

Supplement of

Impacts of coal burning on ambient $PM_{2.5}$ pollution in China

Qiao Ma et al.

Correspondence to: Shuxiao Wang (shxwang@tsinghua.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

	2010	2013
GDP (2005 price)/billion CHY ^a	31165	39486
Population/billion	1.34	1.36
Urbanization rate/%	49.7	53.7
Power generation/TWh	4205	5398
Share of coal-fired power generation/%	75.3	66.4
Crude steel yield/Mt	627	779
Cement yield/Mt	1880	2417
Urban residential building area per capita/m ²	23	23
Rural residential building area per capita/m ²	34.1	37
Vehicle population per 1000 persons	58.2	93.6
Share of new and renewable energy/% $^{\rm b}$	7.5	8.3

Table S1 Summary of the major assumptions of the energy scenario.

a CHY, Chinese Yuan.

b Including hydro power, solar energy, wind energy, ocean energy, and nuclear energy; excluding biomass.

	v 1		
Energy technology	Control technology	2010	2013
	CYC (PM)	12	10
Grate bollers	WET (PM)	88	90
	WET (PM)	0	0
	ESP (PM)	93	85
Pulverized coal combustion	HED (PM)	7	15
	FGD (SO ₂)	88	93
	LNB (NO _X)	75	38
	LNB+SNCR (NO _X)	1	2
	LNB+SCR (NO _X)	12	54

Table S2. Penetrations of major control technologies in power sector in China (%).

	WET (PM)	0	0
	ESP (PM)	100	85
	HED (PM)	0	15
Filialized bed combustion	CFB-FGD (SO ₂)	53	53
	SNCR (NO _X)	0	0
	SCR (NO _X)	0	0
	LNB (NO _X)	74	70
Natural gas power	LNB+SNCR (NO _X)	1	0
	LNB+SCR (NO _X)	5	15

Notes: CYC, cyclone dust collector; WET, wet scrubber; ESP, electrostatic precipitator; HED, high efficiency deduster; FGD, flue gas desulfurization; CFB-FGD, flue gas desulfurization for circulated fluidized bed; LNB, low NOX combustion technology; SCR, selective catalytic reduction; SNCR, selective non-catalytic reduction. The table gives the national average penetrations of major control technologies. However, the penetrations vary with provinces. The penetration of the "key region" is usually larger than that of other regions.

Energy technology	Control technology	2010	2013
	CYC (PM)	0	0
	WET (PM)	95	85
	ESP (PM)	0	10
	HED (PM)	5	5
Industrial grate boilers	WET (SO2)	95	70
	FGD (SO2)	1	30
	LNB (NOX)	0	18
	LNB+SCR (NOX)	0	5
	CYC (PM)	14	15
Domestic boilers	WET (PM)	78	85
	DC (SO2)	0	5
Coal stoves	STV_ADV_C	0	0
D	STV_ADV_B	0	0
Biomass stoves	STV_PELL	0	0

Table S3. Penetrations of major control technologies in industrial and domestic combustion sources in China (%).

Notes: DC, application of (low-sulfur) derived coal; STV_ADV_C, replacement of advanced coal stove; STV_ADV_B, replacement of advanced biomass stove (e.g. better combustion condition, catalytic stove); STV_PELL, biomass pellet stove.

Table S4. Penetrations of major control technologies for selected industrial process in China (%). (1) SO₂

Industrial process	Control technology	2010	2013
Sintering	FGD	10	30
	FGD for coal filling process	0	5
Coke oven	FGD for coke oven gas	0	5
	Combination of the technologies above	0	0
Glass production (float process)	FGD	0	8
Sulfuric acid production	Ammonia acid desulfurization method	0	10

(2) NOx

Industrial process	Control technology	2010	2013
Sintoning	SCR	0	7
Sintering	SNCR	0	0
	LNB+SCR	0	0
Precalcined cement kiln	LNB+SNCR	0	1
	LNB	35	47
Class production (flast process)	OXFL	0	16
Glass production (noat process)	SCR	0	8
	ABSP	12	16
Nitric acid (dual pressure process)	SCR	18	30
	ABSP+SCR	0	0
	ABSP	63	65
Nitric acid (other process)	SCR	32	33
	ABSP+SCR	0	5

Notes: ABSP, absorption method; OXFL, oxy-fuel combustion technology.

(3) PM

Industrial process	Control technology	2010	2013
	CYC	0	0
Sintaria (flag and)	WET	5	0
Sintering (little gas)	ESP	75	75
	HED	20	25
Plast furnaça (flua qua)	WET	100	100
Blast fulliace (flue gas)	ESP	100	100
Desis suursen furmess	ESP	30	25
Basic oxygen furnace	HED	70	75
	WET	30	20
Electric arc furnace	ESP	50	50
	HED	20	30
Calca aven	WET	100	100
Coke oven	HED	0	0
	WET	0	0
Precalcined cement kiln	ESP	40	35
	HED	60	65
	CYC	0	0
Close production	WET	20	20
Glass production	ESP	75	75
	HED	5	5
	CYC	30	30
	WET	20	20
Brick production	ESP	20	20
	HED	0	0

(4) NMVOC

Industrial process	Control technology	2010	2013
<u> </u>	No control	100	100
Coke oven	End of pipe control measures	0	0
	No control	100	93
	Leak detection and repair program	0	5
Refinery	Covers on oil and water separators	0	2
	Combination of the above options	0	0
Diant oil extraction	No control	90	87
T fait on extraction	Activated carbon adsorption	10	12

0
0
0
95
5
5
0
0
90
10
10
80
20
20
80
20
00
0
9 1 8 2 8 2 1 -

Table S5. Penetrations of major control technologies for NMVOC emissions from selected solvent use types in China (%).

Solvent use type	Control technology	2010	2013
	No control (GB18582-2001)	0	0
	Decrease of solvent	100	07
Daint use in interior well of	contentGB18582-2008	100	97
huildings	Decrease of solvent	0	3
buildings	content2004/42/EC stage 1	0	3
	Decrease of solvent	0	0
	content2004/42/EC stage 2	0	0
Paint use in external wall of	No control (solvent-based paint)	78	75
buildings	Substitution with water-based paint	22	25
	No control (water-based primer,	97	94
Paint use in vehicle manufacturing	solvent-based paint for other parts)		
	Substitution with water-based paint	2	3

	Adsorption, incineration	1	3
	Substitution + adsorption, incineration	0	0
	No control (solvent-based paint)	93	90
Paint use in vehicle refinishing	Sustitution with high solids or water-based paint	8	10
	No control (solvent-based paint)	89	84
	Incineration	0	1
Paint use in wood coating	Substitution with high solids paint	4	6
	Substitution with water-based or UV paint	7	9
	No control (solvent-based ink)	90	88
Offset printing	Substitution with water-based or UV ink	10	13
	Add-on control technology	0	0
	No control (solvent-based ink)	64	60
Flexography and rotogravure	Substitution with low solvent or water-based ink	35	38
printing (for packaging)	Add-on control technology	1	3
	Substitution + add-on control technology	0	0
	No control (solvent-based ink)	85	83
Flexography and rotogravure	Substitution with low solvent or water-based ink	15	18
printing (for publication)	Add-on control technology	0	0
	Substitution + add-on control technology	0	0
	No control (solvent-based ink)	85	83
Screen printing	Substitution with low solvent or water-based ink	15	18
	Add-on control technology	0	0
	Substitution + add-on control technology	0	0
Adhesive use in wood processing	No control	98	95
	Add-on control technology	3	5
Adhesive use in manufacturing of	No control (solvent-based adhesive)	87	85
shoes	Substitution with low solvent adhesive	13	15
	Add-on control technology	0	0

(a) Energy consumption by fuel

⁽b) Energy consumption by sector

Figure S1 Energy consumption in China from 2005-2013

Figure S2 Comparison of emissions for year 2010 and 2013 in China