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Abstract. Gasoline- and diesel-fueled engines are ubiquitous
sources of air pollution in urban environments. They emit
both primary particulate matter and precursor gases that re-
act to form secondary particulate matter in the atmosphere.
In this work, we updated the organic aerosol module and
organic emissions inventory of a three-dimensional chem-
ical transport model, the Community Multiscale Air Qual-
ity Model (CMAQ), using recent, experimentally derived in-
puts and parameterizations for mobile sources. The updated
model included a revised volatile organic compound (VOC)
speciation for mobile sources and secondary organic aerosol
(SOA) formation from unspeciated intermediate volatility or-
ganic compounds (IVOCs). The updated model was used
to simulate air quality in southern California during May
and June 2010, when the California Research at the Nexus
of Air Quality and Climate Change (CalNex) study was
conducted. Compared to the Traditional version of CMAQ,
which is commonly used for regulatory applications, the
updated model did not significantly alter the predicted or-
ganic aerosol (OA) mass concentrations but did substantially
improve predictions of OA sources and composition (e.g.,
POA–SOA split), as well as ambient IVOC concentrations.
The updated model, despite substantial differences in emis-
sions and chemistry, performed similar to a recently released
research version of CMAQ (Woody et al., 2016) that did
not include the updated VOC and IVOC emissions and SOA
data. Mobile sources were predicted to contribute 30–40 % of
the OA in southern California (half of which was SOA), mak-
ing mobile sources the single largest source contributor to
OA in southern California. The remainder of the OA was at-

tributed to non-mobile anthropogenic sources (e.g., cooking,
biomass burning) with biogenic sources contributing to less
than 5 % to the total OA. Gasoline sources were predicted
to contribute about 13 times more OA than diesel sources;
this difference was driven by differences in SOA production.
Model predictions highlighted the need to better constrain
multi-generational oxidation reactions in chemical transport
models.

1 Introduction

Organic aerosol (OA) is a major component of atmospheric
fine particulate matter (Jimenez et al., 2009). Source appor-
tionment studies have historically attributed the majority of
ambient OA in southern California to motor vehicle emis-
sions (Schauer et al., 1996), but analysis of data from the
California Research at the Nexus of Air Quality and Cli-
mate Change (CalNex) study has led to conflicting conclu-
sions about the overall contribution of motor vehicles to OA
in southern California and the relative importance of gaso-
line versus diesel sources. Bahreini et al. (2012) hypothe-
sized that the majority of OA in southern California was sec-
ondary organic aerosol (SOA) formed from emissions from
gasoline-powered sources based on differences in weekday
and weekend pollutant concentrations; Hayes et al. (2013)
and Zotter et al. (2014) reached the same conclusion based on
analysis of mass spectrometer and radiocarbon data, respec-
tively. In contrast, Gentner et al. (2012) concluded that diesel
vehicles contributed more OA than gasoline vehicles based
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on a comprehensive speciation of SOA precursors present
in gasoline and diesel fuels. Ensberg et al. (2014) proposed
that observed levels of OA could be explained only if ve-
hicle emissions were a minor source of SOA or that the
SOA formation potential of vehicle emissions were signif-
icantly higher than that measured in laboratory studies. Fi-
nally, source-resolved chemical transport model (CTM) sim-
ulations predicted that gasoline sources contributed approxi-
mately twice as much POA as diesel sources in southern Cal-
ifornia (Woody et al., 2016).

Research and regulatory efforts have historically focused
on emissions of primary organic aerosol (POA), but recently
the attention has shifted to secondary organic aerosol (SOA)
since SOA appears to dominate OA mass concentrations even
in urban areas (Zhang et al., 2007). Typical CTM treatments
of OA assume non-volatile POA emissions and formation
of SOA from “traditional” precursors (Carlton et al., 2010),
which are speciated volatile organic compounds (VOCs)
such as alkanes smaller than C12, single-ring aromatics, iso-
prene, and mono- and sesquiterpenes. Robinson et al. (2007)
proposed a new conceptual model for emissions and evo-
lution of OA from combustion sources: (1) POA emissions
are semi-volatile and reactive (Grieshop et al., 2009; Huff-
man et al., 2009; May et al., 2013a, b, c), (2) combustion
sources emit substantial amounts of intermediate volatility
organic compounds (IVOCs) that are efficient SOA precur-
sors (Jathar et al., 2014; Zhao et al., 2015), and (3) semi-
volatile organic vapors in equilibrium with OA photochem-
ically react or “age” in the atmosphere to form additional
SOA (Miracolo et al., 2010). Recent state-of-the-science OA
models have included these three processes, which have im-
proved model performance (Murphy and Pandis, 2009; Koo
et al., 2014). These improvements, however, have required si-
multaneous inclusion of all the above-mentioned processes;
for example, inclusion of semi-volatile POA without SOA
formation from IVOCs and aging reactions degraded model
performance vis-à-vis total OA mass (Robinson et al., 2007).
However, the inputs required to represent these three pro-
cesses are poorly constrained. For example, IVOC emissions
from all sources are often assumed to be 1.5 times the POA
emissions (Robinson et al., 2007; Shrivastava et al., 2008;
Koo et al., 2014; Woody et al., 2016), based on measure-
ments from two medium-duty diesel vehicles (Schauer et al.,
1999). New experimental data are needed to better constrain
these processes.

Recently, a series of experiments investigated the VOC
emissions and SOA formation from gasoline vehicles, diesel
vehicles, and small off-road engines recruited from the Cal-
ifornia in-use fleet (Gordon et al., 2013, 2014a, b). May et
al. (2014) analyzed the VOC data to develop detailed emis-
sions profiles. Jathar et al. (2014) analyzed the SOA data to
derive quantitative estimates of the IVOC emissions and their
potential to form SOA after several hours of atmospheric ox-
idation. Here, we use the term IVOCs to represent higher car-
bon number species (C12+) that are difficult to speciate us-

ing traditional gas chromatography–mass spectrometry (GC-
MS) techniques due to the very large number of constitu-
tional isomers and/or polarity of partially oxidized species
(Jathar et al., 2014; Presto et al., 2011; Zhao et al., 2015;
Hatch et al., 2015). Jathar et al. (2014) referred to these as
unspeciated organic compounds. We use the term VOCs to
include the class of SOA precursors typically speciated us-
ing conventional GC-MS techniques (e.g., alkanes smaller
than C12 and single-ring aromatics). Jathar et al. (2014) de-
rived separate parameterizations to account for SOA forma-
tion from IVOC emissions from gasoline and diesel sources
for use in CTMs.

In this work, we used an updated version of CMAQ to
simulate ambient OA from gasoline and diesel sources in
southern California. The updates included new mobile source
emissions profiles for VOCs (based on May et al., 2014) and
emissions and parameterizations for SOA production from
IVOCs (based on Jathar et al., 2014). Model predictions were
evaluated using data collected during CalNex, compared to
predictions of other models, and used to investigate the con-
tribution of gasoline and diesel sources to ambient OA con-
centrations. This was the first time that a comprehensive set
of gasoline and diesel source data have been used to develop
source-specific IVOC inputs for a three-dimensional CTM.
Earlier modeling efforts have relied on data that are almost a
decade old (e.g., Koo et al., 2014) and/or have used box mod-
els that may not accurately simulate horizontal and vertical
transport and deposition (e.g., Hayes et al., 2015). Hence, our
work presents a step forward in improving the representation
of sources, emissions, and photochemical production of OA
in large-scale models. This paper builds upon recent work by
Baker et al. (2015) and Woody et al. (2016), who used differ-
ent versions of CMAQ to simulate OA in California during
May and June 2010.

2 Methods

In this section, we provide a brief overview of CMAQ fol-
lowed by more detailed descriptions of the OA model and
emissions.

2.1 Chemical transport model

The CMAQ model version 5.0.2 was used to simulate air
quality in California from 4 May to 30 June 2010, which co-
incides with the CalNex campaign (May–July 2010). Details
about the application of this version to CalNex can be found
in Baker et al. (2015) and Woody et al. (2016). Briefly, the
model domain covered California and Nevada with a 4 km
(317× 236) grid resolution (Supplement Fig. S1). The verti-
cal domain included 34 layers and extended to 50 mbar. At-
mospheric gas-phase chemistry was simulated with the Car-
bon Bond 2005 (TUCL05) chemical mechanism (Yarwood
et al., 2005; Whitten et al., 2010; Sarwar et al., 2012).
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Aerosol chemistry and partitioning was simulated using the
aerosols 6 (AERO6) module with different models to rep-
resent OA (described below). United States anthropogenic
emissions were based on the EPA’s 2011v1 modeling plat-
form (http://www.epa.gov/ttnchie1/net/2011inventory.html)
and biogenic emissions were estimated using the Biogenic
Emission Inventory (BEIS) version 3.14 model (Carlton and
Baker, 2011). Gridded meteorological inputs for CMAQ and
SMOKE were generated using version 3.1 of the WRF model
(Skamarock et al., 2008). The first 11 days of the simulation
were excluded from the analysis to minimize the influence of
initial conditions. Boundary conditions were provided by a
36 km continental US CMAQ simulation from the same time
period.

2.2 OA Model

The OA model used here builds on the volatility basis set
(VBS) implementation in CMAQ (Koo et al., 2014) and is
referred to as the VBS-IVOC model. The novel aspects of
this work are the implementation of updated organic emis-
sions profiles that explicitly account for IVOC emissions
from gasoline and diesel sources and experimentally con-
strained parameterizations of Jathar et al. (2014) for the SOA
production from IVOC emissions.

In the VBS-IVOC model, we extended the work of Baker
et al. (2015) and Woody et al. (2016), both of which evalu-
ated different OA models in CMAQ using the CalNex data.
Baker et al. (2015) evaluated the standard OA module in
CMAQ (Carlton et al., 2010). Woody et al. (2016) evalu-
ated the VBS version of CMAQ as implemented by Koo
et al. (2014), which treated POA emissions as semi-volatile
and reactive and accounted for SOA production from VOCs
and IVOCs and multigenerational oxidation of aged prod-
ucts. The VBS-IVOC model was the same as the VBS model
of Woody et al. (2016) except for the treatment of gasoline
and diesel sources. To facilitate direct comparison between
the different models, all three studies (this work; Baker et al.,
2015; and Woody et al., 2016) used the same CTM (CMAQ
v5.02), emissions inventory (except for the modifications de-
scribed below), and meteorology inputs. However, Baker et
al. (2015) used a different gas-phase chemical mechanism
(SAPRC07b). We refer to the Baker et al. (2015) treatment
of OA and the model results as the “Traditional” model and
we refer to the Woody et al. (2016) treatment of OA and the
model results as the “VBS” model.

The VBS version of CMAQ includes four distinct volatil-
ity basis sets to separately track different classes of OA: an-
thropogenic POA, anthropogenic SOA, biogenic SOA, and
biomass burning POA (Koo et al., 2014). The VBS-IVOC
model extended CMAQ with three additional basis sets for
POA from gasoline sources, diesel sources, and cooking ac-
tivities to provide POA source apportionment (Woody et al.,
2016). Each basis set has five volatility bins with different ef-
fective saturation concentrations (C∗): non-volatile and loga-

rithmically distributed bins from 100 to 103 µg m−3 at 298 K.
The gas–particle partitioning of semi-volatile organic com-
pounds in each basis set is assumed to be in equilibrium and
to form a quasi-ideal solution with all of the OA.

2.2.1 Emissions

In the VBS-IVOC model, we used emission inventories de-
veloped by Baker et al. (2015) and modified by Woody et
al. (2016) for use with the VBS model. In this section we
briefly describe the VBS inventory of Woody et al. (2016),
focusing on the updates to gasoline and diesel organic emis-
sions used in the VBS-IVOC model.

We (in the VBS-IVOC model) and Woody et al. (2016)
used the same semi-volatile POA emissions. These were es-
timated by redistributing the non-volatile POA emissions of
Baker et al. (2015) into the VBS. For gasoline and diesel
exhaust and biomass burning, this redistribution was done
using the source-specific volatility distributions of May and
coworkers (May et al., 2013a, b, c). Cooking emissions were
redistributed using an approximation developed by Woody et
al. (2016) based on thermodenuder measurements made with
cooking emissions and ambient measurements made during
MILAGRO (Huffman et al., 2009). For all other sources, the
volatility distribution of Robinson et al. (2007) was used to
map the existing POA emissions into the VBS.

In the VBS-IVOC model, we used new VOC specia-
tion profiles for tailpipe emissions from gasoline and diesel
sources (Table S1 in the Supplement). These speciation pro-
files were applied to the emissions inventory of Baker et
al. (2015). Therefore, the VBS-IVOC model had the same
mobile source emission rates as Baker et al. (2015) but with
different organic speciation. For all gasoline sources (on- and
off-road), the VOC speciation was based on fleet-averaged
data from May et al. (2014), which reported emissions of
202 unique species measured during chassis dynamometer
testing of 68 light-duty gasoline vehicles operated over the
cold-start Unified Cycle (UC) using gasoline that met Cali-
fornia summertime specifications (five of the vehicles were
also run on the freeway, arterial, and hot-start UC cycles).
For on- and off-road diesel vehicles, the VOC speciation was
derived from the EPA SPECIATE profile for on-road heavy-
duty diesel vehicles (profile number 8774); the same diesel
emissions profile was used in Baker et al. (2015) and Woody
et al. (2016). All VOCs were mapped to CB05 model species
using EPA’s speciation tool, which lumps unique organic
compounds to a representative model species that are simi-
lar in terms of their reactivity and reaction chemistry (Eyth
et al., 2006; Carter, 2008).

For gasoline and diesel sources, we estimated the IVOC
emissions in the VBS-IVOC model based on the gas-phase
carbon-balance analysis of Jathar et al. (2014), who found
that unspeciated organic compounds (assumed to be mainly
IVOCs) contributed, on average, 25 and 20 % of the non-
methane organic gas (NMOG) emissions from gasoline and
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Figure 1. Total emissions from 4 May to 30 June 2010 for POA,
BTEX (aromatics), ALK5 (long alkanes), and IVOCs for gasoline
and diesel sources in the Los Angeles and Orange counties for the
three OA models: Traditional, VBS, and VBS-IVOC.

diesel vehicles, respectively. IVOCs were included in the
VBS-IVOC model by reapportioning the existing NMOG
emissions between VOCs and IVOCs (effectively renormal-
izing the VOCs described above). Therefore, unlike previous
VBS models such as Woody et al. (2016), where IVOC emis-
sions were added to the NMOG emissions, no new NMOG
emissions were added to the VBS-IVOC model for the gaso-
line and diesel sources. In addition, gasoline and diesel POA
emissions in the C∗ bins of 103 and 104 µg m−3 (organic
compounds that exist in the vapor phase in the atmosphere;
32 % of gasoline and 35 % of diesel POA emissions) were
reclassified as IVOCs, consistent with the parameterization
of Jathar et al. (2014).

Following Robinson et al. (2007), IVOC emissions for all
other sources (non-gasoline and diesel) were assumed to be
1.5 times the POA emissions. Woody et al. (2016) assumed
this for all sources. Some of the IVOCs, as defined here, may
have already been included in the original emissions pro-
file as ALK5 and UNK; however, Pye and Pouliot (2012)
showed that these emissions are very likely underestimated
and, therefore, did not pose a serious problem of double
counting SOA precursors.

To illustrate the effects of these changes, Fig. 1 plots
the POA and SOA precursor emissions (BTEX (all aro-
matics), ALK5 (long alkanes), and IVOCs) from all gaso-
line and diesel sources in Los Angeles and Orange coun-
ties aggregated over the entire simulation period (4 May to
30 June 2010). Table S2 lists the emissions for on- and off-
road gasoline and diesel use, all other sources, and biogenic
sources. Here, gasoline and diesel sources included both on-
and off-road applications.

The magnitude of the POA emissions was identical be-
tween all three models with the exception that some of the
POA emissions were reclassified as IVOCs in the VBS-IVOC
model as described earlier. The BTEX emissions were iden-
tical between the Traditional and VBS models, but lower in
the VBS-IVOC model because we renormalized the NMOG
emissions to account for IVOCs. The Traditional model did

not include IVOC emissions. The IVOC emissions in the
VBS-IVOC model were a factor of 4 higher for gasoline
sources than in the VBS model of Woody et al. (2016), but
20 % lower for diesel sources. Taken together, the BTEX,
ALK5, and IVOC emissions (sum of all anthropogenic SOA
precursors) were somewhat higher (40 %) in the VBS-IVOC
model compared to the VBS model for gasoline sources and
slightly lower (5 %) for diesel sources. In all models, gasoline
sources had substantially larger organic emissions than diesel
sources (e.g., 3.7, 42, 35, and 16 times more POA, BTEX,
ALK5, and IVOC for the VBS-IVOC model, respectively);
therefore, we anticipated much higher SOA production from
gasoline sources than from diesel sources.

2.2.2 SOA formation

SOA production from VOCs was simulated using the pa-
rameterizations of Murphy and Pandis (2009) except for
toluene (Hildebrandt et al., 2009). SOA production from
aromatics (toluene, xylene, and benzene), isoprene, and
monoterpenenes had high- and low-NOx yields; there was no
NOx dependence in the SOA yield from sesquiterpenes and
IVOCs. Emissions profiles for VOCs, IVOCs, and their SOA
yields, specific to gasoline and diesel tailpipe emissions, are
presented in Table S1.

IVOC emissions from gasoline and diesel sources were
represented separately using two (one for gasoline and
one for diesel) gas-phase species in the chemical mecha-
nism (CB05-TUCL) and the parameterizations of Jathar et
al. (2014) were used to estimate the SOA production from
the IVOC oxidation. Briefly, the IVOCs reacted with the
hydroxyl radical (OH) to form a set of semi-volatile prod-
ucts distributed in the VBS (Table S1). The stoichiomet-
ric mass yields for each product were determined by fitting
the SOA production measured in smog chamber experiments
performed with diluted vehicle exhaust (Jathar et al., 2014).
Following Woody et al. (2016), for all other sources (i.e., not
gasoline and diesel) SOA production from IVOCs was based
on the published yields for the SAPRC ARO2 model species
from Murphy and Pandis (2009).

SOA formed from VOCs and IVOCs was aged via re-
actions of the organic vapors with OH using a rate con-
stant of 2× 10−11 cm3 molecules−1 s−1. These aging reac-
tions formed products with a vapor pressure reduced by 1 or-
der of magnitude. Biogenic SOA was not aged based on pre-
vious findings that aging reactions over-predicted OA con-
centrations in rural areas (Fountoukis et al., 2011; Lane et
al., 2008; Murphy and Pandis, 2009). Semi-volatile POA va-
pors from all sources were aged using the scheme of Robin-
son et al. (2007) – gas-phase reactions with OH using a rate
constant of 4× 10−11 cm3 molecule−1 s−1, which lowered
volatility by an order of magnitude (Robinson et al., 2007).
Finally, the aging reactions also shifted a portion (∼ 10 %) of
the POA vapors to the anthropogenic SOA basis set to main-
tain O : C ratios (Koo et al., 2014). OH was artificially recy-
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cled in the IVOC oxidation and all aging reactions to prevent
double counting and impacts to the gas-phase chemistry of
the underlying chemical mechanism (Koo et al., 2014).

3 Results

Although the simulation domain covers the entire state of
California, we focused our analysis on model predictions
over southern California and the metropolitan area of Los
Angeles. This region is the second most populated area in
the US, has historically had severe air pollution problems,
and was the focus of a major air quality campaign (CalNex)
during the simulation period.

3.1 Spatial distribution of OA

Figure 2 shows maps of average predicted concentrations of
total OA (POA+SOA) from the VBS-IVOC model for the
following sources: (a) all, (d) gasoline, (e) diesel, (f) bio-
genic, and (g) other. In addition, Fig. 2 also plots the pre-
dicted ratios of (b) POA to OA and (c) SOA to OA. Average
predicted concentrations of OA in southern California ranged
between 1.5 and 3 µg m−3 with POA accounting for slightly
more than half of the OA in source regions such as downtown
Los Angeles (a “source” region was defined as one with high
anthropogenic emissions of species such as POA) and SOA
dominating in non-source regions and off the coast.

Gasoline sources were predicted to contribute ∼ 35 % of
the inland OA, while diesel sources contributed less than 3 %
(for details see Sect. 4). The predicted gasoline OA exhibited
a slightly different spatial pattern than total OA, with higher
downwind concentrations near Riverside than those near cen-
tral Los Angeles, reflecting the importance of atmospheric
production of SOA. As expected, biogenic SOA was more
important outside of the urban areas contributing 5 % of total
OA in urban areas versus 10–20 % in non-urban areas. Other
OA contributed slightly more than half of all OA in the urban
areas. Other OA was dominated by cooking POA, biomass
burning POA, and other anthropogenic SOA (see Fig. 4 for
contributions of these sources in Pasadena).

3.2 Model evaluation using OA mass and composition
measurements

The VBS-IVOC model was evaluated using measurements
made at the Chemical Speciation Network (CSN) and the
CalNex Pasadena ground sites. Figure 3a compares predicted
daily averaged OA mass concentration to measurements of
organic carbon (OC) made at six CSN sites in California
(Fresno, Bakersfield, Central Los Angeles, Riverside, El Ca-
jon, and Simi Valley). Figure 3b compares predicted daily
averaged OA concentrations to measurements made using
a high-resolution aerosol mass spectrometer (HR-AMS) in
Pasadena (Hayes et al., 2013). The CSN measurements were
multiplied by an OA : OC ratio to account for the non-carbon
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Figure 2. Averaged predictions from the VBS-IVOC model for
(a) total OA (µg m−3), (b) POA fraction, (c) SOA fraction, (d) total
gasoline OA (µg m−3), (e) total diesel OA (µg m−3), (f) biogenic
SOA (µg m−3), and (g) other OA (µg m−3) over southern Califor-
nia.

species associated with organic carbon (Turpin and Lim,
2001). While ambient OA : OC ratios can range between 1.4
and 2.3 (Aiken et al., 2008), we used a value of 1.6 in this
work based on previous estimates used for filter-based mea-
surements (e.g., Cappa et al., 2016). This value was consis-
tent with the OA : OC ratio of 1.7± 0.5 estimated by Hayes
et al. (2013) in Pasadena.

Predictions from the VBS-IVOC model were slightly
lower than the filter-based measurements at the CSN sites,
similar to other studies (Simon et al., 2012). The fractional
bias and fractional error versus CSN sites was−23 and 43 %,
respectively. At the CSN sites, predictions from the VBS-
IVOC model were marginally better at the southern Cali-
fornia sites (Central LA, Riverside, El Cajon, Simi Valley,
Pasadena) than the central California sites (Fresno, Bakers-
field). This may be due to sources related to oil and gas
production and agricultural activity being more important in
central California (Gentner et al., 2014).

Figure 3b indicates predictions from the VBS-IVOC
model were a factor of 3 lower than the HR-AMS OA data
at the Pasadena site. It is unclear why the model performs
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much better at numerous CSN sites than the Pasadena site.
One possibility is that the Pasadena site is influenced by lo-
cal sources and transport that is not captured by the model at
a 4 km resolution.

OA mass concentrations are only one measure for evalu-
ating model performance. Given the myriad sources of and
complexity in SOA production, a model can predict the right
absolute OA concentration for the wrong reason. There-
fore, it was important to evaluate the model against OA
composition. Figure 4 compares predicted POA and SOA
mass fractions to results from a positive matrix factoriza-
tion (PMF) analysis of HR-AMS measurements made in
Pasadena (Hayes et al., 2013). Since the absolute OA concen-
trations as measured with the HR-AMS were under-predicted
(Fig. 3b), we focused on OA mass fractions. Mass fractions
only allow for a qualitative comparison of the OA com-
position and any differences in the modeled and measured
mass fractions cannot be interpreted as an under- or over-
prediction in the absolute mass concentration.

Figure 4 compares model predictions to hydrocarbon-like
OA (HOA), cooking OA (COA) and oxygenated OA (OOA)
factors derived from the ambient HR-AMS data (Hayes et
al., 2013). The AMS HOA factor is typically associated
with POA from motor vehicles and other fossil fuel sources.
Therefore, in this work, it is compared against predictions of
POA from gasoline and diesel sources. The AMS COA fac-
tor is associated with primary cooking emissions and is com-
pared against predictions of POA from cooking sources. The
AMS OOA factor is associated with SOA and is compared
against predictions of total SOA; the model did not resolve
SOA by degree of oxygenation and hence we have not com-
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Figure 4. Averaged, normalized composition of OA at the Pasadena
ground site as predicted by the Traditional and VBS-IVOC models.
Predictions are compared to PMF factors derived from ambient HR-
AMS data collected in Pasadena Hayes et al. (2013).

pared predictions to the individual HR-AMS-derived semi-
volatile OOA (SV-OOA) and low-volatility OOA (LV-OOA)
factors.

Before discussing the normalized composition predicted
by the VBS-IVOC model, we briefly describe the findings
from Woody et al. (2016), who carefully compared the pre-
dictions of absolute concentrations of the VBS model to
the PMF factors estimated from the ambient HR-AMS mea-
surements. Woody et al. (2016) found that (i) the predicted
cooking-related OA concentrations compared well with the
COA factor during the morning but were low in the after-
noon and late night, (ii) non-cooking POA concentrations
compared well with the HOA factor except during the af-
ternoon when it was underpredicted, and (iii) predicted SOA
concentrations matched the diurnal profile of the OOA factor
but were a factor of 5 lower during all times of the day.

Figure 4 shows that the VBS-IVOC model better predicts
the POA–SOA split than the Traditional model. For the VBS-
IVOC model, the POA–SOA split was 1 : 1 versus∼ 20 : 1 for
the Traditional model. The measurement-based factor analy-
sis estimated a POA–SOA split of 1 : 2. For the Traditional
model, SOA contributed less than 3 % of the total OA.

In Fig. 4, we show that the predicted gasoline+diesel POA
fraction compared well with the HR-AMS HOA fraction
while the predicted cooking POA fraction was over-predicted
compared to the HR-AMS COA fraction. For the VBS-IVOC
model, about 6 % of the OA was from biomass burning, while
Hayes et al. (2013) were unable to determine a biomass burn-
ing factor in their PMF analysis of ambient data. The SOA
fraction predicted by the VBS-IVOC model was about 35 %
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lower than the estimated OOA fraction. It is unclear if the
predicted non-mobile, non-cooking and non-biomass burn-
ing POA (which in Pasadena accounts for ∼ 9 % of the OA)
should be combined with SOA before being compared with
ambient OOA factor. The non-mobile, non-cooking and non-
biomass burning POA (or anthropogenic (other) POA) cate-
gory here includes sources such as stationary fuel combus-
tion (e.g., natural gas combustion), surface coatings (e.g.,
metal coating), mineral processes (e.g., concrete production),
road dust and managed burning (e.g., prescribed burns). Un-
fortunately, the composition of the POA emitted from these
sources is not well understood and needs to be investigated
by future work.

Although predictions from the VBS-IVOC model were
much better than the Traditional model for the POA–SOA
split and the fractional source contribution/composition of
OA, in Fig. 3b we show that predictions from the VBS-IVOC
model were substantially lower than the absolute concentra-
tions measured by the HR-AMS. Future research should ex-
plore higher resolution simulations (< 1 km) for the Los An-
geles area, in addition to improving estimates of POA emis-
sions (e.g., cooking) and improved representations for SOA
formation (e.g., higher SOA yields when accounting for va-
por wall losses in chambers).

3.3 Model evaluation using IVOC measurements

A novel aspect of the VBS models (VBS and VBS-IVOC)
is that they track IVOCs, an important class of SOA precur-
sors (Jathar et al., 2014). Campaign-averaged predictions of
IVOC concentrations are compared in Fig. 5 against IVOC
measurements at the Pasadena ground site made by Zhao et
al. (2014). This was the first time 3-D model predictions of
IVOCs have been compared against ambient measurements.

The VBS-IVOC model did not simulate secondary produc-
tion of IVOC species (for lack of data) and hence model pre-
dictions in Fig. 5 only include primary emissions of IVOCs.
The IVOC measurements shown in Fig. 5 are split into two
categories: primary and oxygenated. Zhao et al. (2014) at-
tributed the measured primary IVOCs to emissions from mo-
bile sources (gasoline+ diesel) and oxygenated IVOCs to
primary sources and those formed in the atmosphere.

Predicted gasoline and diesel IVOC concentrations
(3.9 µg m−3) from the VBS-IVOC model were 35 % lower
when compared to the hydrocarbon IVOCs concentrations
measured by Zhao et al. (2014) (6 µg m−3). In contrast pre-
dictions from the VBS model were a factor of 4 lower
than the measurements, which highlights the improved rep-
resentation of IVOCs in the VBS-IVOC model; the Tradi-
tional model predicted essentially no IVOCs. The under-
prediction of VBS-IVOC could partly be a result of the
inability of the model with a 4 km horizontal resolution
to capture the location-specific concentrations at Pasadena.
The model–measurement comparison suggests that the VBS-
IVOC model reasonably simulated the emissions, transport,
and chemistry of IVOCs from mobile sources. Furthermore,
the VBS-IVOC model predicted that the majority of the hy-
drocarbon IVOCs originated from gasoline sources. Coinci-
dentally, the predicted IVOC sum for other anthropogenic
sources and biomass burning (4.3 µg m−3) compared well
with the measured oxygenated IVOCs (4.1 µg m−3). Given
the uncertainty in the model emissions of IVOCs for non-
mobile sources (POAx1.5), the comparison with oxygenated
IVOCs needs to be explored in future work.

3.4 Model intercomparison for OA

We compared predictions from the VBS-IVOC model to OA
predictions from Baker et al. (2015) and Woody et al. (2016),
who simulated air quality in California during CalNex. Fig-
ure S2 presents maps of averaged concentrations and ratios
of POA, SOA and total OA (POA+SOA) from the Tradi-
tional and VBS-IVOC models. The results were qualitatively
similar to earlier VBS implementations (Fountoukis et al.,
2014; Hodzic et al., 2010; Ahmadov et al., 2012; Shrivas-
tava et al., 2011; Tsimpidi et al., 2010) and previous compar-
isons between VBS and Traditional-like models (Robinson et
al., 2007; Shrivastava et al., 2008; Woody et al., 2016; Jathar
et al., 2011). In the VBS-IVOC simulation, total OA con-
centrations were lower in source regions (∼ 50 %) but ∼ 20–
40 % higher away from sources than the Traditional model.
The decrease in source regions was due to POA evaporation,
while an increase away from sources resulted from enhanced
SOA production. The OA predicted by the Traditional model
was dominated by POA (1–3 µg m−3) with very little SOA
(0.2–0.4 µg m−3), while the OA predicted by the VBS-IVOC
model had equal proportions of POA and SOA.

Figure S3 compares predictions of the VBS and VBS-
IVOC models, including average concentrations and ratios
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of POA, SOA and total OA (POA+SOA). The results were
surprisingly similar. POA concentrations in the VBS-IVOC
model were slightly lower (∼ 10 %) in source regions and
lower still in non-source regions (∼ 20 %) than the VBS
model. The SOA concentrations were nearly identical and
both models predicted more spatially uniform OA concen-
trations compared to the Traditional model. The modest dif-
ferences in POA and SOA likely resulted from a combination
of the following three reasons: (1) the magnitude of the total
SOA precursor emissions in the VBS and VBS-IVOC mod-
els were basically the same (see BTEX, ALK5 and IVOC
emissions data in Fig. 1 for mobile sources and in Table S2
for all sources), (2) gasoline and diesel sources contributed
only 30–40 % of the predicted OA concentrations in southern
California (see Sect. 5 for a detailed discussion), and (3) the
majority of the SOA predicted in southern California arose
from aging reactions.

Although the VBS and VBS-IVOC models contain very
different representations of mobile source emissions, these
emissions contributed, on average, to slightly more than one-
third of the total OA in southern California (see Sect. 4).
Therefore, the updates used in the VBS-IVOC model had a
limited influence in affecting the overall OA burden. Strict
regulations have dramatically reduced emissions from mo-
tor vehicles over the past three decades, which has both im-
proved air quality and increased the relative importance of
other sources to OA (McDonald et al., 2015). For example,
compared to mobile sources, cooking remains a possibly im-
portant, yet understudied, source of fine particle pollution in
urban airsheds.

The similarity between predictions from the VBS and
VBS-IVOC models was also due to the importance of aging
reactions. Both models used the same aging scheme applied
to POA and SOA vapors (for more details, see Koo et al.,
2014) To quantify its contribution to predicted SOA concen-
trations, we ran the VBS-IVOC model with aging reactions
turned off; these results are plotted in Fig. S4. Without ag-
ing, total predicted OA was nearly halved and SOA concen-
trations were significantly reduced (more than a factor of 5 in
source regions, a factor of 10 to 20 in terrestrial non-source
regions, and up to a factor of 40 over the ocean). Given that
mobile sources contributed only about one-third of the total
OA and that aging reactions significantly enhanced OA con-
centrations, it appears that modest differences in the emis-
sions and yield potential of SOA precursors between the VBS
and VBS-IVOC models had a limited effect on the OA bur-
den.

4 Gasoline versus diesel source contributions to OA

Recent analyses of the CalNex data have led to conflict-
ing conclusions about the contribution of gasoline and diesel
sources to OA in southern California (Bahreini et al., 2012;
Gentner et al., 2012; Ensberg et al., 2014; Hayes et al.,

2013, 2015; Zotter et al., 2014). The source resolution imple-
mented in the VBS-IVOC model allowed for an assessment
of the absolute and relative importance of gasoline and diesel
sources to OA in southern California. In Fig. 6, we plot the
campaign-averaged OA concentrations attributable to gaso-
line and diesel use. The SOA production from VOCs emitted
by gasoline and diesel sources was not tracked separately in
the model. Here, the SOA from VOCs was estimated based
on the contribution of gasoline and diesel sources to the emis-
sions of VOC precursors (BTEX and ALK5) in Los Angeles
and Orange counties.

In Pasadena, predictions from both VBS models showed
that gasoline sources contributed ∼ 7 to 8 times more OA
than diesel sources (Fig. 6a), which was somewhat lower
than other inland locations in southern California (Fig. 6b).
Domain-wide, the median predicted gasoline contribution to
OA was 13 times that of diesel. At Pasadena, predictions
from the VBS-IVOC model showed that gasoline contributed
20 times more SOA than diesel. Both VBS models pre-
dicted that the combined (gasoline and diesel) POA-to-SOA
split was ∼ 1 : 3, implying that the contribution of gasoline
and diesel sources to ambient OA strongly depends on SOA
production and not directly emitted POA. Based on results
from the VBS-IVOC model, gasoline sources produced more
SOA than POA (SOA∼ 3.6xPOA) while diesel sources pro-
duced less SOA than POA (SOA∼ 0.5xPOA). Comparison
of the POA predictions from the VBS-IVOC model to ambi-
ent measurements made by Ban-Weiss et al. (2008) suggests
that the on-road gasoline POA in the model may be over-
predicted by a factor of 2, although this over-prediction does
not significantly change the gasoline/diesel contribution to
OA. Finally, the emissions inventory (see Table S1) suggests
that the Traditional model (with a non-volatile POA and little
SOA production) would have predicted that gasoline sources
contribute 4 times more OA than diesel sources.

Our predictions for the large contribution of gasoline
vehicle exhaust to SOA were consistent with the week-
day/weekend analysis of Bahreini et al. (2012) and quali-
tatively similar to the findings of Zotter et al. (2014) and
Hayes et al. (2013). However, Hayes et al. (2015) predicted
a much larger contribution of diesel sources to SOA than
this work (only 1.5 to 2 times lower than gasoline), which
can mostly be attributed to the differences in emissions in-
puts for S/IVOC emissions. (Hayes et al. (2015) estimated
that 44–92 % of the SOA comes from S/IVOCs. Hayes et
al., 2015 estimated S/IVOC emissions by scaling POA emis-
sions based on Schauer et al. (1999) and using the volatility
distribution from Robinson et al. (2007). The POA scaling
data are from two medium-duty vehicles manufactured more
than two decades ago and the volatility data are from a sin-
gle diesel engine manufactured a decade ago. In contrast, our
work used a much more comprehensive dataset to determine
S/IVOC emissions from gasoline and diesel sources.

We also investigated the sensitivity of the VBS-IVOC pre-
dictions to uncertainty in diesel IVOC emissions. Zhao et
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Figure 6. (a) VBS-IVOC predicted campaign-averaged OA concentrations attributable to gasoline and diesel sources at the ground site
in Pasadena; the IVOCx1 result for diesel use is from the VBS-IVOC simulation, and the IVOCx3 and IVOCx5 results are from separate
sensitivity simulations where IVOC emissions from diesel are scaled by a factor of 3 and 5, respectively, as described in the text. (b) Ratio of
gasoline OA to diesel OA over southern California and (c) cumulative distribution functions that show the fractional contribution of gasoline
plus diesel OA to total OA in southern California.

al. (2015) recently directly measured the IVOCs from emis-
sions of on-road diesel engines. They found that IVOCs
could contribute up to 60 % of the NMOG emissions, which
was much greater than the 20 % used here. To explore the
implications of the findings of Zhao et al. (2015), we per-
formed two additional sensitivity simulations with the VBS-
IVOC model where we scaled IVOC emissions from diesel
sources by a factor of 3 and 5, which were effectively equiv-
alent to IVOC-to-NMOG ratios of 0.6 and 1.0, respectively.
For these simulations, additional IVOC mass was added to
the inventory.

Results from the IVOC sensitivity simulations are also
shown in Fig. 6a. We found that increasing the IVOC emis-
sions proportionally increased the OA contribution from
diesel sources. However, even if all of the NMOG emis-
sions from diesel were IVOCs (an upper bound estimate),
gasoline-related OA still dominated OA from diesel sources.
A factor of 5 increase in IVOC emissions only resulted in
a 0.025 µg m−3 increase in total OA mass concentration.
Therefore, uncertainty in the diesel IVOC emissions did
not appear to alter the model–measurement comparison dis-
cussed earlier.

Figure 6c shows the cumulative distribution for the frac-
tional contribution of gasoline and diesel sources to to-
tal OA across southern California. Gasoline sources con-
tributed much more to the total OA (median contribution
of 35 %) than diesel sources (median contribution of 2.6 %)
over southern California (Fig. 6c). Together, mobile sources
(gasoline and diesel use) contributed ∼ 30–40 % (10th–90th
percentile) of the predicted OA concentration in southern
California. Therefore, mobile sources remain the single most
important source despite decades of increasingly strict emis-
sions controls. The balance of the OA was from cooking POA
(median contribution of 10 %), biogenic SOA (median con-
tribution of 10 %) and all other anthropogenic sources (me-
dian contribution of 40 %, which includes SOA from cook-

ing sources). Gasoline sources were still predicted to be the
largest single source category. This finding partially supports
the conclusion of Ensberg et al. (2014) that mobile sources
do not contribute to the majority of OA in southern Califor-
nia and potentially explains why the updates only modestly
changed the overall model predictions.

Figure 6a resolves the OA contributions based on the pre-
cursor class at the Pasadena site. The VBS-IVOC model
predicted that IVOCs, particularly from gasoline vehicles,
formed almost as much SOA as VOCs (long alkanes and
single-ring aromatics). This was in contrast to Jathar et
al. (2014), who found that unspeciated precursors (or IVOCs)
were approximately a factor of 4 larger than VOCs in form-
ing SOA in chamber experiments. One possible explanation
for this difference was that Jathar et al. (2014) did not ac-
count for the effects of continued aging of IVOC oxidation
products on OA concentrations. Simulations with the VBS-
IVOC model with aging reactions turned off (discussed in
Sect. 3.4) indicate that aging enhanced VOC SOA by a fac-
tor of 14 but enhanced IVOC SOA only by a factor of 3–5.
The different enhancements were caused by different prod-
uct distributions for VOC and IVOC SOA in volatility space.
This underscores the uncertainty in the treatment of aging
reactions.

Platt et al. (2014) and Gordon et al. (2013) recently argued
that off-road sources, especially those powered using two-
stroke engines, can be a large contributor to fine particle pol-
lution in cities. In the inventory of Baker et al. (2015), which
was used in this work, off-road sources contributed to∼ 40 %
of the NMOG and∼ 40 % of the POA emissions from mobile
sources. Given their substantial emissions, it is critical then
that emissions rates from these sources be accurately repre-
sented in large-scale models. Only one study so far has re-
ported VOC and IVOC emissions profiles from off-road en-
gines. May et al. (2014) have found that two-stroke off-road
gasoline engines have similar emissions profiles as on-road
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gasoline engines, but that the four-stroke off-road gasoline
engines had much higher IVOC fractions than on-road gaso-
line engines. However, Platt et al. (2014) have shown that
most of the SOA produced from two-stroke off-road gaso-
line engines can be explained by the emissions and oxidation
of aromatic compounds and they did not find IVOCs to be
an important precursor of SOA. In our work, we have as-
sumed that the VOC speciation, IVOC fraction of NMOG,
and the SOA parameterization for IVOCs were identical be-
tween the on- and off-road mobile sources. Given the uncer-
tainties, these assumptions may need to be examined in detail
in future work.

5 Conclusions

In this work, we developed an updated version of the CMAQ
model that included revised estimates of (i) VOC and IVOC
SOA precursors from gasoline and diesel sources and (ii) ex-
perimentally constrained parameterizations for SOA pro-
duction from IVOCs. Predictions of OA mass concentra-
tions from the updated model (VBS-IVOC) slightly under-
predicted daily averaged, filter-based measurements at CSN
sites in California during May and June 2010 (fractional
bias=−23 % and fractional error= 43 %) but were a factor
of 3 lower than aerosol mass spectrometer-based measure-
ments made at Pasadena as part of the CalNex campaign.
The Pasadena site may have been influenced by local sources
and transport not captured by the model at a 4 km resolution.
We recommend future modeling studies to be performed at
higher resolution.

When compared to a Traditional model of OA in CMAQ
that includes a non-volatile treatment of POA and no SOA
from IVOCs, the VBS-IVOC model produced different spa-
tial patterns of OA with lower (∼ 50 %) concentrations in
source regions but higher (∼ 20–40 %) concentrations away
from the sources. The VBS-IVOC model in comparison to
the Traditional model improved predictions of the sources
and composition of OA. These findings are consistent with
previous comparisons between the Traditional and VBS
models and highlight the importance of the use of an OA
model that includes semi-volatile and reactive POA and SOA
formation from IVOCs.

Predictions of OA from the VBS-IVOC model were sim-
ilar to those from a recently released research version of
CMAQ (VBS) that included semi-volatile POA and SOA for-
mation from IVOCs (Woody et al., 2016). The predictions
of these two models were similar for three reasons. First,
the VOC and IVOC updates in this work, surprisingly, did
not substantially alter the total emissions of SOA precur-
sors in southern California (although the VOC-IVOC com-
position was different between the two models for gasoline
sources). Second, mobile sources only accounted for slightly
more than one-third of the total OA in southern California
and hence updates to the emissions and SOA production from

mobile sources had a limited influence on the total OA bur-
den. Third, and most important, was that both models pre-
dicted that multigenerational aging of vapors in equilibrium
with OA was a major source of SOA. Both models used sim-
ilar aging mechanisms that were conceptually based on the
work of Robinson et al. (2007), which assumed a constant
reaction rate constant and only allowed for the formation
of functionalized, lower-volatility products. However, reac-
tion rates may vary with C∗ and O : C of the OA and frag-
mentation reactions can be increasingly important at longer
timescales (Kroll et al., 2011). Furthermore, existing aging
mechanisms have not been constrained with laboratory data.
This implies that the OA predictions, despite the substantial
new data, are poorly constrained as one moves downwind
of source regions. Murphy and Pandis (2009) reported im-
proved model performance when aging reactions were turned
off for biogenic SOA. Recently, Jathar et al. (2016) proposed
that laboratory chamber experiments that were used to pa-
rameterize SOA production may already include products
from some aging reactions, raising concerns about double
counting. Although some work has been done to understand
the aging of biogenic SOA (Donahue et al., 2012; Henry and
Donahue, 2012); future laboratory work needs to be directed
in understanding the role of aging of OA vapors formed from
anthropogenic sources on the mass and properties of OA.

For the first time, we compared model predictions to am-
bient measurements of IVOCs. The new VBS-IVOC model
better predicted the ambient IVOC concentrations compared
to the Traditional and VBS models. This suggests that the
updated model reasonably simulated the emissions, transport
and chemistry of IVOCs from mobile sources. However, the
model representation of IVOCs from non-mobile sources re-
mains poorly constrained and needs to be explored through
future emissions, laboratory and modeling studies.

Finally, the VBS-IVOC model predicted that mobile
sources accounted for 30–40 % of the OA in southern Cali-
fornia, with half of the OA being SOA. The diurnal variation
of OA in Pasadena supports the hypothesis that substantial
OA is produced through photochemical reactions vs. primary
emissions (Hayes et al., 2013). Gasoline-powered sources
contributed 13 times more OA than diesel-powered sources
and sensitivity simulations indicated that these findings were
robust to changes in diesel emissions. Model predictions sug-
gested that half of the mobile source SOA was formed from
the oxidation of IVOCs, which demonstrates the importance
of including IVOCs as an SOA precursor. However, the rela-
tive contribution of VOCs and IVOCs to SOA formation was
sensitive to the inclusion of aging reactions. While both lab-
oratory and field evidence indicates that aging is an impor-
tant atmospheric process, it is unclear if and by how much
aging enhances OA over regional scales and whether aging
chemistry varies by precursor and source (Jathar et al., 2016).
For these reasons, the relative importance of VOC and IVOC
SOA precursors and the source apportionment presented here
is a first estimate and will likely evolve as we develop better
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models to simulate the dependence of aging on SOA forma-
tion.

Data availability. Datasets associated with this work will be avail-
able through the EPA Environmental Dataset Gateway at https:
//edg.epa.gov/.
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