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Abstract. In an attempt to improve the forecasting of at-
mospheric aerosols, the ensemble square root filter algo-
rithm was extended to simultaneously optimize the chemi-
cal initial conditions (ICs) and emission input. The forecast
model, which was expanded by combining the Weather Re-
search and Forecasting with Chemistry (WRF-Chem) model
and a forecast model of emission scaling factors, generated
both chemical concentration fields and emission scaling fac-
tors. The forecast model of emission scaling factors was de-
veloped by using the ensemble concentration ratios of the
WRF-Chem forecast chemical concentrations and also the
time smoothing operator. Hourly surface fine particulate mat-
ter (PM2.5) observations were assimilated in this system over
China from 5 to 16 October 2014. A series of 48 h forecasts
was then carried out with the optimized initial conditions and
emissions on each day at 00:00 UTC and a control experi-
ment was performed without data assimilation. In addition,
we also performed an experiment of pure assimilation chem-
ical ICs and the corresponding 48 h forecasts experiment for
comparison. The results showed that the forecasts with the
optimized initial conditions and emissions typically outper-
formed those from the control experiment. In the Yangtze
River delta (YRD) and the Pearl River delta (PRD) regions,
large reduction of the root-mean-square errors (RMSEs) was
obtained for almost the entire 48 h forecast range attributed
to assimilation. In particular, the relative reduction in RMSE
due to assimilation was about 37.5 % at nighttime when
WRF-Chem performed comparatively worse. In the Beijing–
Tianjin–Hebei (JJJ) region, relatively smaller improvements
were achieved in the first 24 h forecast but then no improve-

ments were achieved afterwards. Comparing to the forecasts
with only the optimized ICs, the forecasts with the joint ad-
justment were always much better during the night in the
PRD and YRD regions. However, they were very similar dur-
ing daytime in both regions. Also, they performed similarly
for almost the entire 48 h forecast range in the JJJ region.

1 Introduction

Aerosol prediction by regional air quality model in heavy
polluted regions is challenging due to many factors. In addi-
tion to the deficiency of chemistries, the uncertainties of pri-
mary and precursor emissions and the initial conditions (ICs)
also limit the forecast accuracy. Data assimilation (DA),
which is used to improve the ICs of aerosols and to opti-
mize data on aerosol emissions, has been shown to be one of
the most effective ways to improve the forecasting of aerosol
pollution.

From the perspective of reducing the uncertainties in the
ICs for aerosols, recent efforts have focused on assimilating
aerosol observations using optimal interpolation (Collins et
al., 2001; Yu et al., 2003; Adhikary et al., 2008; Tombette
et al., 2009; Lee et al., 2013) or variational (Kahnert, 2008;
Zhang et al., 2008; Benedetti et al., 2009; Pagowski et
al., 2010; Liu et al., 2011; Schwartz et al., 2012; Li et
al., 2013; Jiang et al., 2013; Saide et al., 2013) DA algo-
rithms. Ensemble-based DA algorithms, such as the ensem-
ble Kalman filter (EnKF) (Sekiyama et al., 2010; Schutgens
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et al., 2010a, b; Pagowski and Grell, 2012; Dai et al., 2014;
Rubin et al., 2016; Ying et al., 2016; Yumimoto et al., 2016)
and the hybrid variational–ensemble DA approach (Schwartz
et al., 2014) have also been applied to aerosol predictions. All
these studies have shown that DA is one of the most effec-
tive ways of improving aerosol forecasting through assimilat-
ing aerosol observations from multiple sources (e.g. ground-
based observations and satellite measurements) to update the
chemical ICs.

Numerous studies have used DA approaches to estimate
or improve source emissions. The EnKF is one of the most
popular DA algorithms used to improve estimates of aerosols
and gas-phase emissions, such as NOx , volatile organic com-
pounds and SO2 (van Loon et al., 2000; Heemink and Segers,
2002; Zhang et al., 2005; Barbu et al., 2009; Sekiyama et
al., 2010; Huneeus et al., 2012, 2013; Schutgens et al., 2012;
Miyazaki et al., 2014). Variational DA algorithms have also
been applied to constrain emissions of air pollution, such
as black carbon, organic carbon, dust, NH3, SOx and NOx
(Hakami et al., 2005; Elbern et al., 2007; Henze et al., 2007,
2009; Yumimoto et al., 2007, 2008; Dubovik et al., 2008;
Wang et al., 2012; Guerrette and Henze, 2015). These studies
have indicated that DA can efficiently reduce the uncertainty
in the emission inventories and lead to improvements in the
forecasting of air quality (Mijling and van der A, 2012).

The optimization of chemical ICs and pollution emissions
can improve aerosol forecasts and therefore further improve-
ments are likely to be achieved by simultaneously optimizing
the chemical ICs and emissions. Tang et al. (2011) reported
that the simultaneous adjustment of the ICs of O3, NOx and
volatile organic compounds and the emissions of NOx and
volatile organic compounds produced overall better perfor-
mance in both the 1 and 24 h ozone forecasts than the ad-
justment of pure ICs or emissions. Miyazaki et al. (2012)
reported that the simultaneous adjustment of emissions and
concentrations is a powerful approach to correcting the tro-
pospheric ozone budget and profile analyses.

We developed a system to adjust the chemical ICs
and source emissions jointly within an EnKF system cou-
pled to the Weather Research and Forecasting with Chem-
istry (WRF-Chem) model (Grell et al., 2005). We then ap-
plied this system to assimilate hourly surface PM2.5 measure-
ments over China in early October 2014.

The remainder of the paper is organized as follows. Sec-
tion 2 describes this DA system in detail and Sect. 3 describes
the PM2.5 observations. Then the experimental designs are
introduced in Sect. 4. Finally, the surface PM2.5 observations
assimilation results are presented in Sect. 5 before conclud-
ing in Sect. 6.

2 Methodology

2.1 Forecast model

For a chemical model like WRF-Chem, the emissions are
the model forcing (or boundary condition) rather than model
states. Therefore, a forecasting model, M , was developed to
forecast the emission scaling factors (representing emissions)
as well as the aerosol concentrations. This model combines
the WRF-Chem model and the forecast model of emission
scaling factors.

2.1.1 WRF-Chem model

Version 3.6.1 of the WRF-Chem model (Grell et al., 2005)
was used to forecast the aerosol and chemical species. WRF-
Chem is an online model with the fully coupled chemical and
meteorological components.

Most of the WRF-Chem settings were the same as those
reported in Liu et al. (2011): the Goddard Chemistry Aerosol
Radiation and Transport (GOCART) aerosol scheme cou-
pled with the Regional Atmospheric Chemistry Mecha-
nism for gaseous chemical mechanisms, the WRF single-
moment five-class microphysics scheme, the Rapid Radia-
tive Transfer Model longwave and Goddard shortwave radi-
ation schemes, the Yonsei University (YSU) boundary layer
scheme, the Noah land surface model and the Grell-3D cu-
mulus parameterization. For the GOCART aerosol scheme,
the aerosol species include 14 defined aerosol species and
a 15th variable representing unspeciated aerosol contribu-
tions (P25). The 14 defined aerosol species are sulfate, hy-
drophobic and hydrophilic organic carbon (OC1 and OC2 re-
spectively), hydrophobic and hydrophilic black carbon (BC1
and BC2 respectively), dust in five particle size bins (effec-
tive radii of 0.5, 1.4, 2.4, 4.5 and 8.0 µm, referred to as D1,
D2, D3, D4 and D5 respectively) and sea salt in four particle
size bins (effective radii of 0.3, 1.0, 3.25 and 7.5 µm for dry
air, referred to as S1, S2, S3 and S4 respectively).

Figure 1 illustrates the model computational domain. It has
120× 120 horizontal grid scales at a 40.5 km spacing by the
lambert conform map projection centred at (35◦ N, 105◦ E).
There are 57 vertical levels with the model top at 10 hPa,
about 12 layers within the planetary boundary layer (among
them the lowest 8 layers were under 500 m) and the first layer
centred at ∼ 12 m.

With respect to the emissions, the hourly prior anthro-
pogenic emissions were based on the monthly regional emis-
sion inventory in Asia (Zhang et al., 2009) for the year 2006
interpolated to the model grid. The power generator emis-
sions were interpolated for the lowest eight vertical levels
(Woo et al., 2003; de Meij et al., 2006; Wang et al., 2010).
Other anthropogenic emissions were assigned totally to the
first level. Emissions are very small above 500 m for all pol-
lutants. In order to keep objective for the prior anthropogenic
emissions, no time variation was added. Thus, the hourly
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Figure 1. Locations of 77 PM2.5 assimilation observation stations
(black dot) and the 77 independent observation stations (red tri-
angle) in the model domain. The three coloured boxes mark sub-
regions with relatively dense coverage for the Beijing–Tianjin–
Hebei region (JJJ; 12 assimilation stations and 12 independent sta-
tions; red box), the Yangtze River delta (YRD; 24 assimilation sta-
tions and 24 independent stations; blue box) and the Pearl River
delta (PRD; 9 assimilation stations and 9 independent stations;
green box).

prior anthropogenic emissions were constant. The biogenic
(Guenther et al., 1995), dust (Ginoux et al., 2001), dimethyl
sulfide and sea salt emissions (Chin et al., 2000, 2002) were
calculated online.

2.1.2 Forecast model of scaling factors

As no suitable dynamic model was available to forecast the
emission scaling factors, a persistence forecasting operator
served as the forecast model for the scaling factors, similar
to the method used by Peng et al. (2015) for CO2 emission
inversion. Figure 2a shows the flowchart for the persistence
forecasting operator MSF.

If the ensemble members of the updated chemical fields
Ca
i,t−1 (the subscript “i” refers to the ith ensemble member,

the superscript “a” refers to the analysis and “t” refers to the
time) and the forecast emissions Ef

i,t−1 (the superscript “f”
refers to the forecast) in the previous assimilation cycle are
known, then the chemical fields Cf

i,t at time t can be gen-
erated via WRF-Chem (Fig. 2b). In the actual process, Cf

i,t

were available in the previous assimilation cycle, so we did
not need to perform the ensemble forecasts again. A dotted
box was used in Fig. 2a to indicate that the ensemble fore-
casts were not performed in real process. The ensemble con-
centration ratios κi,t , (i= 1, . . . , N ) are then calculated using

κi,t =
Cf
i,t

Cf
t

, (i = 1, . . .,N), (1)

where Cf
t =

1
N

N∑
i=1

Cf
i,t is the ensemble mean of the forecast.

The ensemble mean of κi,t is

κt =
1
N

N∑
i=1

κi,t =
1
N

N∑
i=1

Cf
i,t/C

f
t = 1, (2)

where κi,t are numbers distributed around 1 and with ensem-
ble mean values of 1.

The ensemble spreads of κi,t , (i= 1, . . . , N ) may be small
and therefore covariance inflation is used to maintain them at
a certain level:(
κi,t
)

inf = β
(
κi,t − κt

)
+ κt , (i = 1, . . .,N). (3)

In Peng et al. (2015), the CO2 DA system worked com-
paratively well when the ensemble spread of λa

i,t ranged
from 0.05 to 1.25 for β = 60, 70, 75, 80. The assimilated CO2
fluxes deviated markedly from the “true” CO2 fluxes when
the ensemble spread of λa

i,t were too small for β = 10, 50 or
when the ensemble spread of λa

i,t were too large for β = 100.
Therefore, in this work, β = 1.5 was chosen to make en-
sure the ensemble spread of (κi,t )inf ranged from 0.1 to 1.25.
Same as κi,t , the ensemble mean values of (κi,t )inf are 1.
It is noted that perhaps there are very few negative values
for (κi,t )inf after inflation. A quality control procedure is per-
formed for (κi,t )inf before further appliance. All these nega-
tive data were set as 0.001 in this work. There was no special
reason to set them as 0.001. It is also fine to set them as 0.
Then (κi,t )inf were re-centred to ensure the ensemble mean
values of (κi,t )inf were all 1.

As the concentrations were closely related to the emissions
both locally and in the upwind regions and there is no suit-
able dynamic model available to forecast the emission scal-
ing factors, the inflated concentration ratios (κi,t )inf serve as
the prior emission scaling factors λp

i,t :

λ
p
i,t =

(
κi,t
)

inf, (i = 1, . . .,N). (4)

The above equation is not supported according to the mass
conservation equation but just for the purpose to generate the
ensemble emissions. As with (κi,t )inf, λ

p
i,t are numbers dis-

tributed around 1. From the perspective of generating the en-
semble emissions, they can play the same role as other data,
such as the random numbers created by using the standard
normal distribution function. However, there are correlations
among the grid points of (κi,t )inf because (κi,t )inf are cal-
culated through a short-term forecast of WRF-Chem. Thus,
λ

p
i,t have the same correlations as (κi,t )inf, while the random

numbers are totally different; there are no correlations unless
they are generated under certain correlations.
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Figure 2. (a) Framework of MSF and (b) flow chart of the data assimilation system that simultaneously optimizes the chemical initial
conditions and emissions.

To incorporate the useful information from the previ-
ous times, the previous DA cycles’ analysis scaling factors,
λa
i,t−M+1, . . . , λai,t−2, λa

i,t−1, and the prior scaling factor
λ

p
i,t were used to estimate λf

i,t by the time smooth operator;
namely,

λf
i,t =

1
M

(
t−1∑

j=t−M+1
λa
i,j + λ

p
i,t

)
, (i = 1, . . .,N,

j = t −M + 1, . . ., t − 1). (5)

Here, M is the time window of the smooth operator. In this
study, a value of M = 4 (h) was chosen. According to the
smooth operator, the ensemble mean values of λf

i,t depend
on the ensemble mean of λa

i,t−M+1, . . . , λa
i,t−2, λa

i,t−1, λp
i,t ,

where the ensemble means of λp
i,t are all 1. After multiple

iterations, the smooth operator can give comparatively good
estimation for λf

i,t since anthropogenic emissions are stable
at a certain timescale (Mijling et al., 2012). It is a compro-
mise between prescribed prior emissions and letting the sys-
tem propagate all observation information from one step to
the next without any guidance (Peters et al., 2007), for the
case M = 4.

The ensemble members of the emissions were calculated
according to

Ei,t = λi,tE
p
t , (i = 1, . . .,N), (6)

where Ei,t is the ith ensemble member of the emissions for
each grid at time t , λi,t represents the scaling factors and Ep

t

is the prescribed emission, which can be obtained from the
emission inventories. It is noted that the correlations among
the grid points of the prior emissions depend on λp

i,t . These
correlations may deviate far from the truth but we have no
other suitable substitute. However, the correlations among
the grid points of the forecast emissions should be more or

less close to the truth due to the appliance of the smooth op-
erator after multiple iterations.

It is noted although the method is very similar to that
used by Peters et al. (2007) and Peng et al. (2015) for CO2
emission inversion, it is still of novelty for applications in
aerosol anthropogenic emissions. In Peters et al. (2007), λp

i,t

were all 1. Only natural CO2 emissions (i.e. biospheric and
oceanic emissions) were assimilated at the ecological scale
due to the “signal-to-noise” problem. Thus, the uncertainty
of anthropogenic and other CO2 emissions was ignored. Be-
sides, the framework is more advanced compared to our pre-
vious work. In Peng et al. (2015), in order to generate λp

i,t , a
set of ensemble forecasts were performed from time t to t + 1
to produce the CO2 concentration fields, forced by the pre-
scribed net CO2 surface fluxes with the previous assimilated
concentration fields as initial conditions. That means that the
ensemble forecast was performed twice in that DA system,
which time consuming. However, in order to save comput-
ing time, we used the chemical fieldsCf

i,t available in the pre-
vious assimilation cycle to calculate λp

i,t in this work. Thus,
WRF-Chem runs to forecast only once during a DA cycle.

2.2 Ensemble square root filter (EnSRF)

The EnSRF algorithm was introduced by Whitaker and
Hamill (2002) and its expansion to analysing aerosol ICs was
described by Schwartz et al. (2014). The traditional EnKF
with perturbed observations (Evensen, 1994) introduces sam-
pling errors by perturbing the observations. In contrast to the
traditional EnKF, the EnSRF (Whitaker and Hamill, 2002)
and the ensemble adjustment Kalman filter (EAKF; devel-
oped by Anderson, 2001) obviate the need to perturb the ob-
servations. The local ensemble Kalman filtering (LEKF), a
kind of EnSRF, was presented by Ott et al. (2002, 2004).
It was computationally more efficient compared to the tra-
ditional EnKF since it simultaneously assimilates the obser-
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vations within a spatially local volume independently. The
local ensemble transform Kalman filter (LETKF; Hunt et al.,
2007) integrates the advantages of the ensemble transform
Kalman filter (ETKF; developed by Bishop et al., 2001) and
the LEKF. The computational cost of LETKF is much lower
than that of the original LEKF because the former does not
require an orthogonal basis. Though LETKF has more ad-
vantages, we still chose the same EnSRF as Schwartz et
al. (2014) because we did not need to extend it to analysing
aerosol ICs, very similar to Schwartz et al. (2014).

Following the notation of Ide et al. (1997), given an
m-dimensional background model forecast vector xb, a p-
dimensional observation vector yo and an operator H that
converts the model state to the observation states, we ex-
pressed the variables as an ensemble mean (denoted by an
overbar) and a deviation from the mean (denoted by a prime).
Thus, the ensemble mean xa of the analysed state xa and
the deviations x′

a from the ensemble mean are updated sep-
arately by

xa
= xb
+K

(
yo
−Hxb

)
, (7)

x′
a
= x′

b
+ K̃

(
y′

o
−Hx′

b
)
, (8)

where K is the traditional Kalman gain matrix and K̃ is the
gain used to update the deviations from the ensemble mean.
These are given by

K= PbHT
(
HPbHT

+R
)−1

, (9)

K̃= PbHT
[(√

HPbHT+R
)−1

]T(√
HPbHT+R+

√
R
)−1

=

(
1+

√
R/
(
HPbHT+R

))−1

K, (10)

where Pb
=

1
N−1

N∑
i=1

x′
b
(x′

b
)T is the m×m-dimensional

background error covariance matrix and R is the p×p-
dimensional diagonal observation error covariance matrix. In
real applications, PbHTand HPbHT will be approximated
using the background ensemble; namely,

PbHT
=

1
N − 1

N∑
i=1

x′
b
(
Hx′

b
)T
, (11)

HPbHT
=

1
N − 1

N∑
i=1

Hx′
b
(
Hx′

b
)T
. (12)

In Eqs. (11) and (12), N is the ensemble size.
Note that for the joint analysis of ICs and emissions, the

state vector x is the joint vector of the mass concentration
C and the emission scaling factor λ, i.e. x= [C, λ]T. In this
study, the state variables of the analysis of the ICs were the
15 WRF-Chem/GOCART aerosol variables, same as that re-
ported by Schwartz et al. (2012). The state variables of the

emission scaling factors include λPM2.5 , λSO2 , λNO and λNH3

and are described in Sect. 2.3.1. After each ensemble anal-
ysis, the ensemble forecasts were performed with the cor-
responding models to advance C and λ to the next analysis
time.

In this work, a 50-member ensemble was chosen, follow-
ing Schwartz et al. (2012) and Whitaker and Hamill (2002).
Covariance localization forced EnSRF analysis increments
to zero 1280 km from an observation in the horizontal and
one scale height to reduce spurious correlations due to sam-
pling error for all control variables, similar to Pagowski et
al. (2012) and Schwartz et al. (2012, 2014). In addition, pos-
terior (after assimilation) multiplicative inflation following
Whitaker and Hamill (2012) was applied aiming to maintain
ensemble spread for only the concentration analysis. The in-
flation factor α= 1.2 was chosen as in Pagowski et al. (2012)
and Schwartz et al. (2012, 2014). Additive or prior inflation
was not employed. As for the emission scaling factor λ, the
inflation was not used at this step.

2.3 Data assimilation system

2.3.1 State variables

As stated in Sect. 2.2, the state variables of the analysis of
the ICs were the 15 WRF-Chem/GOCART aerosol variables.
The PM2.5 observation operator was the same as that de-
scribed by Schwartz et al. (2012) and expressed as

yf
= ρd [P25+ 1.375S+ 1.8(OC1+OC2)+BC1

+BC2+D1+ 0.286D2+ S1+ 0.942S2] , (13)

where ρd represents the dry air density, which is multiplied
by the mixing ratios of aerosol species (in µg kg−1) to convert
the units to µg m−3 for consistency with the observations.

From the perspective of the optimization of emissions,
four species of emission scaling factors (λPM2.5 , λSO2 , λNO
and λNH3 ) were also considered as the state variables of
the DA system. Atmospheric inorganic aerosols are not only
from the primary emissions but also from secondary pro-
cesses – chemical and thermodynamic transformations from
the gas-phase precursors. Therefore, not only the primary
sources of PM2.5 but also the sources of the gas-phase precur-
sors need to be optimized. In this study, the sources of SO2,
NOx and NH3 (ESO2 , ENO and ENH3 ), which have a large
impact on the distribution of PM2.5, were also optimized in
addition to the primary sources of PM2.5. It is noted that for
the optimization of the emission scaling factors, MSF serves
as the forecast model and the observation operator reflects
the combined information of emissions (in the format of λ in
Eq. 6), the physics and chemistry processes in WRF-Chem
simulations and the transformation PM2.5 from model space
to observation space (Eq. 13).

The direct sources of PM2.5 include the unspeciated pri-
mary sources of PM2.5 EPM2.5 , sulfate ESO4 , nitrate ENO3 ,
organic compounds Eorg and elemental compounds EBC; all
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of them are given in two modes (the nuclei and accumulation
modes, represented as i and j in the subscripts respectively).
The ratios between the nuclei and accumulation modes were
the same as in the suggested emission process for National
Emission Inventory in WRF-Chem (Freitas et al., 2011). The
formulae of sulfate and nitrate emissions in the model are as
follows:

EPM2.5i : EPM2.5j = 1 : 4, (14)
ESO4i : ESO4j = 1 : 4, (15)
ENO3i : ENO3j = 1 : 4, (16)
ESO4i +ESO4j = a ·

(
EPM2.5i +EPM2.5j −EEC−EORG

)
, (17)

ENO3i +ENO3j = b ·
(
EPM2.5i +EPM2.5j −EEC−EORG

)
, (18)

where EEC represents elemental carbon and EORG organic
compounds, and a= 0.074 and b= 0.038 were chosen based
on the internal emissions and observational data. In the DA
process, the first six species of direct sources of emissions
(EPM2.5i , EPM2.5j , ESO4i , ESO4j , ENO3i and ENO3j ), which
may have larger uncertainties in heavy polluted events, were
updated according to the variation of λPM2.5 . EPM2.5i and
EPM2.5j were directly updated according to the variation in
λPM2.5 . The emissions (ESO4i , ESO4j , ENO3i and ENO3j )

were also updated according to the variations in EPM2.5i and
EPM2.5j .
EEC and EORG of the anthropogenic emissions were not

assimilated, which is a limitation in this work. Besides, emis-
sions of dust and sea salt were not assimilated. It is true
that these emissions are also important for the atmosphere
aerosol. The reason we did not assimilate EEC and EORG is
that only the PM2.5 measurements are used in this DA ex-
periment. However, the sources of the aerosols (especially
organic aerosols) are so complex that our knowledge of their
formation mechanisms is far from clear. Though it is techni-
cally possible to have all emissions assimilated, with such
limited observations adding more control variables would
cause much more uncertainties in the system which might
lead to unreasonable analysis.

2.3.2 Procedure for the DA system

Figure 2b shows the workflow of the DA system. The steps
in this workflow are as follows.

1. The persistence forecasting operator MSF is applied to
forecast the background fields of the emission scaling
factors λf

PM2.5
, λf

SO2
, λf

NO and λf
NH3

. The forecast chem-
ical fields of P25, SO2, NO and NH3 of the previous
assimilation cycle are used to create the prior emission
scaling factors λp

PM2.5
, λp

SO2
, λp

NO and λp
NH3

. The back-
ground scaling factors are then generated using Eq. (5).

2. The ensemble members of the emissions, Ef
PM2.5i

,
Ef

PM2.5j
, Ef

SO2
, Ef

NO and Ef
NH3

, are prepared ac-
cording to Eq. (6). The corresponding emissions of

Ef
SO4i

, Ef
SO4j

, Ef
NO3i

and Ef
NO3j

are obtained based on
Eqs. (15)–(18). Other inorganic species of the anthro-
pogenic emission, such as EEC and EORG, are not per-
turbed for WRF-Chem. However, other anthropogenic
emissions, such as EPM2.5 , ESO4 and ENO3 , are much
larger than EEC and EORG in most areas of China, and
the ensemble spreads of the aerosol concentrate largely
dependent on the uncertainties of those anthropogenic
emissions. Besides, model errors raised from the mete-
orology, the emission and the chemical model itself are
compensated to some extent through the use of multi-
plicative inflation. In other words, the ensemble spread
of the concentrations can be kept at a certain level
though EEC and EORG and are not perturbed.

Natural emissions, such as dust and sea salt emissions,
were not perturbed explicitly when the forecast emis-
sions were generated. However, emissions of dust and
sea salt were parameterized within the GOCART model
(Chin et al., 2002). Within the DA system, varying me-
teorology across the members implicitly perturbed dust
and sea salt emissions.

3. Forced by the changed emissions (EPM2.5i , EPM2.5j ,
ESO2 , ENO, ENH3 , ESO4i , ESO4j , ENO3i and ENO3j

were substituted byEf
PM2.5i

,Ef
PM2.5j

,Ef
SO2

,Ef
NO,Ef

NH3
,

Ef
SO4i

, Ef
SO4j

, Ef
NO3i

and Ef
NO3j

; the other emissions
such as EEC and EORG remained unchanged), WRF-
Chem is run again to forecast the chemical fields ρf with
the updated chemical fields of the previous assimila-
tion cycle as the ICs. The state variables, i.e. 15 aerosol
species and four scaling factors, are then prepared.

4. The model-simulated PM2.5 concentration at the obser-
vation space is then calculated via Eq. (13). At this time,
the state vector xf

= [Cf, λf
]
T was prepared.

5. In the assimilation step, the state variables, the concen-
trations of 14 defined aerosol species and a 15th unspe-
ciated aerosol, and the four species of emission scal-
ing factors, λf

PM2.5
, λf

SO2
, λf

NO and λf
NH3

, were optimized
through EnSRF.

6. After the assimilation step, the optimized emissions
(Ea

PM2.5i
, Ea

PM2.5j
, Ea

SO2
, Ea

NO, Ea
NH3

, Ea
SO4i

, Ea
SO4j

,
Ea

NO3i
andEa

NO3j
)were calculated according to Eqs. (6)

and (15)–(18) using the optimized scaling factors
(λa

PM2.5
, λa

SO2
, λa

NO and λa
NH3

).

3 PM2.5 observation data and errors

Hourly averaged surface PM2.5 observations from the Min-
istry of Environmental Protection of China were assimi-
lated. There were altogether 876 national control measure-
ment sites over China. The PM2.5 observation sites spanned
most of central and eastern China but were primarily located
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in urban and suburban areas. Thus there was always more
than one observation site in a particular city, which fell into
the same model grid. Since we did not know the exact ob-
servation environment of the sites, we randomly selected one
observation site in a city for assimilation experiment and one
for verification purposes to ensure that there was at most one
assimilated measurements for one model grid. Altogether
77 stations were selected for the PM2.5 assimilation exper-
iment and another 77 independent stations were selected for
verification. Figure 1 shows the locations of 77 measurement
sites used for the PM2.5 assimilation experiment and 77 in-
dependent sites used for forecast verification.

The observation error covariance matrix R in Eq. (9) in-
cludes contributions from measurement and representation
errors. Similar to the work of Schwartz et al. (2012), the mea-
surement error ε0 is defined as ε0= 1.5+ 0.0075 ·50, where
50 denotes the observational values for PM2.5 (µg m−3).
Thus, higher PM2.5 values were associated with larger mea-
surement errors. Following Elbern et al. (2007), Pagowski et
al. (2010) and Schwartz et al. (2012), the representativeness
error εr depends on the resolution of the model and the char-
acteristics of the observation locations and is calculated as
εr= rε0

√
1x/L, where r is an adjustable parameter (here,

r = 0.5), 1x is the grid spacing (here, 40.5 km), and L is the
radius of influence of an observation (here, L was set to 3 km
following Elbern et al. (2007), since we do not know the sta-
tion type used in the work). The total PM2.5 error (εt) is de-

fined as εt=

√
ε2

0 + ε
2
r . The observation errors are assumed

to be uncorrelated so that R is a diagonal matrix.
The PM2.5 observations were subject to quality control to

ensure data reliability before DA. Considering that China
has had intense pollution events, PM2.5 values larger than
800 µg m−3 were classified as unrealistic and were not as-
similated; observations with the ensemble mean of the first
guess departure exceeding 100 µg m−3 were also omitted,
following Schwartz et al. (2012). The number of observations
was about 17 700. Among them, eight observations were dis-
carded because they were larger than 800 µg m−3 and 243
(around 1.5 %) were discarded due to the latter reasons.

4 Experimental design

Two parallel experiments were performed to evaluate the im-
pact of PM2.5 DA on the analyses and forecasts of aerosols
over China: an assimilation experiment and a control exper-
iment. Both experiments used identical WRF-Chem settings
and physical parameterizations.

4.1 Spin-up ensemble forecast with perturbed initial
and boundary conditions

The initialization and spin-up procedures were identical to
those reported by Schwartz et al. (2014). The ICs and lateral
boundary conditions (LBCs) for the meteorological fields

were provided by the National Centers for Environmental
Prediction Global Forecast System (GFS).

The initial meteorological fields were created at
00:00 UTC on 1 October 2014 by interpolating the
GFS analyses onto the model domain. The 50 ensemble
members were then generated by adding Gaussian random
noise with a zero mean and static background error covari-
ances (Torn et al., 2006) to the temperature, water vapour,
velocity, geopotential height and dry surface pressure fields.
The ICs of each member were zero in the initial aerosol
fields, representing clean conditions as described by Liu et
al. (2011).

The LBCs for the meteorological fields were then interpo-
lated from the GFS analyses from 00:00 UTC on 1 October
to 00:00 UTC on 16 October 2014 and perturbed similarly
to the initial fields at 00:00 UTC on 1 October 2014. The
aerosol LBCs of each member for all experiments were ide-
alized profiles embedded within the WRF-Chem model.

Fifty-member emissions were created by adding random
noise to the anthropogenic emissions, same as reported by
Schwartz et al. (2014):

E∗ip(ηt)= Ep(ηt)+Wipσ
E
p (ηt),

where E∗ip(ηt) is the ith ensemble member for the pth emis-
sions variable at the ηth grid point and the t th hour, and Ep
is the unperturbed emissions. The term σE

p is the standard
deviation of all Ep values and in the horizontally adjacent
points of grid box η at and within 2 h of t . W is a weight that
was randomly drawn from a standard Gaussian distribution
and varied for each ensemble member and variable but was
spatially and temporally constant. No correlations between
emissions variables were considered, which was a limitation
of this approach. For possible negative perturbed emissions,
they were set as E∗ip(η, t)= 0.001 ·Ep(η, t). This will in-
crease the prescribed emissions more or less. However, only
very few data were negative. So, this influence can be negli-
gible.

Before the first DA cycle, a 50-member ensemble of 4-
day WRF-Chem forecasts was performed from 00:00 UTC
on 1 October to 23:00 UTC on 4 October 2014 using the per-
turbed ICs at 00:00 UTC on 1 October 2014, the correspond-
ing perturbed LBCs and the emissions. Then a 50-member
ensemble aerosol forecast at 00:00 UTC on 5 October 2014
was produced.

4.2 Assimilation experiments

Two DA experiments were performed. One was the pure as-
similation of chemical ICs (hereafter expC), while the other
was the joint adjustment of chemical ICs and source emis-
sions (hereafter expJ). Both DA experiments had the same
settings except for the emissions. They were conducted from
00:00 UTC on 5 October 2014 to 00:00 UTC on 16 Octo-
ber 2014. The assimilation cycle interval was 1 h.

www.atmos-chem-phys.net/17/4837/2017/ Atmos. Chem. Phys., 17, 4837–4855, 2017



4844 Z. Peng et al.: Improving PM2.5 forecast over China

In the first DA cycle in expJ, the first 50 ensemble chem-
ical fields were drawn from the WRF-Chem ensemble fore-
casts valid at 00:00 UTC on 5 October 2014, as described
in Sect. 4.1. Using the ensemble aerosol forecasts, the prior
emission scaling factors λp

i,t at 23:00 UTC on 4 October 2014
were calculated. λp

i,t were used directly as λf
i,t for the first

five assimilation cycles (after five assimilation cycles, the
system has been initialized, all future scaling factors could
be created using the persistence forecasting operator MSF).
Then, the state vector xf

= [Cf, λf
]
T was prepared. After that,

the DA cycle started.
In expC, the first chemical fields were also drawn from the

WRF-Chem ensemble forecasts valid at 00:00 UTC on 5 Oc-
tober 2014. Then, the state vector xf

= [Cf
]
T was prepared

and the DA cycle started.
During the WRF-Chem forecast step of the subsequent as-

similation cycles for both experiments, the ICs for the chem-
ical variables of each member were drawn from the updated
chemical fields of the previous cycle. The aerosol LBCs of
each member for all experiments were idealized profiles em-
bedded within the WRF-Chem model. As for the meteoro-
logical ensemble fields, the LBCs were prepared in advance
as depicted in Sect. 4.1; the ICs of each member of the meteo-
rological fields were drawn from the forecast meteorological
fields of the previous cycle before re-centering with the GFS
analysis because we do not do meteorological analysis:

πinew = πi + (πGFS−π), (19)

where πi is the ith member of the forecast meteorological
fields of the previous cycle, π is the ensemble mean of the
forecast meteorological fields of the previous cycle, πGFS is
the meteorological field interpolated from the GFS analyses
and πinew is the new meteorological field used as the IC in
WRF-Chem in the next cycle.

As stated in the first paragraph in this section, the set-
tings of expC were the same as those in expJ except for the
emissions. In expJ, the ensemble anthropogenic emissions
were generated by using emission scaling factors, while in
expC the ensemble anthropogenic emissions were prepared
by adding random noise, as stated in Sect. 4.1.

4.3 Control experiment

The control experiment was conducted for the same period
as the assimilation experiment and the simulation cycle pe-
riod was 1 h, as in the assimilation experiment. The first ini-
tial chemical fields were extracted from the ensemble mean
valid at 00:00 UTC on 5 October 2014. In the subsequent
simulation process, the ICs for the chemical fields were from
the previous cycle’s 1 h forecast. The LBCs and ICs for the
meteorological fields were updated by interpolating the GFS
analyses. The emissions were the prescribed emissions Ep

t

without any perturbation.

5 Results

Statistics for both expJ and expC were computed using the
ensemble mean prior (background) and posterior (analysis)
fields (average of the 50-member ensemble). The ensemble
performances were first examined. Output from the first day
of the cycling DA configurations was excluded from all ver-
ification statistics to allow the ensemble fields to “spin up”
from the initial ensemble.

As the measurement coverage is an important factor that
may determine the performance in DA, we primarily fo-
cused our attention on the results from three sub-regions
with comparatively dense observational coverage (Fig. 1):
the Beijing–Tianjin–Hebei region (JJJ; 12 stations for assim-
ilation and 12 stations for verification); the Yangtze River
delta (YRD; 24 stations for assimilation and 24 stations for
verification); and the Pearl River delta (PRD; 9 stations for
assimilation and 9 stations for verification).

5.1 Ensemble performance

It is important to assess the ensemble performance for an
ensemble-based DA system. In a well-calibrated system, a
comparison of the prior ensemble mean root-mean-square
error (RMSE) with respect to the observations should equal
the prior “total spread” (square root of the sum of ensemble
variance and observation error variance) (Houtekamer et al.,
2005). Figure 3 shows the time series for the prior ensem-
ble mean RMSE and the total spread for PM2.5 aggregated
over all observations in the three sub-regions for expJ. It in-
dicates that the magnitudes of both the total spread and the
RMSE were influenced by the diurnal cycle and heavy air
pollution. Almost all the total spreads were smaller than the
RMSE, showing an insufficient spread of PM2.5 ensemble
forecasts, which is especially evident for heavy polluted pe-
riod with much larger RMSEs. For expC, the characteristics
of the prior ensemble mean RMSE and the total spread for
PM2.5 were very similar to that for the joint DA experiment.

The magnitudes of the ensemble spread of the emission
scaling factors of the joint DA experiment were important
for emission inversion. They were very stable throughout the
∼ 10-day experiment period, which indicates that MSF can
generate stable artificial data to generate the ensemble emis-
sions. For λf

PM2.5
, they ranged from 0.25 to 1 in most model

area. Figure 3d shows the area-averaged time series extracted
from the ensemble spread of λf

PM2.5
. It shows that the en-

semble spread was stably distributed around 0.5, which in-
dicates that the uncertainty of the ensemble emissions was
about 50 %.

5.2 Impact on aerosol ICs

To evaluate quantitatively the impact of the ensemble assim-
ilation system on the ICs, the mean errors (bias), RMSEs
and correlation coefficient (CORR) of the assimilation exper-
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Table 1. Comparison of the surface PM2.5 mass concentrations from the control and assimilation experiments to observations over all
analysis times from 6 to 16 October 2014.

Region Experiment Mean Mean BIAS RMSE CORR
observed simulated

value value

Beijing– control
116.3

98.3 −18.0 81.6 0.790
Tianjin– expJ 106.0 −10.3 66.9 0.827
Hebei expC 104.1 −12.2 64.0 0.845

Yangtze control
48.5

64.4 15.9 30.6 0.593
River expJ 46.9 −1.6 15.3 0.846
delta expC 46.1 −2.4 17.3 0.803

Pearl control
61.8

82.4 20.6 31.8 0.624
River expJ 66.5 4.7 16.1 0.800
delta expC 64.1 −2.3 15.6 0.797

Figure 3. Time series of prior ensemble mean RMSE and total spread for PM2.5 concentrations aggregated over all observations over the
three sub-regions: (a) Beijing–Tianjin–Hebei region, (b) Yangtze River delta and (c) Pearl River delta. (d) Time series of the area mean
ensemble spread for λPM2.5 over the three sub-regions.

iment and the control run were first analysed. These statistics
were calculated against independent observations over all the
analyses from 6 to 16 October 2014. Table 1 shows that the
bias magnitudes of the control run were 15.9 and 20.6 µg m−3

for the YRD and the PRD, respectively, suggesting a sig-
nificant overestimation of the WRF-Chem aerosol mass in
these two sub-regions. However, a significant underestima-
tion of the aerosol mass occurred in the JJJ region, where the
model bias was −18.0 µg m−3. The RMSEs of the control
run were 81.6, 30.6 and 31.8 µg m−3 for the JJJ, YRD and
PRD regions respectively. After assimilation, the statistics
showed an apparent improvement and the magnitude of the
bias and the RMSE decreased for both DA experiment. For
expJ, both the maximum bias and the RMSE were obtained
in the JJJ region and were −10.3 and 66.9 µg m−3 respec-
tively. The CORR increased from 0.79, 0.60 and 0.62 to 0.83,
0.85 and 0.80 for the JJJ, YRD and PRD respectively. The
statistics of expC were very similar to those of expJ. The bias
and the RMSE in the JJJ region were−12.2 and 64.0 µg m−3

respectively. And the CORR were 0.85, 0.80 and 0.80 for the
JJJ, YRD and PRD respectively. These results indicate that
the initial PM2.5 fields can be adjusted efficiently by the En-
SRF.

It is interesting to note that expC has better RMSE and
CORR than expJ but poor bias in JJJ and expC has better
bias and RMSE than expJ but poor CORR in PRD. Maybe
the small number of samples caused the uncertainties of the
statics. However, the differences were very small. The anal-
yses of both experiments were very similar.

Then the analysis increments (i.e. xa
− xb) were investi-

gated to show the direct impact of PM2.5 DA. They are de-
termined by both the observation increments and the rela-
tive magnitudes of the forecast error and the observation er-
ror, based on Eq. (7). From Fig. 4a, e and f, the increments
of both assimilation experiments were distributed around the
observations as expected. However, the impact of assimilat-
ing PM2.5 observations was not limited to the areas where
observations were located; observation information was also
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Figure 4. Spatial distribution of the PM2.5 mass (µg m−3) of the (a) observations, (b) simulation of the control run, (c) analysis of expJ,
(d) analysis of expC, (e) increments of expJ and (f) increments of expC at the lowest model level averaged over all hours from 6 to 16 Octo-
ber 2014.

transported to other areas through the WRF-Chem forecast.
Besides, the ensemble forecasts also partly contributed to the
spatial distribution of the PM2.5 mass. Therefore, the spatial
distributions of the PM2.5 mass in both assimilation experi-

ments were significantly different from the control run (see
Fig. 4b–d), which suggests that assimilation PM2.5 observa-
tions impact greatly the aerosol ICs. The PM2.5 mass magni-
tudes of both assimilation experiments were smaller than that
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Figure 5. Hourly area-averaged time series of emission scaling factors (black) extracted from the ensemble mean of the analysed λa
PM2.5

and the corresponding analysed unspeciated primary PM2.5 emissions Ea
PM2.5

(blue) over the three sub-regions: (a) Beijing–Tianjin–Hebei
region, (b) Yangtze River delta and (c) Pearl River delta.

of the control run at the lowest model level in the YRD, PRD
and central China. Conversely, positive differences (analysis
minus control) were gained in the JJJ region and in northeast
China. These indicated the reduction of the overestimation
or underestimation of the WRF-Chem simulation over these
regions with data assimilation.

5.3 Impact on emissions

To determine the impact of assimilating PM2.5 observations
on the chemical emissions, we analysed the area-averaged
time series extracted from the forecast emission scaling fac-
tors, the optimized emission scaling factors, the prior emis-
sions and the optimized emissions. Figure 5 shows that
λf

PM2.5
were changed along with λa

PM2.5
. This indicates that

observation information ingested from the previous observa-
tions was incorporated through the usage of the time smooth
operator.

Figure 5 also shows that although the prior emissions
E

p
PM2.5

had no diurnal variation when the experiments were
designed, the optimized PM2.5 scaling factor, λa

PM2.5
, showed

an obvious variation with time, as did the optimized un-
speciated primary sources of PM2.5, Ea

PM2.5
. Moreover, the

values of λa
PM2.5

were < 1 at almost all times in the YRD
and PRD, which resulted in the analysed emission Ea

PM2.5

being lower than the prior PM2.5 emissions Ep
PM2.5

. In the
YRD, the prior Ep

PM2.5
was about 0.127 µg m−2 s−1 over

all hours. After assimilation, the time-averaged optimized
Ea

PM2.5
decreased to 0.107 µg m−2 s−1, about 15.6 % lower

than the prior value. In the PRD, the prior Ep
PM2.5

was about
0.10 µg m−2 s−1. The time-averaged optimized Ea

PM2.5
de-

creased to 0.066 µg m−2 s−1, leading to a decrease of 35.0 %.
However, larger values for the optimized Ea

PM2.5
were ob-

tained in the JJJ region in three periods, from 16:00 UTC on

6 October to 00:00 UTC on 8 October, from 16:00 UTC on
9 October to 00:00 UTC on 10 October and from 16:00 UTC
on 13 October to 00:00 UTC on 15 October as a result of
the increased optimized scaling factor λa

PM2.5
. This may have

been caused by the burning of crop residues during harvest-
ing in this region (Li et al., 2016), which was not taken into
account in the prior emissions. However, the PM2.5 measure-
ments network was still spatially sparse and heterogeneous in
this work. Almost all measurements were located in the city
and no data are available in the rural. Meanwhile, the crop
residues burning always occur in the rural region. Therefore,
the PM2.5 measurements network can only capture the burn-
ing information a few hours later. Hence, although the sys-
tem is able to detect the emission changes caused by burn-
ing events, the time that the system started to show increased
scaling factors might not be accurate enough (it may shift a
few hours later). A Kalman smoother may have been a better
system to solve this problem.

The NO, SO2 and NH3 emissions were all adjusted to
some extent by our DA approach (see Fig. 6). The NO emis-
sions increased by 41.3, 43.7 and 20.3 % in the JJJ, YRD
and PRD regions respectively. The SO2 emissions increased
by 16.3, 10.0 and 18.3 % and the NH3 emissions increased
by 16.7, 7.8 and 7.5 % in the JJJ, YRD and PRD regions re-
spectively.

Figure 7 shows the spatial distribution of the time-
averaged scaling factors λa

PM2.5
at the lowest model level over

all hours from 6 to 16 October 2014, since the emissions at
higher levels were so small that the impact of assimilating
PM2.5 observations was negligible. Figure 8 shows the distri-
bution of Ep

PM2.5
and the time-averaged differences between

the ensemble mean of the assimilation and the prior values.
These patterns are consistent with those in Fig. 5. Neg-

ative differences were obtained in most areas of the YRD
and PRD, indicating that the PM2.5 DA primarily decreased
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Figure 6. Hourly area-averaged time series of emission scaling factors extracted from the ensemble mean of the analysed (a) λa
NO, (b) λa

SO2
and (c) λa

NH3
over the three sub-regions: Beijing–Tianjin–Hebei region (JJJ, black), Yangtze River delta (YRD, green) and Pearl River delta

(PRD, blue).

Figure 7. Spatial distribution of λPM2.5 at the lowest model level
averaged over all hours from 6 to 16 October 2014.

the PM2.5 emissions. Conversely, positive differences were
obtained in South Hebei, North Henan and Southeast Shanxi
provinces, indicating that DA increased the PM2.5 emissions.

As the economy in China has developed, the spatiotem-
poral distribution of emissions has changed as a result of
changes in energy consumption, the structure of the energy
market and advances in technology. Therefore although this
inventory of emissions may have correctly described anthro-
pogenic emissions in 2006 when it was constructed, it is not
representative of the anthropogenic emissions in 2014. Theo-
retically, the assimilated emissions should reduce the uncer-
tainty in the prior emissions as a result of the application of
observations. Different from the reports of standard national
emission inventories by governments in USA, Europe and

other countries, the rapid economic development and com-
plexity of emission sources in China have led to large un-
certainties in the current emission inventories, even for the
latest version. Thus it is impossible for us to conduct a direct
evaluation on emissions.

Although we had no direct emission observations to eval-
uate the analysing emissions, which was a challenging to
many emission inversion research teams (e.g. Tang et al.,
2011; Miyazaki et al., 2012; Ding et al., 2015; McLinden
et al., 2016), the improvement of emissions can be verified
in terms of two aspects: the diurnal variation and the location
of increased emissions. The diurnal variation in the assim-
ilated emissions verified this statement to some extent. Es-
pecially in the PRD and YRD, Ea

PM2.5
in the daytime were

always larger than those in the night, which agreed well
with Olivier et al. (2003), the WRAP (2006) and Wang et
al. (2010). In addition, the locations of the larger values for
the optimized Ea

PM2.5
in the JJJ region were in good agree-

ment with the locations of crop residue burning traced by
the environmental satellite of China. There were 10, 231,
37 and 3 crop residue burning spots from 5 to 11 Octo-
ber 2014 and 7, 20, 5 and 21 from 12 to 18 October 2014 in
Hebei, Henan, Shandong and Shanxi provinces, respectively
(Weekly Crop Residue Burning Monitoring Report traced by
Environmental Satellite, 2015a, b).

However, the analysis emissions are only a mathematical
optimum. They are influenced greatly by the model errors
and the observation errors. In addition, only surface PM2.5
observations were applied in this work, which may lack
abundant constraint on the sources of the secondary aerosol
precursors. More observations are needed to obtain reliable
emissions for the sources of the gas-phase precursors.
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Figure 8. Spatial distribution of (a) the prior unspeciated primary sources of PM2.5 (µg m−2 s−1) and (b) the time-averaged differences
between the ensemble mean analysis and the prior values (µg m−2 s−1) at the lowest model level averaged over all hours from 6 to 16 Octo-
ber 2014.

5.4 Verification of aerosol forecasting

For the assimilation experiment, 48 h forecasts were per-
formed at each 00:00 UTC from 6 to 16 October 2014 with
the hourly forecast output for both assimilation experiments.
For the verification forecasting experiment for expJ (here-
after fcJ), the ensemble mean of the analysed ICs and emis-
sions of expJ were used in this longer-range model forecast.
For the verification forecasting experiment for expC (here-
after fcC), the ensemble mean of the analysed ICs of expC
and the prescribed anthropogenic emissions were used.

In order to get a more visualized picture of the impact
of DA for both assimilation experiments, time series of the
hourly PM2.5 extracted from the analysis (AN), the control
run (CT) and the hourly output of 48 h forecast (fc24 for
the first-day forecast and fc48 for the second-day forecast)
were compared with the observations (OBS) for the megaci-
ties Beijing, Shanghai and Guangzhou respectively (Fig. 9).
As expected, the time series of the analysis (also the back-
ground) were consistent with the observations. The control
run showed large deviations from the observations, espe-
cially in Shanghai and Guangzhou. Benefit from DA on both
the first-day and the second-day forecasts can be clearly seen.

The bias and the RMSE of the surface PM2.5 forecasts as
a function of forecast range were then calculated against the
independent observations for the three sub-regions (Fig. 10).
Both the bias and the RMSEs of the control run were charac-
terized by the diurnal cycle in the YRD and PRD. The largest
errors were seen at 21:00 UTC in the YRD (about 29 µg m−3

for bias and 37 µg m−3 for RMSEs) and at 23:00 UTC in
the PRD (about 36 µg m−3 for bias and 41 µg m−3 for RM-
SEs), likely indicating significant systematic forecast errors
at these times. From 03:00 to 09:00 UTC, the bias (about
1 µg m−3 in the YRD and −5 µg m−3 in the PRD) and the
RMSE values (about 14 µg m−3 in the YRD and 16 µg m−3

in the PRD) were much smaller than at other times in both

the YRD and PRD, showing that WRF-Chem performed well
during this period. However, in the JJJ region, the bias (about
−20 µg m−3) and the RMSEs (about 50 µg m−3) were al-
ways large as a result of a heavy pollution event. After as-
similation, both the magnitude of the bias and the RMSEs
decreased sharply. Especially in YRD and PRD, most bias
ranged from −5 to 5 µg m−3 and most RMSEs ranged from
11 to 14 µg m−3, further indicating that DA greatly affected
the ICs.

The improvements in the surface PM2.5 forecasts by the
joint adjustment of the ICs and emissions were very large in
the YRD and PRD for expJ. Large reduction of the magni-
tude of the bias and the RMSEs due to assimilation can be
seen for almost the entire 48 h forecast range. From 10 to
23 h and from 34 to 47 h, in particular, the relative reduction
in RMSE was about 37.5 %. However, the DA impact was
much smaller for 3 to 9 h forecast ranges, which are day-
time of the first-day forecast. In addition, the improvements
were nearly negligible in PRD from 27 to 33 h, the daytime
of the second-day forecast, suggesting that the benefit gained
from adjusting the ICs decreased progressively and eventu-
ally disappeared with model integration. The performance
actually deteriorated in YRD during the same time. One of
the possible reasons was that chemical model performed suf-
ficiently well during daytime when the boundary layer was
unstable and therefore the further improvement was more
difficult. There were also always large errors during the night
when the boundary layer was stable, so that large improve-
ments could be obtained. The other possible reason can be
attributed to the a priori constant emissions. The differences
between the optimized PM2.5 emissions and the prior emis-
sions were comparatively small during the day, but the opti-
mized PM2.5 emissions were much smaller than the a priori
emissions during the night; thus, the control run performed
worse during the night and well during the day. Given the a
priori variable emissions provided, the control run will per-
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Figure 9. Time series of the hourly PM2.5 obtained from observations (circle), analysis (blue line), control run (black line) and hourly output
of 48 h forecast in three megacities: (a) Beijing, (c) Shanghai and (e) Guangzhou in expJ and (b) Beijing, (d) Shanghai and (f) Guangzhou
in expC. See text in Sect. 5.4.

form better during the night. Nevertheless, attributed greatly
to the large adjustment of chemical emissions, substantial
improvements were still achieved from 34 to 47 h. These re-
sults revealed that joint adjustment of the ICs and emissions
can improve surface PM2.5 forecasts up to 48 h in the YRD
and PRD.

As for expC, it seemed that large improvements in the sur-
face PM2.5 forecasts were gained through the adjustment of
the ICs in PRD from 10 to 23 h and from 34 to 47 h. Large
reduction of the magnitude of the bias and the RMSEs due
to assimilation can be seen during this period. The relative
reduction in RMSE ranged from 25 to 37.5 %. However, the
forecasts deviated significantly from the observations for 3 to
9 h and 27 to 33 h forecast ranges. One reason for this may
be that the adjustment of the ICs decreased the analysis field
too much on the whole since the WRF-Chem forecast aerosol
mass was systematically overestimated in PRD (see Figs. 4,
9f and 10e). This aerosol mass overestimation might be also
due to the possibly overestimated emissions in some time
periods (not all day long) that are not corrected in the sim-
ulation. So the over-adjusted ICs compensated for the un-
adjusted emissions in some periods but also led to the neg-
ative biases for the periods when emissions were not over-
estimated or underestimated. The other factor was the di-
urnal variation. It is very clear that PM2.5 mass gradually
decreased with time from 00:00 to 00:08 UTC and then ob-
tained the smallest value. After that it increased with time
from 00:09 to 00:23 UTC and obtained the largest value at

about 00:00 UTC. Both reasons led to the systematically un-
derestimation of PM2.5 mass of fcC from 3 to 9 h and from
27 to 33 h, though the aerosol ICs may have been very close
to the observations. Therefore, both the magnitude of the bias
and the RMSEs of the fcC were larger than those of the con-
trol run. In addition, PM2.5 forecasts of the fcC benefited
much from the diurnal variation and the adjustment of the ICs
from 10 to 23 h and from 34 to 47 h. As a consequence, the
magnitude of the corresponding bias and the RMSEs of the
fcC were smaller than those of the control run. Similar statis-
tical characteristics were also gained in YRD. However, the
improvements were comparatively small from 10 to 23 h and
from 34 to 47 h. However, the performance of fcJ was much
better than that of fcC during the night in PRD and YRD,
while in the daytime the improvement of expJ seems to be
not so big or even negligible. This could be attributed to the
emissions since the ICs of both forecasts were very similar.
In the forecast experiment of expC, the emissions were the
default monthly anthropogenic emissions, while in the fore-
cast experiment of expJ the assimilated emissions were much
smaller than the default anthropogenic emissions almost ev-
ery night in both regions, indicating that the prior emission
uncertainties might be the dominating reasons for biases be-
tween observed and model-simulated concentrations in these
cases. In the daytime in PRD, the assimilated emissions were
a little smaller than the default anthropogenic emissions. In
the daytime in YRD, the assimilated emissions were a lit-
tle larger than the default anthropogenic emissions for most
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Figure 10. Bias of surface PM2.5 as a function of forecast range calculated against all the independent observations over the three sub-regions
shown in Fig. 1: (a) Beijing–Tianjin–Hebei region, (c) Yangtze River delta, (e) Pearl River delta and RMSE over (b) Beijing–Tianjin–Hebei
region, (d) Yangtze River delta and (f) Pearl River delta. (g) Normalized RMSE (assimilation divided by control) for expJ and (h) normalized
RMSE for expC. The 48 h forecasts were performed at each 00:00 UTC from 6 to 16 October 2014 and the statistics were computed from
6 to 16 October.

time (see Fig. 5). Those changes between assimilated emis-
sions and prior emissions in the daytime are not as significant
as in the nighttime.

Both DA systems did not perform as well in the JJJ region
as in the YRD and PRD. Relatively smaller improvements
were achieved in the first 24 h forecast but then no improve-
ments were achieved afterwards in JJJ. One possible rea-
son for this result may be systematic errors due to chemistry
mechanism in WRF-Chem. The sources of the aerosols are so
complex that our knowledge of their formation mechanisms
is far from clear and large uncertainties still exist in the model
simulations. Chemical transport models have a tendency to
underestimate PM concentrations, especially during episodes
of heavy pollution (Denby et al., 2007) due to some missing
reactions (Wang et al., 2014; Zhang et al., 2015; Zheng et al.,
2015; Chen et al., 2016). Another reason can be attributed
to the forecast meteorological fields. There were still large
uncertainties, especially when the boundary layer was stable

and the wind speed was very small during episodes of heavy
pollution. As a result, a large bias may be obtained in fore-
casts of heavy pollution given the ICs and emission inven-
tories achieved from the joint assimilation. Another reason
may be the sparse coverage of measurements. There were
only 12 sites in the JJJ region (Fig. 1) and the measurement
coverage was much sparser than in the YRD or PRD.

6 Summary and discussion

The EnSRF algorithm was extended to adjust the chem-
ical ICs and the primary and precursor emissions to im-
prove forecasts for surface PM2.5. This system was applied
to assimilate hourly surface PM2.5 measurements from 5 to
16 October 2014 over China. To evaluate the effectiveness
of DA, 48 h forecasts were performed using the optimized
ICs and emissions, together with a control experiment with-
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out DA. The experiment of pure assimilation chemical ICs
and the corresponding 48 h forecasts experiment were also
performed for comparison. The results indicated that the
forecasts with the optimized ICs and emissions performed
much better than the control simulations. Large improve-
ments were achieved for almost all the 48 h forecasts, par-
ticularly in the YRD and PRD. Although it did show some
improvements in the first 24 h, there is no difference between
the control run and the forecasts in the JJJ region afterwards,
which may be attributed to the sparse measurement cover-
age and the deficiencies in the model system for forecast-
ing heavy pollution. Compared to the forecasts with only the
optimized ICs, the forecasts with the joint adjustment were
always much better during the night in the PRD and YRD
regions. However, they were very similar during daytime in
both regions. In the JJJ region, they performed similarly for
almost the entire 48 h forecast range.

There are still some limitations in this study. Firstly, we
use the default monthly anthropogenic emissions as the prior
emissions and no time variation was added to keep objec-
tive, since no resolution of temporal allocations at shorter
but critical (e.g. day-of-week, diurnal) scales is available. As
shown in earlier work, the constant emissions will worsen
the chemical forecasts (de Meij et al., 2006; Wang et al.,
2010). For the joint DA system itself, it cannot benefit from
the constant prior anthropogenic emissions. The normalized
RMSE in Fig. 10g decreased due to the poor forecasts of
control run. The control run will perform better when vari-
able emissions within the day are allowed, especially during
the night. As a result, the relative reduction in RMSE could
not be so large during the night. Secondly, no correlations be-
tween emissions variables were considered when perturbing
the emissions, which led to the reduction of the correlations
between the variables. Thus, the chemical forecast will devi-
ate from the truth to some degree. Fortunately, the perturbed
emissions were only used in the initialization and spin-up ex-
periment and expC. Therefore, there were no impacts on expJ
and the control run except for expC. Thirdly, EEC and EORG
are not perturbed in expJ. However, as stated in Sect. 2.3.2,
the ensemble spread of OC1 and OC2 can be kept at a certain
level. As a result, OC1 and OC2 contributed to the PM2.5 as-
similation in expJ, which suggests that the influence of not
perturbing EEC and EORG could be negligible. However, be-
cause of the too-small magnitudes of BC1 and BC2, the dif-
ferences (assimilation minus control) of BC1 and BC2 were
close to zero. Fourthly, the experiment (expE) where only
emissions were assimilated was not included here. However,
it was still worth simultaneously assimilating the chemical
ICs and emission. For one thing, in expE the chemical con-
centrations can be updated by the WRF-Chem model simu-
lations with the assimilated emissions as the initial field in
each DA cycle. That means that the 50-member ensemble
forecasts were performed twice, which was time consuming.
Additionally, better concentration analysis could be obtained
in expJ due to the simultaneous assimilation of ICs and emis-

sions, while in expE there may be larger uncertainties for the
updated chemical concentrations through WRF-Chem due to
the deficiency of chemistries and the uncertainties of the ICs.
This will lead to larger uncertainties for the emission inver-
sion. Also the improvement of PM2.5 forecasts will be lim-
ited due to the comparatively poor chemical ICs.

This study represents the first step in the simultaneous op-
timization of chemical ICs and emissions and only surface
PM2.5 measurements were assimilated. In future work, gas-
phase observations of SO2, NO2 and CO will be used to fur-
ther improve the performance of this DA system.
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