01	0.0
TMA	0.18	0.19±0.01	0.03±0.03	2.0
Formamide	0.23	0.17±0.01	0.00 ± 0.04	0.0
Acetamide	0.06	0.04 ± 0.00	0.03±0.02	9.3
Propanamide	0.01	0.01±0.00	0.00±0.01	0.0
Indole	0.00	0.00 ± 0.00	0.00 ± 0.00	5.8

124	Table S4. Emissions ratios (ER) from site-integration analysis and multivariate analysis, along
-----	---

125 with the relative fractions from feed storage+handling and milking parlors to different VOC

species for dairy farm #2.

	Site-	ER from	multivariate ar	nalysis	-	Percentage
VOCs	integrated ER to NH ₃ , ppt/ppb	Animal+waste relative to NH ₃ , ppt/ppb	Feed relative to ethanol, ppt/ppb	Milking parlors relative to ethanol, ppt/ppb	Percentage fractions from feed, %	fractions from milking parlors, %
Acetic Acid	10.11	6.06±0.32	70.39±0.96	13.19±2.40	37.4	2.4
Propionic Acid	0.89	0.23±0.05	8.27±0.16	1.79±0.39	62.6	4.7
Butyric Acid	0.38	0.09 ± 0.02	6.63±0.08	0.89±0.19	76.8	3.6
C5 Acid	0.03	0.01 ± 0.01	0.37 ± 0.02	0.07 ± 0.04	59.4	4.0
C6 Acid	0.02	0.00 ± 0.00	0.12±0.01	0.02±0.02	68.9	4.0
C7 Acid	0.01	0.00 ± 0.00	0.01±0.01	0.01±0.02	66.5	33.5
Ethanol	101.09	17.05 ± 0.49	1000±0.00	1000±0.00	64.8	22.6
Methanol	49.59	12.5±3.8	96.8±11.6	203±29	24.2	17.7
CH ₃ CHO	2.60	0.20±0.15	10.40±0.45	18.52±1.11	50.3	31.2
Acetone	6.89	1.03 ± 0.32	33.20±0.99	82.34±2.47	40.9	35.3
MEK	0.57	0.13±0.03	2.46±0.09	2.32±0.23	42.7	14
Acrolein	0.27	0.02±0.03	2.67±0.09	2.68±0.23	66.4	23.3
MVK+MACR	0.14	0.00 ± 0.03	0.08 ± 0.08	0.00±0.20	100	0.0
C4H6O2	0.16	0.03 ± 0.02	0.15±0.05	0.00±0.13	20.4	0.0
Phenol	0.38	0.26 ± 0.02	0.07 ± 0.06	0.00 ± 0.14	1.4	0.0
Cresol	0.35	0.28 ± 0.01	0.00 ± 0.04	0.08±0.09	0.0	0.5
H_2S	6.97	1.99±1.06	4.58±3.22	14.60±8.06	9.8	10.9
CH ₄ S	0.20	0.06 ± 0.02	0.17±0.05	0.61±0.12	11.1	13.6
C_2H_6S	0.80	0.20 ± 0.06	6.17±0.18	4.43±0.44	54.3	13.6
C_3H_8S	0.01	0.00 ± 0.00	0.00 ± 0.01	0.03±0.02	2.6	23.6
DMDS	0.02	0.00 ± 0.00	0.02±0.01	0.00±0.03	16.3	0.0
DMA	0.02	0.03 ± 0.01	0.02±0.02	0.00 ± 0.04	2.8	0.0
TMA	0.14	0.08 ± 0.01	0.03±0.03	0.00 ± 0.07	1.6	0.0
Formamide	0.35	0.24 ± 0.02	0.00 ± 0.06	0.04±0.14	0.0	0.3
Acetamide	0.06	0.04 ± 0.01	0.00±0.03	0.27 ± 0.07	0.0	12
Propanamide	0.02	0.01 ± 0.00	0.00 ± 0.01	0.00±0.03	2.1	0.0
Indole	0.00	0.00 ± 0.00	0.00 ± 0.00	0.01±0.01	29.3	29.9

127 Table S5. Emissions ratios (ER) from site-integration analysis and multivariate analysis, along

128 with the relative fractions from feed storage+handling to different VOC species for beef feed

129 yard #1.

	Site intermeted ED	ER from multivar	riate analysis	Percentage
VOCs	Site-integrated ER	Animal+waste relative	Feed relative to	fractions from
	to NH ₃ , ppt/ppb	to NH ₃ , ppt/ppb	ethanol, ppt/ppb	feed, %
Acetic Acid	47.47	31.29±0.91	60.09±1.63	21.0
Propionic Acid	6.76	6.70±0.14	6.25±0.25	11.4
Butyric Acid	1.69	0.64±0.03	5.09±0.06	52.3
C5 Acid	0.27	0.13±0.01	0.62±0.02	39.1
C6 Acid	0.03	0.00 ± 0.00	0.12±0.00	90.8
C7 Acid	0.01	0.00 ± 0.00	0.03±0.00	68.6
Ethanol	161.45	17.05±0.49	1000 ± 0.00	100
Methanol	17.80	8.82±0.49	35.8±0.87	35.9
CH ₃ CHO	3.90	0.54±0.10	17.49±0.18	81.7
Acetone	5.51	1.44±0.23	7.09±0.41	40.5
MEK	1.26	0.65 ± 0.04	1.27±0.07	21.4
Acrolein	0.64	0.31±0.01	2.16±0.03	48.9
MVK+MACR	0.21	0.18±0.01	0.10±0.01	7.0
C4H6O2	0.42	0.38±0.01	0.08±0.02	3.0
Phenol	0.94	0.86 ± 0.02	0.11±0.04	1.7
Cresol	1.34	1.47±0.03	0.00 ± 0.05	0.0
H_2S	6.55	2.59±0.49	0.00 ± 0.87	0.0
CH_4S	0.68	0.71±0.03	0.10±0.06	2.0
C_2H_6S	0.33	0.17±0.02	0.47±0.03	27.7
C_3H_8S	0.01	0.00 ± 0.00	0.00 ± 0.00	4.6
DMDS	0.04	0.04 ± 0.01	0.00±0.01	0.0
DMA	0.01	0.01±0.00	0.00 ± 0.00	0.0
TMA	0.08	0.10±0.00	0.00±0.01	0.0
Formamide	0.24	0.17±0.01	0.03±0.01	2.6
Acetamide	0.08	0.05 ± 0.00	0.03±0.01	7.3
Propanamide	0.02	0.01±0.00	0.01±0.00	8.0
Indole	0.01	0.01±0.00	0.00 ± 0.00	0.0

130

132 Table S6. Emissions ratios (ER) from site-integration analysis and multivariate analysis, along

- 133 with the relative fractions from feed storage+handling to different VOC species for beef feed
- 134 yard #2.

	Site-integrated -	ER from multiv	variate analysis	Percentage
VOCs	ER to NH ₃ , ppt/ppb	Animal+waste relative to NH ₃ , ppt/ppb	Feed relative to ethanol, ppt/ppb	fractions from feed, %
Acetic Acid	32.48	22.86±0.89	160.08±14.57	18.5
Propionic Acid	4.74	3.49±0.16	14.44±2.59	11.9
Butyric Acid	1.11	0.78 ± 0.04	5.07±0.58	17.4
C5 Acid	0.20	0.13±0.01	0.93±0.10	18.5
C6 Acid	0.01	0.01 ± 0.00	0.06±0.01	26.3
C7 Acid	0.00	0.00 ± 0.00	0.00±0.01	6.5
Ethanol	54.91	17.05±0.49	1000 ± 0.00	75.2
Methanol	13.53	5.07±0.39	132±6.0	45.8
CH ₃ CHO	2.21	0.92±0.05	27.14±0.88	48.9
Acetone	3.87	1.67 ± 0.14	37.52±2.21	42.2
MEK	1.25	0.46 ± 0.05	12.38±0.82	46.6
Acrolein	0.28	0.17 ± 0.01	2.89±0.13	36.0
MVK+MACR	0.29	0.16±0.01	0.93±0.15	15.6
C4H6O2	0.50	0.28±0.02	0.34±0.26	3.8
Phenol	1.34	0.84 ± 0.04	7.33±0.61	22.1
Cresol	0.86	0.60 ± 0.03	4.43±0.42	19.4
H_2S	4.60	1.09±0.32	0.00±5.24	0.0
CH_4S	0.66	0.16±0.03	3.06±0.47	38.2
C_2H_6S	0.44	0.25±0.02	1.32±0.33	14.4
C_3H_8S	0.01	0.00 ± 0.00	0.03±0.02	44.5
DMDS	0.02	0.01 ± 0.00	0.07 ± 0.04	16.5
DMA	0.02	0.01±0.00	0.00 ± 0.04	0.0
TMA	0.16	0.14±0.01	0.26±0.09	5.8
Formamide	0.23	0.14±0.01	0.60±0.10	11.9
Acetamide	0.08	0.05 ± 0.00	0.20±0.06	12.7
Propanamide	0.02	0.01 ± 0.00	0.01±0.03	2.8
Indole	0.01	0.01±0.00	0.06±0.02	20.3

135

137 Table S7. Emissions ratios (ER) from site-integration analysis and multivariate analysis, along

138 with the relative fractions from feed storage+handling to different VOC species for sheep feed

139 yard.

	Site integrated ED	ER from multiva	riate analysis	Percentage
VOCs	Site-integrated ER	Animal+waste relative	al+waste relative Feed relative to	
	to NH ₃ , ppt/ppb	to NH ₃ , ppt/ppb	ethanol, ppt/ppb	feed, %
Acetic Acid	29.76	33.61±1.13	35.83±5.42	3.6
Propionic Acid	2.43	2.44±0.10	11.63±0.48	14.4
Butyric Acid	0.42	0.33±0.02	3.08 ± 0.08	24.8
C5 Acid	0.08	0.07 ± 0.01	0.31±0.03	12.8
C6 Acid	0.01	0.01±0.00	0.04 ± 0.02	17.9
C7 Acid	0.01	0.00 ± 0.00	0.00 ± 0.01	0.0
Ethanol	58.75	17.05±0.49	1000±0.00	64.2
Methanol	34.86	21.3±2.0	376±9.5	38.4
CH ₃ CHO	2.63	1.24±0.11	26.29±0.54	42.8
Acetone	5.46	4.00±0.13	27.82±0.64	19.7
MEK	2.46	2.05 ± 0.08	7.79±0.39	11.8
Acrolein	0.22	0.13±0.02	3.80±0.08	51.8
MVK+MACR	0.20	0.17±0.02	0.30±0.10	5.9
C4H6O2	0.42	0.44±0.03	0.15±0.13	1.2
Phenol	0.57	0.55±0.02	0.36±0.09	2.2
Cresol	0.31	0.34±0.01	0.00 ± 0.07	0.0
H_2S	19.59	9.40±1.94	0.00 ± 9.28	0.0
CH_4S	0.73	0.49 ± 0.04	0.15±0.21	1.1
C_2H_6S	0.32	0.17±0.02	0.69±0.10	12.9
C_3H_8S	0.01	0.01±0.00	0.00 ± 0.01	0.7
DMDS	0.02	0.01±0.00	0.02 ± 0.02	10.5
DMA	0.02	0.02±0.01	0.00 ± 0.04	0.0
TMA	0.23	0.20±0.01	0.00 ± 0.05	0.0
Formamide	0.45	0.26±0.02	0.12±0.10	1.7
Acetamide	0.07	0.07±0.01	0.04 ± 0.05	1.9
Propanamide	0.03	0.03±0.01	0.03±0.03	3.6
Indole	0.01	0.00 ± 0.00	0.00 ± 0.01	0.0

140

	Site-integrated -	ER from multiv	variate analysis	Percentage
VOCs ER to N	ER to NH ₃ , ppt/ppb	Animal+waste relative to NH ₃ , ppt/ppb	Feed relative to ethanol, ppt/ppb	fractions from feed, %
Acetic Acid	12.38	26.44±2.14	252.0±28.5	22.1
Propionic Acid	1.36	2.20±0.16	33.64±2.16	31.3
Butyric Acid	0.34	0.47 ± 0.04	11.13±0.56	41.3
C5 Acid	0.06	0.09 ± 0.01	1.80±0.14	37.6
C6 Acid	0.01	0.01±0.00	0.00 ± 0.05	0.0
C7 Acid	0.01	0.00 ± 0.00	0.02±0.04	47.6
Ethanol	40.12	17.05±0.49	1000 ± 0.00	81.1
Methanol	56.63	18.6±2.29	1257±35	66.8
CH ₃ CHO	7.2	3.22±0.22	217.12±3.35	66.8
Acetone	3.9	1.86±0.17	35.52±2.57	36.3
MEK	2.49	1.14±0.12	30.91±1.83	44.6
Acrolein	0.34	0.29±0.03	17.11±0.39	63.5
MVK+MACR	0.36	0.21±0.03	9.36±0.41	57.3
C4H6O2	0.68	0.45±0.03	14.20±0.44	48.2
Phenol	0.48	0.33±0.03	8.76±0.41	44.4
Cresol	0.16	0.15±0.01	2.43±0.20	32.5
H_2S	10.59	6.53±0.81	233.09±12.41	51.5
CH ₄ S	0.83	0.50 ± 0.04	17.40±0.62	50.7
C_2H_6S	1.26	0.62 ± 0.08	22.88±1.24	52.2
C_3H_8S	0.01	0.00 ± 0.00	0.00±0.05	0.0
DMDS	0.06	0.02±0.01	0.25±0.11	24.3
DMA	0.01	0.01±0.01	0.04±0.11	13.5
TMA	0.03	0.03±0.00	0.00 ± 0.07	0.0
Formamide	0.5	0.27 ± 0.02	0.18±0.38	1.9
Acetamide	0.12	0.06 ± 0.01	0.25±0.19	11.4
Propanamide	0.02	0.01±0.01	0.23±0.09	32.3
Indole	0.01	0.01±0.00	0.08±0.02	26.6

142	Table S8. Emissions ratios (ER) from site-integration analysis and multivariate analysis, along
143	with the relative fractions from feed storage+handling to different VOC species for chicken farm.