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Abstract. This review paper explores recent efforts to es-
timate state- and national-scale carbon dioxide (CO2) and
methane (CH4) emissions from individual anthropogenic
source sectors in the US. Nearly all state and national cli-
mate change regulations in the US target specific source sec-
tors, and detailed monitoring of individual sectors presents a
greater challenge than monitoring total emissions. We partic-
ularly focus on opportunities to synthesize disparate types of
information on emissions, including emission inventory data
and atmospheric greenhouse gas data.

We find that inventory estimates of sector-specific CO2
emissions are sufficiently accurate for policy evaluation at
the national scale but that uncertainties increase at state
and local levels. CH4 emission inventories are highly un-
certain for all source sectors at all spatial scales, in part
because of the complex, spatially variable relationships be-
tween economic activity and CH4 emissions. In contrast to
inventory estimates, top-down estimates use measurements
of atmospheric mixing ratios to infer emissions at the sur-
face; thus far, these efforts have had some success identi-
fying urban CO2 emissions and have successfully identified
sector-specific CH4 emissions in several opportunistic cases.
We also describe a number of forward-looking opportuni-
ties that would aid efforts to estimate sector-specific emis-
sions: fully combine existing top-down datasets, expand in-
tensive aircraft measurement campaigns and measurements
of secondary tracers, and improve the economic and demo-
graphic data (e.g., activity data) that drive emission invento-
ries. These steps would better synthesize inventory and top-
down data to support sector-specific emission reduction poli-
cies.

1 Introduction

Government regulations of greenhouse gas (GHG) emis-
sions have evolved rapidly in the past 5 years, particularly
in the US. The US pledged to decrease its GHG emissions
by 26–28 % relative to 2005 levels by 2025 as part of the
Paris Agreement negotiated at COP21 (UNFCCC, 2016). In
parallel with this agreement, the US Environmental Protec-
tion Agency (EPA) has finalized CO2 and CH4 emission
regulations for numerous source sectors under the White
House Climate Action Plan (Executive Office of the Presi-
dent, 2013). Several US states have also taken aggressive ac-
tion on emissions, including Massachusetts (Massachusetts
Executive Office of Energy and Environmental Affairs, 2015)
and California (Air Resources Board, 2014), among others.

These policy actions require scientists and government
agencies to quantify regional- and national-scale GHG emis-
sions from specific source sectors. In this paper, we define a
source sector as the total emissions from an industry, such as
CO2 from power plants, CH4 from the oil and natural gas in-
dustries, or CH4 from landfills. This review paper focuses on
existing and evolving capabilities for the US. The US has far
greater resources to estimate emissions relative to many de-
veloping countries. Furthermore, GHG emission regulations
in the US are nascent relative to regulations in Europe (e.g.,
Prahl and Hofman, 2014), and the monitoring strategies dis-
cussed in this review could be developed in parallel with new
regulations.

Many national emission regulations in the US target this
sector level (Note: the new presidential administration that
assumed office in January 2017 has announced its intention
to discard several of these regulations.). For example, the US
Clean Power Plan mandates a 32 % decrease in power sec-
tor CO2 emissions by 2030 relative to 2005 levels (US EPA,
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2015a). The EPA and National Highway Traffic Safety Ad-
ministration have also extended and strengthened CO2 emis-
sion standards for cars and light trucks through 2025 (US
EPA Office of Transportation and Air Quality, 2012). In addi-
tion to these measures, the EPA has set several sector-specific
CH4 emission targets. In May of 2016, the EPA issued a rule
that will decrease CH4 emissions from oil and gas opera-
tions by 40–45 % relative to 2012 levels by 2025 (US EPA,
2016a). In August of 2014, the US EPA, US Department of
Agriculture (USDA), and US Department of Energy (DOE)
released the Biogas Opportunities Roadmap targeting volun-
tary reduction strategies for agriculture (USDA et al., 2014).
Lastly, the EPA announced regulations for CH4 emissions
from landfills in July 2016 (EPA, 2016b). It is important to
note that a number of these national policies are implemented
at the state level. For example, each state has a different emis-
sion reduction target under the Clean Power Plan, and each
state can decide how to meet and monitor progress toward
that target (US EPA, 2015a).

We examine sector-specific GHG estimates with an eye to-
ward combining or assimilating multiple data streams. This
review article is part of a special issue of the European Geo-
physical Union (EGU) journals that focus on data assimi-
lation and the use of multiple data streams to understand
the carbon cycle. In this context, we explore opportunities
to creatively synthesize both bottom-up emission inventories
and top-down atmospheric inverse modeling. Most govern-
ment agencies estimate emissions using bottom-up invento-
ries, which quantify total emissions by estimating the total
amount of some activity and the average emissions per unit of
activity. Other efforts utilize top-down atmospheric inverse
modeling, which measures atmospheric GHG mixing ratios
and use those measurements to infer the level and distribution
of emissions at the Earth’s surface. In the future, scientists
and government agencies will likely need to combine these
approaches into frameworks that can synergistically leverage
the information content of bottom-up datasets and top-down
strategies using atmospheric GHG data to robustly estimate
sector-specific emissions. This review paper focuses on these
opportunities.

These frameworks will need to address two key tasks:
estimating the total quantity of GHG emissions from each
source type and detect changes or trends in emissions from
that source type. From the standpoint of inverse modeling,
the former problem is more challenging than estimating to-
tal emissions and requires separating the space–time patterns
of one emission source from the patterns of other sources.
In the latter case, we not only need to estimate a trend in
total emissions but also to attribute this trend to trends in
specific source sectors. This challenge is complicated by
changes in technology and changes in the spatial or tempo-
ral distribution of individual source sectors. For example, hy-
draulic fracturing and horizontal drilling became widely used
in the past decade (US Energy Information Administration,
2015). These operations utilize new equipment and opera-

tional practices, and the spatial distribution of drilling across
the US has changed during that time; these emissions are lit-
erally a “moving target”.

These challenges are further complicated by GHG fluxes
from the biosphere, particularly in the case of CO2. Bio-
spheric and fossil fuel sources will be important to disag-
gregate from one another for sound policy evaluation. These
sources are often colocated and trends in one could be mis-
taken for trends in the other. In addition, future changes in
biospheric CO2 and CH4 sources may be natural or human-
caused (e.g., land use change, emissions induced by cli-
mate change, biological and/or geological carbon sequestra-
tion). Disentangling these natural and human causes will be
challenging. Note that GHG fluxes from the biosphere and
biological–geological carbon sequestration are beyond the
scope of this review.

In this article, we explore the challenge of estimating
sector-specific emissions from several perspectives. First,
we discuss bottom-up inventory efforts. We then explore
top-down strategies to estimate sector-specific emission and
the atmospheric datasets available to make both bottom-up
and top-down estimates. Next, we highlight several new or
novel approaches for estimating sector-specific emissions,
and lastly, we close the review with a synthesis discussion
of forward-looking opportunities for combining bottom-up
and top-down strategies.

2 Bottom-up data

Bottom-up efforts typically use an accounting-type approach
to estimate sector-specific emissions. The first step usually
involves collecting activity data: a map or database of eco-
nomic activity or behavior that leads to emissions. Examples
include the amount of coal burned by power plants, the num-
ber of passenger cars and miles traveled, and the number of
cows by location. A second step entails estimating a set of
emission factors (EFs) for each activity. EFs could include
the CO2 emissions per kilogram of coal burned or the av-
erage CO2 emissions per mile traveled by passenger cars.
The product of these two numbers provides a bottom-up es-
timate of emissions for a given source sector. State and na-
tional governments in the US use this strategy to construct
official emission estimates (e.g., California Air Resources
Board, 2015; US EPA, 2016c). A number of academic and
government efforts have produced bottom-up CO2 and CH4
emission estimates at local–regional (e.g., Gately et al., 2013;
Jeong et al., 2014; Lyon et al., 2015; California Air Re-
sources Board, 2015), national (e.g., Pétron et al., 2008; Gur-
ney et al., 2009; Gately et al., 2015; US EPA, 2013; Environ-
ment and Climate Change Canada, 2016; Maasakkers et al.,
2016), and global scales (e.g., Rayner et al., 2010; Andres
et al., 2011; Oda and Maksyutov, 2011; Olivier et al., 2014;
EC JRC/PBL, 2016). In this section, we primarily discuss
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bottom-up data with an eye toward how this information can
be combined with top-down strategies.

2.1 A prototypical example

We describe the EPA’s estimate of CO2 emissions from coal-
fired power plants as a prototypical example of how govern-
ment agencies construct bottom-up inventory estimates. The
EPA describes the procedure that it uses to estimate CO2
emissions in compliance with 2006 IPCC guidelines (US
EPA, 2016c): first, the agency estimates activity data – coal
use by source sector. The EPA uses retail statistics from the
electricity sector to estimate total consumption by each type
of end user (e.g., residential, commercial). Second, the EPA
adjusts these activity data to account for non-combustion
uses, double-counted emissions, and fuel exports and/or im-
ports. For example, a coal gasification plant in North Dakota
produces synthetic natural gas; this fuel is added to natural
gas activity data and subtracted from the coal activity data.
According to the EPA, “Because this energy of the synthetic
natural gas is already accounted for as natural gas combus-
tion, this amount of energy is deducted from the industrial
coal consumption statistics to avoid double counting” (US
EPA, 2016a). Third, the EPA estimates the carbon content
of the coal. The EPA uses Energy Information Administra-
tion (EIA) estimates of carbon content by coal rank and state
of origin (Hong and Slatick, 1994). The EPA then computes
the weighted average carbon content of coal by state of ori-
gin and estimates the end use of coal produced in each state
(e.g., electricity, industry). The agency uses this procedure to
estimate the average carbon content (and EF) for each end
use sector in the US (US EPA, 2016c).

IPCC guidelines also require a reference approach: an ad-
ditional verification or consistency check against fuel pro-
duction, imports, and exports (US EPA, 2016c). The new
draft inventory then goes through expert review undertaken
by a panel of technical experts. The EPA revises its inven-
tory estimate based upon this review and distributes the sub-
sequent draft for public comment. At the conclusion of that
process, the EPA issues its finalized inventory estimate.

The approach outlined above is similar to many govern-
ment inventories. More recently, a number of academic ef-
forts have developed very different approaches that leverage
novel data streams (e.g., satellite images of lights at night) or
that use gridded activity data, and these efforts are described
in detail in the next section.

2.2 Recent bottom-up efforts

In the past 10 years, inventory efforts have moved from
coarse estimates that rely heavily on proxy activity data to
spatially resolved estimates that use specific activity data and
EFs that are tailored to the heterogeneities in each emission
source.

A number of recent CO2 inventories incorporate more
comprehensive activity data or detailed EFs than previously
available. At the regional scale, Gurney et al. (2012) and
Gately et al. (2013) develop on-road CO2 emission estimates
for Indianapolis and Massachusetts, respectively. Emissions
in the latter study are within 8.5 % of Federal Highway Ad-
ministration fuel consumption statistics but differ from the
commonly used, global-scale EDGAR inventory by 22.8 %
(Olivier et al., 2014; EC JRC/PBL, 2016). The authors ex-
plain that many global-scale efforts use road density as a
proxy for vehicle emissions but argue that the relationship
between road density and emissions is not constant. Two sub-
sequent studies (McDonald et al., 2014; Gately et al., 2015)
estimate on-road CO2 emissions for the entire US at spatial
resolutions down to 1 km2. McDonald et al.’s 2014 emission
estimates differ from EDGAR by 20–80 % at the municipal
level, though the two inventories produce nearly identical na-
tional totals.

At the national scale, the VULCAN inventory (Gurney
et al., 2009) is the most comprehensive academic effort to
date. This inventory includes CO2 emissions by sector at
high spatial and temporal resolutions – 10 km× 10 km – sub-
daily for the year 2002. Furthermore, VULCAN uses more
detailed activity data than the EPA’s national inventory. At
the global scale, the EDGAR anthropogenic emission inven-
tory (available for 1970–2010) has moved from a 1◦ × 1◦

lat–long resolution to 0.1◦ × 0.1◦ (Olivier et al., 2014; EC
JRC/PBL, 2016). In a separate effort, Andres et al. (2011)
estimate CO2 emissions for 80 countries for the years 1950–
2006, with a particular focus on estimating the seasonal cycle
of CO2 emissions.

A number of studies incorporate more detailed activity
data and EFs to estimate anthropogenic CH4 emissions at
both regional and national scales. At the regional scale, Jeong
et al. (2014) and Lyon et al. (2015) estimate oil and gas CH4
emissions from California for 2010 and the Barnett Shale
region for 2013, respectively. Both studies find emissions
that greatly exceed the EPA’s estimates. A relatively small
fraction of emitters account for the majority of oil and gas
emissions, and Lyon et al. (2015) argue that rigorous EFs
capture this skewed distribution more effectively than those
used by the EPA. In addition to these oil and gas invento-
ries, Owen and Silver (2015) compile field studies of CH4
emissions from agriculture (e.g., cattle, sheep, and manure
management). The authors explain that current emission in-
ventories use EFs from lab-based experiments, not field ob-
servations. These field observations imply much higher EFs
that result in larger emissions, which are more in line with ex-
isting top-down estimates. At the national scale, Maasakkers
et al. (2016) create a gridded version of the EPA’s CH4 in-
ventory (0.1× 0.1 lat–long, monthly resolution for 2012).
Maasakkers et al. (2016) point out that the spatial distri-
bution of their estimate is different from EDGAR, particu-
larly for the oil and gas industries. Oil and gas emissions
in EDGAR correlate with population density, while emis-
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sions in Maasakkers et al. (2016) are concentrated in drilling
basins.

A number of additional studies also employ novel inven-
tory methodology or novel proxy datasets. For example, Oda
and Maksyutov (2011) develop ODIAC (Open-source Data
Inventory of Anthropogenic CO2), a global gridded CO2 in-
ventory constructed using a database of CO2 point sources
and satellite images of lights at night. Rayner et al. (2010)
and Asefi-Najafabady et al. (2014) develop a data assimila-
tion framework known as FFDAS (Fossil Fuel Data Assimi-
lation System). The authors use datasets like population den-
sity, carbon intensity of energy, and satellite images of lights
at night, and they report national emission totals. Davis and
Caldeira (2010) use a very different approach from any of the
studies above. The authors build a CO2 estimate based upon
economic imports and exports and explore the idea of carbon
“leakage”, the carbon emitted by one country to manufacture
products that are then imported by another country. These
studies do not provide emission estimates for each individual
source sector, but ODIAC and FFDAS do incorporate novel
datasets to separate point sources (e.g., power plants) from
non-point emissions.

The EPA’s GHG Reporting Program (GHGRP) represents
an important advancement in government inventory efforts.
The EPA announced the GHGRP in 2009 and emission re-
porting began in 2010 (US EPA, 2013). The GHGRP requires
all entities that emit over 25 000 metric tons of CO2 equiva-
lents to report their emissions to a national registry (US EPA,
2013). This reporting threshold is equivalent to the GHG
emissions of 3439 homes or 5263 cars (US EPA, 2015c). The
agricultural sector is excluded from this threshold and is not
required to report its emissions. Despite these omissions, the
EPA estimates that 85–90 % of US GHG emissions are cov-
ered under the GHGRP. Other recent studies, however, ar-
gue that the GHGRP is less complete than estimated by the
EPA for two reasons (e.g., Kort et al., 2014; Karion et al.,
2015; Lan et al., 2015; Lavoie et al., 2015; Lyon et al., 2015;
Mitchell et al., 2015; Subramanian et al., 2015; Zimmerle
et al., 2015). First, the emissions that are excluded from the
GHGRP are sometimes larger than estimated by the EPA, and
second, the EFs used in the GHGRP are smaller than actual
emissions from some source sectors like oil and natural gas.

2.3 Recent, direct measurements that support
bottom-up efforts

Inventory development requires two different types of data:
activity data and data that can be used to develop EFs. Ac-
tivity data can come from economic, census, and remote
sensing datasets, among other possible data sources. These
datasets differ from those used to develop EFs. The IPCC
provides a database of EF estimates but encourages countries
to take measurements of emitters or emitting processes to de-
velop tailored, country-specific EFs (Goodwin et al., 2006).
A number of observation strategies can directly support the

development and evaluation of country-specific EFs. We dis-
cuss a number of recent efforts here as well as the advantages
and challenges of using these datasets.

One observation strategy is to measure GHG mixing ra-
tios near an emitter or a group of emitters. These observa-
tions, by factor of their targeted spatial scale, can be directly
used to evaluate a single source type and develop correspond-
ing EFs. For example, a number of studies report on direct
GHG measurements from individual facilities. These include
direct stack measurements of power plant CO2 emissions
(e.g., Teichert et al., 2003) and numerous recent studies of
CH4 emissions from oil and gas operations: measurements
of emissions from pneumatic controllers (Allen et al., 2015),
compressor stations (Subramanian et al., 2015), transmission
and storage systems (Zimmerle et al., 2015), and abandoned
wells (Kang et al., 2014). In addition, several site-level stud-
ies target agricultural emissions. Kebreab et al. (2008) and
Sejian et al. (2010) review several measurement strategies,
and Owen and Silver (2015) specifically review field studies
of CH4 emissions from manure.

On-road measurements provide a picture of emissions that
is one spatial scale larger than direct facility observations.
This strategy usually entails measuring trace gas mixing ra-
tios from a ground-based vehicle either on public roads (e.g.,
Maness et al., 2015) or private roads in partnership with the
facility owner (e.g., Roscioli et al., 2015). Existing studies
often target oil and gas facilities (e.g., Roscioli et al., 2015;
Brantley et al., 2014; Jackson et al., 2014; Lan et al., 2015;
Mitchell et al., 2015; Subramanian et al., 2015) and mobile
CO2 emissions (e.g., Brondfield et al., 2012; Maness et al.,
2015). In the case of oil and gas emissions, Brantley et al.
(2014) explain that mobile measurements capture an inte-
grated plume that includes all leaks from a given facility but
rarely indicate which components caused those leaks.

The use of facility-level and on-road observations entails a
number of challenges. For example, facility-level observa-
tions provide the most insight into detailed emission pro-
cesses from specific source sectors but can miss emission
events or processes. Observations of oil and gas facilities pro-
vide a prime example; scientists may not know about some
leaks and therefore may not measure them, other leaks may
be in inaccessible locations (e.g., Subramanian et al., 2015),
and the largest leaks often come from ephemeral equipment
failures at a small number of facilities that are difficult to
identify (e.g., Brantley et al., 2014; Allen, 2014; Allen et al.,
2015). Cost also limits facility-level, continuous emission
monitoring; it is typically only used for large point sources
like power plants (National Research Council, 2010).

These observation strategies also require extrapolation to
produce state- or national-scale EF estimates. The relation-
ship between activity data and emissions can be complex and
spatially variable, making it difficult to extrapolate facility or
on-road measurements. For example, CH4 emissions from oil
and gas are likely dominated by a small number of malfunc-
tioning facilities. As a result, it is difficult to develop robust,
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Figure 1. EDGAR and the EPA inventory estimates for different US
fossil fuel source sectors (Olivier et al., 2014; US EPA, 2016c), in-
cluding several versions of each inventory. CO2 estimates are con-
sistent between the EPA and EDGAR and among inventory ver-
sions. CH4 estimates, however, vary widely, which is an indication
of uncertainty in CH4 emissions. All of the estimates are for 2005
except for EDGAR FT2000, which is for 2000. Note that EDGAR
includes CO2 from heating in its electricity estimate while the EPA
does not. As a result, the EDGAR CO2 estimate is higher than the
EPA’s estimate.

national-scale EFs from a modestly sized sample of facilities
(Allen, 2014). Furthermore, Brantley et al. (2014) explain
that these leaks do not correlate with production and can vary
greatly in time. Different oil and gas drilling basins also have
different overall leakage rates – from 0.3 % in Pennsylva-
nia’s Marcellus Shale region to 8.9 % in Utah’s Uintah Basin
(e.g., Karion et al., 2013, 2015; Pétron et al., 2014; Peischl
et al., 2015). These factors make it challenging to create con-
sistent, generalizable EFs that can translate activity data into
emissions.

These considerations also apply to other source sectors be-
yond the oil and gas industries. For example, grazing and
manure management practices differ by region, and manure
and landfill CH4 emissions also differ by climate (US EPA,
2016c), all of which make extrapolation more challenging.

2.4 Impact of recent advances

Inventory estimates of sector-specific CO2 emissions from
the US are likely relatively accurate at the national scale
but have substantial uncertainties at the local and state lev-

els. Ackerman and Sundquist (2008), for example, compare
smokestack versus fuel-based CO2 estimates for US power
plants and find a mean absolute difference of 16.6 % but only
a 1.4 % total difference at the national scale. Furthermore,
Gately et al. (2015) find biases of 100 % or more at the urban
scale in CO2 emission estimates for mobile sources. How-
ever, they estimate a US national total that is broadly consis-
tent with other inventories like VULCAN.

By contrast, sector-specific CH4 emissions are more chal-
lenging to estimate and existing inventories for the US are
highly uncertain at state and national scales. For example,
several top-down studies indicate that the California state in-
ventory is likely too low by a factor of 1.2 to 1.9 (Jeong
et al., 2013, 2016; Wecht et al., 2014b), and several top-down
studies estimate emissions for oil and gas drilling regions of
Utah and Colorado that are up to 3 times bottom-up estimates
(e.g., Karion et al., 2013; Pétron et al., 2014). Overall, total
US CH4 emissions are likely∼50 % larger than estimated by
EDGAR or the US EPA (Miller et al., 2013; Wecht et al.,
2014a; Turner et al., 2015). Figure 1 compares several inven-
tory estimates of sector-specific CO2 and CH4 emissions. Ex-
isting CO2 inventory estimates are broadly consistent, while
CH4 estimates vary between inventories and among inven-
tory versions.

CH4 inventories are so uncertain, in part, because of the
complexity of many anthropogenic CH4 source sectors. For
example, emission factors for oil and gas operations are dif-
ficult to estimate because a small number of emitters often
account for a large fraction of emissions (e.g., Allen, 2014;
Allen et al., 2015; Brantley et al., 2014; Lan et al., 2015;
Mitchell et al., 2015) and because there are so many points
along the natural gas production, processing, transmission,
and distribution cycle that leak methane (e.g., Kang et al.,
2014; Allen et al., 2015; McKain et al., 2015; Subramanian
et al., 2015; Zimmerle et al., 2015).

Much of the uncertainty in CH4 inventories stems from
difficulties developing accurate EFs. Brandt et al. (2014) ex-
plains, “... measurements for generating emission factors are
expensive, which limits sample sizes and representativeness.
Many EPA EFs have wide uncertainty bounds. And there are
reasons to suspect sampling bias in EFs, as sampling has oc-
curred at self-selected cooperating facilities.” For example,
the EPA’s EFs for natural gas pipelines are based on a limited
number of samples from a 1996 EPA and Gas Research In-
stitute study; these EFs have uncertainties of ±65 % (Beusse
et al., 2014). Beyond the oil and gas industry, Owen and Sil-
ver (2015) also argue that many EFs for agriculture are too
low. These estimates are based upon a small number of pilot
or lab experiments that were not explicitly designed for GHG
inventory development.
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3 Top-down, inverse modeling strategies

In this section, we discuss inverse modeling strategies –
strategies that leverage observations of atmospheric GHG
mixing ratios to infer emissions at the Earth’s surface. We
specifically focus on strategies that attempt to parse the con-
tribution of specific source sectors. The first part of this dis-
cussion (Sect. 3.1–3.2) focuses on efforts at local, urban, and
regional scales. These studies do not provide direct state- or
national-level estimates but could be combined or extrap-
olated to quantify emissions at larger spatial scales. Many
studies in this category target source sectors that do not over-
lap spatially, at least at the spatial scale of interest. The sec-
ond part of this discussion (Sect. 3.3–3.4) explores inverse
modeling efforts that directly quantify sector-specific emis-
sions at the state and national levels. These efforts use obser-
vation networks that are sensitive to emissions across broad
geographic regions. These efforts must also devise strategies
to disentangle emissions from multiple, spatially overlapping
source sectors.

3.1 Local-scale inverse modeling

Local-scale inverse modeling can best attribute emissions
when the study region has a single, dominant source type.
An estimate of total emissions for the region thus provides
insight into the source sector of interest.

Studies that fall within this category often employ one of
a few different strategies to estimate emissions. For exam-
ple, many efforts use a simple box-modeling approach to es-
timate emissions (e.g., Turnbull et al., 2011; Karion et al.,
2013, 2015; Caulton et al., 2014; Schneising et al., 2014;
Cambaliza et al., 2015; Peischl et al., 2015), while others
use an atmospheric transport model to relate GHG observa-
tions to emissions (e.g., McKain et al., 2012, 2015). Stud-
ies that use the former strategy typically estimate emissions
in a few steps: first, they make GHG measurements upwind
and downwind of the region of interest. Second, they use
the difference between these measurements, the rate of flow
through the “box” (i.e., wind speed adjusted by pressure),
and the volume of the box (i.e., the area of the box and the
mixing height of the atmosphere) to calculate total emissions
in the box. Most studies that use box modeling estimate a to-
tal flux for the region of interest, a number that is not spatially
resolved.

Other studies in this category use a more involved ap-
proach: they model atmospheric GHG mixing ratios using
an emission inventory and an atmospheric transport model.
Subsequently, these studies scale the inventory using a sin-
gle scaling factor (β) to better match modeled mixing ratios
against measured mixing ratios:

yk =

ms·mt∑
j=1

hk,j (x
a
j )+ εk (1)

xaj = βxbj . (2)

In these equations, yk is an atmospheric GHG observation
at a given time and location k. It is one of n total obser-
vations (k = 1. . .n). The variable xj denotes the emissions
from a model grid box j at a specific location and time, and
the function hk,j () is an atmospheric transport model that
relates the surface emissions from grid box j to observa-
tion yk . The variable ms denotes the total number of model
grid boxes in space, and mt denotes the number of time pe-
riods. In one study, this emission estimate varies both spa-
tially and temporally (McKain et al., 2012), and in another
study, the emission estimate varies spatially but was constant
in time (mt = 1; McKain et al., 2015). The superscripts a
and b denote an emission inventory and final emission es-
timate, respectively. In addition, the variable εk denotes the
cumulative error in the model and measurement (e.g., error
in the estimated transport, in the measurement, and in the
estimated emissions, among other errors). The objective of
this approach is to scale an inventory estimate using a single
scaling factor (β) so that modeled atmospheric mixing ratios
on the right-hand side of Eq. (1) reproduce the n-observed
atmospheric mixing ratios (yk where k = 1. . .n).

These local-scale efforts can target sources with very large
emissions or very uncertain emissions. For example, many
existing studies target emissions from cities. Cities account
for 70 % of global fossil fuel CO2 emissions; thus, insight
into urban emissions provides insight into a large fraction
of total anthropogenic GHG emissions (US Energy Informa-
tion Administration , EIA). Note that studies in this category
generally do not discriminate among different urban source
sectors but can provide insight into the contribution of ur-
ban CO2 sources versus power plant CO2 sources (which of-
ten occur well outside city limits). Existing efforts estimate
CO2 emissions for Indianapolis, Indiana (Mays et al., 2009);
Sacramento, California (Turnbull et al., 2011); and Salt Lake
City, Utah (McKain et al., 2012), as well as CH4 emissions
from Boston, Massachusetts (McKain et al., 2015), and Indi-
anapolis (Cambaliza et al., 2015). McKain et al. (2012) and
McKain et al. (2015) use the approach in Eq. (1), while the
other studies implement box models.

Other studies in this category target oil and natural gas in-
dustry emissions. Existing studies use aircraft observations
to estimate CH4 emissions from Utah’s Uintah drilling basin
(Karion et al., 2013); southwest Pennsylvania (Caulton et al.,
2014); Colorado’s Denver–Julesburg Basin (Pétron et al.,
2014); the Barnett Shale in Texas (Karion et al., 2015; Lavoie
et al., 2015); and the Haynesville, Fayetteville, and Marcel-
lus Shale regions (in Texas, Arkansas, and Pennsylvania, re-
spectively) (Peischl et al., 2015). In addition to these aircraft-
based studies, one study uses the SCIAMACHY instrument
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on the Envisat satellite to estimate CH4 emissions from the
Eagle Ford and Bakken Shale regions in Texas and North
Dakota, respectively (Schneising et al., 2014). Several of
these studies find leakage rates that greatly exceed the EPA’s
estimated emission factors (e.g., Karion et al., 2013; Pétron
et al., 2014; Schneising et al., 2014), while other studies esti-
mate leakage rates that are comparable to the EPA’s numbers
(e.g., Caulton et al., 2014; Peischl et al., 2015). Differences
in drilling technology and practices from one basin to another
may account for these contrasting results (e.g., Peischl et al.,
2015).

These local-scale inverse modeling studies confer a num-
ber of advantages relative to other top-down strategies. These
strategies capture emissions from all facilities in a given re-
gion, including those with anomalously high emissions. In
the past, the EPA has had difficulty designing facility-level
measurements that adequately sample these anomalous emit-
ters (Sect. 2.4). An additional advantage of these strategies is
their ease of implementation relative to those discussed in
subsequent sections (Sect. 3.3–3.4). Box modeling requires
an estimate of air flow into and out of the box, but this ap-
proach does not require a full atmospheric transport model.
Furthermore, the strategies discussed in this section are not as
computationally intensive as many of the state- and national-
scale strategies discussed later in Sect. 3.3.

These strategies also bring a number of challenges. Nearly
all of the oil and gas studies listed above use data from a sin-
gle measurement campaign and provide a temporal snapshot
of emissions. GHG emission reduction policies make it nec-
essary to monitor trends, a goal that requires sustained mon-
itoring. In addition, a locality or region must have one domi-
nant source sector or have spatially (or temporally) nonover-
lapping source sectors in order to attribute emissions using
this strategy (e.g., Hutyra et al., 2014; Peischl et al., 2015).
For example, Peischl et al. (2015) estimate oil and gas emis-
sions from drilling regions that also contain livestock, land-
fills, and wastewater treatment facilities, all of which produce
CH4 emissions. The authors subtract an inventory estimate
of these non-hydrocarbon CH4 sources from their estimated
emission total, and they attribute the remaining emissions to
oil and gas activities. The authors point out that these non-oil
and gas source sectors are small contributors relative to oil
and gas operations (8.5–19 % of the CH4 emission total in
each region), and uncertainties in these other source sectors
would likely have a small impact on their oil and gas emis-
sion estimate.

Complex environmental conditions and the associated at-
mospheric transport errors can also pose a challenge for
local-scale inverse modeling strategies, particularly for box
models. A simple box modeling setup can be difficult to ap-
ply when atmospheric advection, vertical mixing, or upwind
“clean air” measurements are highly heterogeneous across
the box. For example, Turnbull et al. (2011) report that their
CO2 budget for Sacramento, estimated using a box model,
is uncertain by a factor of 2 due to uncertainties in estimated

wind speed and upwind clean air mixing ratios. Furthermore,
Karion et al. (2015) estimate CH4 emissions for the Bar-
nett Shale that vary from 4.4 × 104 to 10.9 × 104 kg h−1,
depending on the flight. However, the authors explain that
two of the eight flights occurred during nonideal meteoro-
logical conditions, and the range of estimates narrows to
6.1×104 to 8.8×104 kg h−1 when those flights are excluded
from the analysis. Atmospheric transport models can simu-
late more complex atmospheric transport patterns relative to
box models but still have difficulty modeling local- or urban-
scale phenomena, including small-scale turbulent eddies, air
flow through street canyons, and vertical mixing in a human-
built landscape (e.g., Nehrkorn et al., 2013). These modeling
challenges also apply to the state- and national-scale strate-
gies discussed in Sect. 3.3–3.4. New innovations in atmo-
spheric monitoring and instrumentation may reduce some of
these uncertainties. Cambaliza et al. (2014), for example, ex-
plain that lidar instruments can measure atmospheric mix-
ing height, and lidar deployment could therefore improve
certain aspects of atmospheric modeling, particularly at lo-
cal and regional scales. In addition, several studies develop
high-resolution meteorological simulations, in part to better
resolve atmospheric GHG transport in urban environments
(e.g., McKain et al., 2012, 2015; Nehrkorn et al., 2013).

3.2 Observations that support local-scale inverse
modeling

Many recent, local-scale observation efforts focus on urban
monitoring and on oil and gas basins. Existing urban, at-
mospheric measurement networks include Salt Lake City,
Utah (McKain et al., 2012); Los Angeles, California (Duren,
2016); Oakland, California (Cohen, 2016), the Bay Area Air
Quality Management District (Fairley and Fischer, 2015);
and Indianapolis, Indiana (Mays et al., 2009; Cambaliza
et al., 2015; Lauvaux et al., 2016). Recent local-scale air-
craft campaigns include the INFLUX campaign focused on
the Indianapolis metro region (Cambaliza et al., 2015), the
SENEX and SONGNEX campaigns focused on multiple oil
and gas drilling basins (Peischl et al., 2015; NOAA Chem-
ical Sciences Division, 2016), and the Barnett Coordinated
Campaign (Smith et al., 2015; Karion et al., 2015; Fig. 2). In
addition to these urban and oil and gas studies, Lindenmaier
et al. (2014) and Frankenberg et al. (2016) use spectroscopic
CO2 and CH4 observations, respectively, to identify emis-
sions from resource extraction in the Four Corners region of
the western US.

The observational strategies described above are relatively
diverse. These efforts include a combination of aircraft and
stationary sites (e.g., telecommunication towers or building
rooftops). Some of these campaigns provide a 1- or 2-day
snapshot in time (e.g, most oil and gas studies), while other
campaigns involve sustained measurements over 1 year or
more (e.g., urban observation networks like LA Megacities
and the Indianapolis INFLUX project).
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Figure 2. This figure highlights different CO2 observation networks
and how the spatial coverage of those networks differ. These net-
works include tower and regular aircraft sampling sites (a); several
recent, intensive aircraft campaigns (b); the GOSAT satellite (c);
and the OCO-2 satellite (d). Note that the dots in each panel are not
equivalent. An in situ monitoring site in panel (a) often provides
continuous or daily data, while each dot in panels (c) (GOSAT) and
(d) (OCO-2) indicates the location of a single observation. Public
towers and public aircraft sites are operated by NOAA, DOE, En-
vironment Canada, and partners, and the sites shown are current
through 2016. Private towers are operated by Earth Networks, and
the locations here are current through 2012. Most tower and aircraft
sites also include CH4 observations, as does GOSAT.

3.3 State- and national-scale inverse modeling

The top-down strategies discussed in this section provide
sector-specific GHG emission estimates across larger re-
gions, regions that typically have several overlapping source
sectors. Furthermore, these strategies make spatially variable
adjustments to existing inventories, unlike the strategies out-
lined in Sect. 3.1. The three strategies discussed in this sec-
tion use both GHG observations and inventories to attribute

sector-specific emissions. Each approach, however, uses a
different mix; the first approach relies most heavily on ex-
isting inventories, while the last relies most on GHG obser-
vations.

Overall, these strategies have been relatively successful at
attributing CH4 emissions, but promising strategies for CO2
are nascent. Biospheric CO2 fluxes are large relative to an-
thropogenic CO2 emissions at diel to monthly timescales,
particularly during the growing season, and the spatiotem-
poral distribution of these fluxes is highly uncertain (e.g.,
Huntzinger et al., 2012). These factors have limited the suc-
cess of CO2-focused efforts.

The first strategy discussed here scales the individual
source sectors in a bottom-up inventory. This setup is often
similar to a multiple linear regression:

xaj =

p∑
i=1

βix
b
j,i, (3)

where i denotes an individual source sector from a bottom-
up inventory, and p indicates the total number of source
sectors in the inverse model. The observational constraint
(yk) in this approach is the same as in Eq. (1). This setup
also assumes that the initial emission estimate (xbj,i , where
j = 1. . .ms ·mt and i = 1. . .p) is defined at each ms spa-
tial location, at each mt time period, and for each p source
sector. In one study, this initial emission estimate is spa-
tially but not temporally resolved (e.g., mt = 1; Zhao et al.,
2009), while in another study, it is resolved in both space
and time (Jeong et al., 2013). The p unknown scaling fac-
tors (βi , where i = 1. . .p) adjust the magnitude of different
source sectors in the bottom-up inventory; these factors are
estimated by the inverse model. As a result of this setup, the
estimated emissions (xaj ) will always be a linear combination
of source-specific emission patterns in an existing bottom-up
inventory. Studies that use this approach often estimate the
scaling factors (βi) using Bayesian statistics; these frame-
works can weigh uncertainty in the measurements (yk) and
in the atmospheric model (hk,j ) against uncertainty in the
initial or prior guess for the scaling factors (typically one;
e.g., Rayner et al., 2016).

A handful of studies leverage this approach to attribute
emissions of CH4. For example, Zhao et al. (2009) and Jeong
et al. (2013) use atmospheric measurements from tall towers
to estimate emissions from individual source sectors in Cali-
fornia. Both studies find higher CH4 emissions from agricul-
ture relative to the EDGAR emission inventory.

This scaling factor approach brings several strengths and
weaknesses. An advantage of this approach is that it not only
provides an estimate of total emissions but also the contri-
butions of individual source sectors. The approach can be
relatively easy to implement from a statistical perspective.
With that said, one still needs to run an atmospheric transport
model and must have an estimate of background or upwind,
clean air mixing ratios.
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A notable challenge of this strategy is that it requires ac-
curate knowledge of the spatial distribution of each source
sector. The estimated emissions will always be a linear com-
bination of source-specific emission patterns from an exist-
ing inventory, and errors in the spatial distribution of these
inventories will propagate into errors in sector-specific attri-
bution. Furthermore, the atmospheric GHG observations (yk)
must be sensitive to differences in the space–time patterns
among different source sectors. Worded differently, each of
the p source sectors must have differing spatiotemporal pat-
terns, and each sector must explain substantial variability of
the observations (yk). If the former condition does not hold,
then some of the p source sectors will be collinear; colin-
earity can lead to unphysical scaling factors (βi) and unre-
alistically large uncertainty estimates (e.g., Zucchini, 2000).
If the latter condition does not hold, then the scaling factors
may be poorly constrained by the data, resulting in uncertain
or unrealistic sector-specific estimates. To account for these
challenges, Jeong et al. (2013) only report source-specific es-
timates when they obtain scaling factors that are statistically
significantly different from zero.

A second common inverse modeling strategy scales an
emission inventory at the model grid level to better repro-
duce the atmospheric observations (yk). All of the strategies
discussed previously scale the spatial patterns in an existing
inventory. By contrast, this strategy scales the emission level
at each location in the model domain, and the resulting es-
timate can have spatial patterns that are different from any
inventory. These estimates have the following general form:

xaj = βjx
b
j . (4)

Note that xbj and xaj are the total emissions from model grid
box j , not the emissions by sector. Hence, the scaling fac-
tors (βj where j = 1. . .ms ·mt ) adjust total emissions, and
all of the ms ·mt factors are typically estimated simultane-
ously. Several studies estimate scaling factors that vary spa-
tially but are the same at each time step (e.g., Wecht et al.,
2014a, b; Turner et al., 2015). One study allows the scaling
factors to vary in both space and time (Jeong et al., 2016).
This approach is also Bayesian in nature: the modeler sets an
initial guess for the scaling factors (typically unity) and an
uncertainty in that initial guess; this information guides the
estimate for the scaling factors, particularly when these fac-
tors are under-constrained by the available observations (yk;
e.g., Rayner et al., 2016).

This strategy does not support attribution in and of it-
self, but several studies adapt this approach for that purpose.
These studies attribute emissions in each model grid cell (j )
using the attribution in a bottom-up inventory. For example,
let’s say that an inventory estimates that 60 % of the emis-
sions in a given grid cell are from oil and gas and 40 % are
from cattle and manure. The inverse modeling estimate will
attribute emissions in that grid box in the same proportion:

xaj,i = βjx
b
j,i . (5)

All variables in this equation are as defined earlier. As a result
of this setup, the total emissions in any one model grid box
may differ from the inventory. However, the relative magni-
tude of the source sectors in any one grid box will be the
same as in the bottom-up inventory.

Wecht et al. (2014b) and Jeong et al. (2016) leverage
this strategy to estimate CH4 emissions for California us-
ing aircraft and tower-based observations, respectively. Like
Zhao et al. (2009) and Jeong et al. (2013), they also find
higher emissions from agriculture relative to EDGAR. Wecht
et al. (2014a) and Turner et al. (2015) further apply this
strategy to attribute emissions at continental scales; these
studies use Envisat/SCIAMACHY and the GOSAT satel-
lite, respectively, to estimate sector-specific CH4 emissions
across North America. Both studies estimate larger emis-
sions from agriculture relative to the EPA and EDGAR in-
ventories. Turner et al. (2015) estimate oil and gas emissions
that are a factor of 2 larger than EDGAR, while Wecht et al.
(2014a) find that these emissions are broadly consistent with
EDGAR.

This strategy has a number of advantages and weaknesses
relative to other approaches. The strategy can be used to es-
timate emissions at grid scale, and the resulting emission es-
timate will not be a linear combination of existing inven-
tory estimates. However, it assumes that the inventory has
correctly estimated the relative magnitude of each emission
source in each model grid box. Errors in this relative magni-
tude will produce errors in the sector-specific attribution.

Third, a number of studies leverage a strategy known
as geostatistical inverse modeling (GIM) to estimate GHG
fluxes generally (e.g., Michalak et al., 2004; Gourdji
et al., 2008, 2012) and anthropogenic emissions specifically
(Miller et al., 2013, 2016; Shiga et al., 2014; ASCENDS Ad
Hoc Science Definition Team, 2015; Yadav et al., 2016). This
approach attributes patterns in the emissions to individual an-
thropogenic source sectors when possible. However, it will
leave emissions as unattributable when those emissions do
not match the space–time patterns in any bottom-up inven-
tory or when the information content of the atmospheric ob-
servations is insufficient for attribution:

xaj =

p∑
i=1

βix
b
j,i + ξj . (6)

The elements xbj,i can be individual source sectors from a
bottom-up inventory (similar to Eq. 3). The inverse model
will then map the emissions onto those patterns to the ex-
tent possible. The inverse model will further add (or subtract)
emissions at the model grid scale to better reproduce the at-
mospheric observations (yk). These emissions are denoted by
ξj (where j = 1. . .ms ·mt ), and a GIM typically labels the
emissions in ξj as unattributable. Furthermore, existing stud-
ies allow xbj,i and ξj to vary both spatially and temporally
with j , in contrast to the studies described earlier in this sec-
tion. Note that existing GIM studies fix the coefficients (βi)

www.atmos-chem-phys.net/17/3963/2017/ Atmos. Chem. Phys., 17, 3963–3985, 2017



3972 S. M. Miller and A. M. Michalak: Sector-specific CO2 and CH4 emissions

in both space and time. In reality, the relationship between
xbj,i and GHG emissions may vary spatially and temporally
by grid box j . Two recent GIM studies experiment with al-
lowing the coefficients to vary by region or biome in the
context of anthropogenic (Shiga et al., 2014) and biospheric
(Fang and Michalak, 2015) fluxes.

Several studies leverage this strategy in the context of both
anthropogenic CH4 and CO2 emissions. Miller et al. (2013)
use a GIM and in situ atmospheric measurements to esti-
mate sector-specific CH4 emissions in the US; like Turner
et al. (2015), they find higher emissions from the agricul-
ture and oil and gas sectors relative to inventory estimates.
Miller et al. (2016) also use this strategy to separate CH4
emission patterns due to wetlands from anthropogenic emis-
sions and to evaluate bottom-up estimates of the former emis-
sion category. Two studies (Shiga et al., 2014; ASCENDS
Ad Hoc Science Definition Team, 2015) implement a GIM-
based framework to identify anthropogenic CO2 emission
patterns using in situ and satellite CO2 observations. They
investigate whether the atmospheric signal resulting from an-
thropogenic CO2 emissions can be reliably identified given
the confounding signal from biospheric CO2 fluxes. They
find that in situ and remote sensing CO2 networks can only
identify anthropogenic emissions in a few regions during a
few months of the year.

The GIM approach makes more conservative assumptions
relative to other source attribution strategies discussed in this
section. A GIM will only attribute emissions to patterns in a
bottom-up inventory when that inventory matches patterns in
the atmospheric GHG observations. In Miller et al. (2013),
for example, the GIM maps 60 % of total US CH4 emissions
onto patterns in the EDGAR inventory but indicates that
40 % of the total emissions are unattributable to the patterns
in any bottom-up dataset. By contrast, the other approaches
discussed above will attribute 100 % of the emissions. In
GIM studies like Miller et al. (2013), the unattributable emis-
sions indicate shortfalls in either the GHG observation net-
work or available bottom-up data. In the former case, exist-
ing atmospheric observations do not provide enough infor-
mation to reliably estimate sector-specific emission patterns.
For example, the information content of the atmospheric ob-
servations in Miller et al. (2013) is insufficient to uniquely
constrain emissions from coal mining, and those emissions
are included in ξj instead of

∑p

i=1βix
b
j,i . In the latter case,

the unattributable emissions in ξj indicate inaccuracies in the
spatial distribution of available inventory estimates. Many
existing inventories do not have well-developed activity data
for the oil and gas industry, and the unattributable emissions
in Miller et al. (2013) provide information about shortfalls in
these activity datasets.

Yadav et al. (2016) modify the existing GIM framework
to better isolate anthropogenic CO2 emissions. The authors
exploit differences in the spatiotemporal properties of bio-
spheric versus fossil fuel fluxes to do this attribution. Specif-
ically, the authors argue that biospheric fluxes have smooth

spatiotemporal patterns, and fossil fuel emissions do not have
smooth patterns. The authors then partition ξj into two com-
ponents (smooth and non-smooth) and attribute these emis-
sions to the biosphere and fossil fuels, respectively. The study
examines emissions in January when biospheric fluxes are
smaller than in other months.

In summary, this section discusses statistical innovations
that help isolate individual emission sources. In addition to
these innovations, accurate models of atmospheric transport
also play a crucial rule. A number of studies indicate the dele-
terious influence of transport errors. For example, Shiga et al.
(2014) argue that atmospheric transport errors hinder the de-
tection of fossil fuel emission patterns across the US. The
authors also argue that biospheric fluxes mask fossil fuel pat-
terns to a similar degree. Numerous additional studies exam-
ine the effects of transport errors on CO2 modeling, though
not in the context of fossil fuel emissions (e.g., Stephens
et al., 2007; Liu et al., 2012; Miller et al., 2015).

Several efforts could reduce these transport modeling er-
rors. Like urban-scale studies (Sect. 3.1), national inverse
modeling studies have also begun moving toward high-
resolution meteorology simulations. These studies simulate
atmospheric GHG transport at high resolution over the US
and Canada and utilize coarser resolutions elsewhere to save
on computational costs. For example, national-scale stud-
ies using the Weather Research and Forecasting (WRF)
model model GHG transport at resolutions of up to 8–10 km
(Nehrkorn et al., 2010; Gourdji et al., 2012; Miller et al.,
2013), and studies using the GEOS-Chem model simulate
CH4 transport at resolutions of up to ∼50km (e.g., Wecht
et al., 2014a; Turner et al., 2015). In addition to these ef-
forts, NASA’s Atmospheric Carbon and Transport – America
campaign (ACT–America, Fig. 2a) aims to diagnose and re-
duce atmospheric transport errors (NASA, 2016). The cam-
paign includes new tower sites and 5 years of aircraft flights
across the eastern US. Many flights will travel through frontal
systems and extratropical cyclones to better characterize and
evaluate atmospheric transport errors.

3.4 Observations that have been used to attribute
emissions at state and national scales

The observations discussed in this section do not provide a
direct constraint on an individual source sector but have been
used by existing regional- and national-scale inverse model-
ing studies (Sect. 3.3) to support sector-specific attribution.
These observations are typically distributed across a broad
geographic region. They are therefore sensitive to emissions
over a large area and can constrain larger regions, albeit with
less detail than the local approaches discussed in Sect. 3.2.

Observations in this category include air samples collected
atop telecommunication towers and from aircraft: the NOAA
tall-tower observation network (Andrews et al., 2014), reg-
ular NOAA aircraft monitoring (Sweeney et al., 2015), the
Environment and Climate Change Canada tower monitoring
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network (Environment and Climate Change Canada, 2011),
the California Greenhouse Gas Research Monitoring Net-
work (e.g., Zhao et al., 2009; Jeong et al., 2012, 2013, 2016),
and a privately funded tower network operated by Earth Net-
works (Fig. 2). Most of the inverse modeling studies dis-
cussed in the previous section (Sect. 3.3) use these in situ
observation networks to estimate sector-specific emissions
(Zhao et al., 2009; Jeong et al., 2013; Miller et al., 2013;
Shiga et al., 2014; ASCENDS Ad Hoc Science Definition
Team, 2015; Jeong et al., 2016).

The current tower network is sensitive to emissions from
some source sectors but not to others. Many of the NOAA
tall towers and regular aircraft sites are in or near the Great
Plains. As a result, the network has sensitivity to agricul-
tural emissions and to several oil and gas basins but has little
sensitivity to emissions from east coast population centers.
Earth Networks, by contrast, has focused its efforts on the
east coast proximal to large population centers. The state of
California has a dense network of publicly operated towers.
In contrast to these regions, the network is sparse across the
western US outside of California and northern Colorado. On
the one hand, the population in these regions is sparse and
some emission sectors are likely to be small (e.g., vehicle
emissions). On the other hand, large resource extraction re-
gions are beyond reach of the long-term monitoring network,
regions like the Powder River basin coal mining region of
Wyoming or the Bakken oil and gas basin in Montana and
North Dakota.

NOAA’s regular aircraft monitoring network complements
these tower-based sites. The flights measure GHG mixing ra-
tios across a vertical atmospheric profile. These datasets can
help evaluate vertical mixing and transport in atmospheric
transport models, and observations from the middle and up-
per troposphere can be used to quantify background clean air
mixing ratios, a necessity for the inverse modeling studies
described in Sect. 3.3. A downside is that NOAA’s aircraft
profiles are usually limited in frequency to one or two times
per month, unlike towers, which often have continuous ob-
servations. Scientists at NOAA have also invented a technol-
ogy known as AirCore that can observe vertical atmospheric
GHG profiles from a weather balloon (Karion et al., 2010).
This technology could become a key component of the long
term monitoring network in the future.

A number of intensive aircraft campaigns provide observa-
tions across entire state or multi-state regions (Fig. 2). These
include the 2010 CalNex campaign (Ryerson et al., 2013),
the 2013 SEAC4RS campaign (Toon et al., 2016), and the
ACT-America campaign (2015–2019; NASA, 2016). A few
existing studies use these observations to attribute state-wide
emissions. For example, Wecht et al. (2014b) use CalNex
data to attribute state-wide CH4 emissions from California.

Several satellites make total column observations of CO2
and CH4 (e.g., AIRS, TES, IASI, Envisat/SCIAMACHY,
GOSAT, OCO-2, and GHGSat). Streets et al. (2013) describe
a number of these satellites in detail, and Jacob et al. (2016)

provide a thorough overview of CH4-observing satellites.
Several of these satellites (Envisat/SCIAMACHY, GOSAT,
OCO-2, and GHGSat) observe in the shortwave infrared.
Relative to other satellites, these four are more sensitive to
GHG mixing ratios in the lower troposphere and, hence, to
emissions at the surface (e.g., Chevallier et al., 2005; Wecht
et al., 2012). Only a handful of existing studies use these
datasets to attribute sector-specific emissions in the US, and
these studies focus on CH4, not CO2 (e.g., Schneising et al.,
2014; Wecht et al., 2014a, b; Alexe et al., 2015; Turner et al.,
2015). For example, Turner et al. (2015) use GOSAT obser-
vations to estimate sector-specific CH4 emissions in North
America and find results that are broadly consistent with
emission estimates derived from the US tall-tower and air-
craft monitoring network (Miller et al., 2013). Wecht et al.
(2014b), however, explain that GOSAT observations are too
sparse to constrain CH4 emissions from California outside of
the Los Angeles Basin.

4 Novel strategies that could be used for estimating
sector-specific emissions

This section discusses two observational strategies that sup-
port top-down modeling efforts, strategies that show promise
for estimating sector-specific emissions. First, we discuss the
potential of upcoming and proposed satellite-based GHG ob-
servations. Next, we discuss the utility of “secondary trac-
ers”. These gases or isotopologues are co-emitted with GHGs
and aid in sector-specific attribution.

4.1 New satellite-based GHG observations

Existing satellites could hold enormous potential for estimat-
ing fossil fuel emissions. For example, several studies indi-
cate that Envisat/SCIAMACHY and GOSAT should be able
to constrain CO2 emissions from large cities or large indus-
trial regions (e.g., Schneising et al., 2008; Kort et al., 2012;
Schneising et al., 2013). Kort et al. (2012) further argue that
GOSAT could detect a trend as small as 22 % from Los An-
geles. OCO-2 and GHGSat should be even more capable.
OCO-2 observations have a smaller footprint and precision
relative to GOSAT. As a result, the satellite should be able to
constrain CO2 from large power plants (National Research
Council, 2010). The privately funded GHGSat makes tar-
geted observations over specific point sources with a smaller
footprint than OCO-2 and should therefore be ideal for con-
straining large point sources (Kramer, 2017).

Other studies offer a more skeptical perspective on cur-
rent satellite capabilities. Keppel-Aleks et al. (2013) ar-
gue that variations in total column CO2 due to fossil fuel
emissions are largely obscured by biospheric fluxes. Fur-
thermore, Gavrilov and Timofeev (2015) find large biases
(4.7± 2.6 ppm) in GOSAT retrievals of CO2. Future retrieval
improvements could reduce these biases (e.g., Dils et al.,
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2014; Buchwitz et al., 2015). An additional challenge is that
current satellites do not provide comprehensive global map-
ping and are therefore not well-suited for monitoring all ur-
ban areas and point sources (Fig. 2); Miller et al. (2007) point
out that OCO-2 covers only 7–12 % of Earth’s land surface.
Trend detection can also be challenging. Individual satel-
lites have limited lifetimes, and different satellite datasets
with unique error characteristics and biases can be difficult
to compare.

Future satellites, both selected and proposed, offer a num-
ber of improvements over existing capabilities. Some, like
GOSAT-2 (selected), have better precision relative to the ex-
isting generation of satellites (Matsunaga et al., 2016). Other
future satellites have a wide swath (CarbonSat, proposed) or
are geostationary (GeoCARB and GEO-CAPE; selected and
proposed, respectively). They would generate higher density
observations across the US relative to OCO-2 and GOSAT
(Fishman et al., 2012; Polonsky et al., 2014; Bovensmann
et al., 2015; Buchwitz et al., 2013; Bousserez et al., 2016;
Pillai et al., 2016). Lidar-based missions (e.g., MERLIN and
ASCENDS; selected and proposed, respectively) measure in
the absence of sunlight and through thin or scattered clouds
(Kiemle et al., 2011; ASCENDS Ad Hoc Science Definition
Team, 2015). As a result, these satellites would also generate
dense observations relative to current satellites, particularly
at high latitudes.

These future satellites should have sufficient precision and
small footprints to constrain CO2 emissions from power
plants. They should also have better spatial coverage to mon-
itor a greater number of emitters. For example, Bovensmann
et al. (2010) report that the proposed CarbonSat satellite
should be able to constrain CO2 emissions from a mid-sized
power plant to within 12–36 %. Other studies, by contrast,
indicate that future missions like ASCENDS would have dif-
ficulty constraining regional-scale fossil fuel CO2 emissions
from the US (ASCENDS Ad Hoc Science Definition Team,
2015) and would have limited ability to detect continental-
scale changes in emissions (Hammerling et al., 2015). In ad-
dition to CO2, future CH4 observations also show promise.
For example, the TROPOMI sensor is scheduled to launch in
2017. A year of observations should be sufficient to detect
the largest 1 % of grid cells in the EPA’s gridded CH4 inven-
tory (Maasakkers et al., 2016), equivalent to 30 % of total
national emissions (Jacob et al., 2016). Jacob et al. (2016)
define emissions as detectable if the total column CH4 en-
hancement is more than twice the sensor precision at aggre-
gated timescales.

4.2 Secondary tracers

Secondary tracers are co-emitted with GHGs and are often
emitted from only a small number of source sectors. These
tracers make it possible to isolate and factor out at least a
portion of natural fluxes or factor out emissions from source
sectors that are not of primary interest. The top-down ap-

proaches discussed previously either require a limited geo-
graphic scope or accurate activity data to effectively estimate
sector-specific emissions. Secondary tracers could identify
sector-specific emissions without these limitations (though
secondary tracers present challenges of their own). Exam-
ples of secondary tracers include radiocarbon (14C), ethane,
13CO2, 13CH4, and carbon monoxide (CO). We focus on ra-
diocarbon and ethane because they hold particular promise.

4.2.1 Radiocarbon

Radiocarbon is produced by cosmic rays in the upper at-
mosphere and has a lifetime of approximately 5730 years
before decaying back to 12C. Since the mid 1950s, nuclear
bomb testing has elevated radiocarbon within the atmosphere
(Bowman, 1990). CO2 fluxes from the biosphere will mir-
ror the isotopic composition of the atmosphere at the time
that carbon was incorporated into the plant. CO2 emissions
from fossil fuels, by contrast, contain no radiocarbon because
fossil fuel reservoirs are far older than the decay lifetime of
radiocarbon, and these reservoirs have not interacted with at-
mospheric carbon during the intervening time period.

Several exploratory studies use radiocarbon to separate the
atmospheric CO2 signal from biogenic versus anthropogenic
emissions. One study uses radiocarbon measurements from
the US east coast to estimate the relative contribution of fos-
sil fuel versus biogenic emissions (Miller et al., 2012). An-
other study reports on radiocarbon measurements in Califor-
nia (Riley et al., 2008). Graven et al. (2011) and LaFranchi
et al. (2013) use radiocarbon observations from an aircraft
and a tall tower, respectively, to estimate the contribution of
anthropogenic and biogenic CO2 emissions in Colorado. Be-
yond these studies, radiocarbon measurements are not widely
used in regional- or continental-scale inversions.

Radiocarbon is not widely used, in part, because only a
handful of atmospheric monitoring sites in the US report
radiocarbon measurements. An expanded observation net-
work shows enormous potential. NOAA and its partners cur-
rently measure radiocarbon in air samples from eight tall-
tower sites, three mountaintop sites, and four aircraft sites
in the US. NOAA collects these samples up to three times
per week at tall-tower and mountaintop sites and collects up
to two to three samples every 2 weeks at aircraft sites. Basu
et al. (2016) explain that there were 1639 total radiocarbon
measurements between July 2009 and April 2011 (21 total
months). By contrast, the National Research Council (2010)
recommends that the US invest USD 15–20 million annually
to collect 5000–10 000 radiocarbon observations per year,
but that goal has not yet come to fruition. Basu et al. (2016)
argue that this level of investment would allow scientists to
constrain US fossil fuel CO2 emissions to within 1 % per year
and to within 5 % per month.

Despite this promise, the use of atmospheric radiocarbon
measurements also presents several challenges. One primary
challenge is accounting for the disequilibrium effect (Bow-
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man, 1990). The atmospheric abundance of radiocarbon has
changed in the past 60 years due to nuclear bomb testing.
CO2 from decomposing organic matter (heterotrophic res-
piration) will reflect radiocarbon levels during the time that
carbon was incorporated into plant tissue, not current atmo-
spheric levels of radiocarbon. Furthermore, the lifetime of
dissolved gases in the ocean is much longer than 60 years;
thus, the isotopic signature of air–sea gas exchange will also
lag the recent rise in atmospheric radiocarbon. One must ac-
count for this mismatch or disequilibrium when using radio-
carbon measurements to partition between fossil fuel CO2
and biospheric CO2; biospheric (and ocean) fluxes will not
necessarily match current atmospheric radiocarbon levels,
but rather, they reflect the levels of a past date. Atmospheric
sampling upwind of anthropogenic sources could be used to
characterize the biospheric radiocarbon signature and would
mitigate this concern.

4.2.2 Ethane

Methane is the primary component of natural gas, but natural
gas also contains small quantitates of other alkanes, includ-
ing ethane. These trace constituents are collectively referred
to as natural gas liquids. Oil and natural gas operations and
biomass burning are the two primary sources of ethane to the
atmosphere. Thus, enhancements in atmospheric ethane mix-
ing ratios can indicate leaks from oil and gas infrastructure
(e.g., Rudolph, 1995). Other CH4 emitters, including agricul-
ture, landfills, and wetlands, do not emit higher-order alkanes
in substantial amounts. For example, Peischl et al. (2013) es-
timate that natural gas leaks account for 90 % of all ethane
emissions in the Los Angeles metro region. If one has an
estimate of ethane emissions and an estimate of the ethane
content of natural gas, then one could estimate CH4 emis-
sions from oil and gas infrastructure. McKain et al. (2015),
for example, measure CH4 and ethane at several sites in
Boston, and they use CH4 / ethane ratios reported from natu-
ral gas pipeline operators to estimate the portion of Boston’s
CH4 emissions that are due to natural gas leaks. Several
other studies similarly use ethane measurements to explore
oil and gas industry emissions from Los Angeles (Wennberg
et al., 2012), Dallas, Texas (Yacovitch et al., 2014), the Bar-
nett Shale region (Smith et al., 2015; Townsend-Small et al.,
2015), and from global oil and gas operations (e.g., Simpson
et al., 2012; Schwietzke et al., 2014).

The use of ethane for CH4 source attribution brings sev-
eral challenges. Until recently, atmospheric observations of
ethane were sparse. Research groups at the University of Cal-
ifornia, Irvine, and NOAA have measured ethane in air sam-
ples from global background sites since 1984 and 2004, re-
spectively (Simpson et al., 2012; Helmig et al., 2016). Each
group collects samples at 40–45 sites at weekly to seasonal
frequencies. Recently, NOAA has expanded its ethane mea-
surements to its US tall-tower and aircraft network. Instru-
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Figure 3. This figure shows the variability in ethane content of nat-
ural gas for two major drilling regions of the US. Ethane content is
a key parameter when estimating oil and gas CH4 emissions using
atmospheric ethane measurements. The samples show substantial
heterogeneity in some regions (e.g., Oklahoma) and exhibit clear
spatial patterns in other regions (e.g., Texas and West Virginia).
All data in this figure are from the USGS Geochemistry Laboratory
Database (USGS Energy Resources Program, 2015).

mentation has also become more widely available with Aero-
dyne, Inc.’s ethane analyzer (Yacovitch et al., 2014).

The ethane content of natural gas can also vary by re-
gion and will change if natural gas liquids are removed at
processing facilities (Fig. 3). These variations complicate
the task of inferring CH4 emissions using ethane measure-
ments. Smith et al. (2015), for example, find three distinct
ethane signatures in different areas of the Barnett Shale re-
gion. Townsend-Small et al. (2015) report that ethane con-
tent in the Barnett Shale region ranges from 6 % at natural
gas wells to 13 % at oil wells.

In summary, secondary tracers like ethane and radiocar-
bon allow scientists to use measurement networks with broad
spatial coverage (like those in Sect. 3.4) to estimate specific
source sectors. These measurements bypass, to some degree,
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the need to rely on the spatial and temporal patterns in an
inventory for source attribution and the need to have accu-
rate activity data to support inverse modeling. With that said,
only some CO2 and CH4 source sectors have obvious sec-
ondary tracers, and the associated atmospheric observations
are primarily collected by in situ networks, not by satellites.
Furthermore, progress in this area has been limited because
of measurement availability, but this limitation could change
in the future with more funding (i.e., in the case of radiocar-
bon) or deployment of new instrument technology (i.e., in the
case of ethane).

5 Synthesis discussion

In this section, we synthesize progress to date on estimat-
ing sector-specific CO2 and CH4 emissions at state and na-
tional scale. We also discuss forward-looking opportunities
to improve sector-specific GHG emission estimates, with a
particular focus on opportunities to integrate bottom-up and
top-down strategies.

Recent innovations in both bottom-up and top-down ef-
forts have advanced scientists’ abilities to identify emissions
from specific source sectors. Several efforts have produced
high-resolution, sector-specific inventory products that are
based on more accurate, detailed activity data and EFs. These
products are largely driven by research in academia and by
the Joint Research Centre in Europe. New inverse modeling
strategies can incorporate these inventory estimates in more
rigorous ways that are not limited to the spatial patterns in the
inventory. In addition, more extensive observations are avail-
able to support these inverse modeling efforts, observations
that span a number of spatial scales. For example, numerous
intensive measurement campaigns in the past 5 years have
focused on large GHG-emitting regions, particularly cities
and oil and gas production basins. The national US in situ
network and remote sensing GHG observations have also ex-
panded in the last decade, though the US in situ network ex-
pansion is smaller than the level required for robust evalua-
tion of a wide array of GHG source sectors.

Despite these advances in bottom-up inventories, top-
down strategies, and measurement density, the scientific
community has only been able to use inverse modeling and
atmospheric data to improve sector-specific emission esti-
mates in a relatively small number of cases. To date, the
community has had more success integrating top-down and
bottom-up estimates for CH4 than for CO2; the atmospheric
signal from biospheric CO2 fluxes often obscures the signal
from fossil fuel emissions, except in some urban environ-
ments. National CH4 inventory estimates are often uncertain
by a factor of 2–3 at the sector level, while CO2 inventories
typically agree to within 5 % (Fig. 1). Arguably, the commu-
nity has been able to use top-down inverse modeling to im-
prove these inventories when they arguably stood to benefit
most.

Specifically, the community has been most successful with
top-down, sector-specific attribution in two types of sce-
narios: intensive measurement campaigns paired with local-
scale inverse modeling and opportunistic cases. In the former
case, the community has put substantial resources into inten-
sive, local-scale measurement campaigns for a few specific
source sectors. Measurements from each affected locality or
region provide a puzzle piece, and the community has begun
to assemble a cohesive, national-scale picture by amalgamat-
ing these individual pieces. The community has employed
this strategy in the case of CH4 emissions from oil and gas
operations (e.g., the SENEX, SONGNEX, Barnett Coordi-
nated Campaign) and, to a lesser degree, in the case of ur-
ban CO2 emissions (including recent measurement efforts in
Los Angeles, Salt Lake City, Boston, Indianapolis, and Oak-
land). These campaigns typically provide a snapshot of cur-
rent emissions and would need to be repeated in the future to
estimate how emissions vary over time.

Other cases of successful source attribution have been
largely opportunistic. In certain cases, the community had the
right atmospheric measurements and spatially distinct source
sectors to attribute emissions at large spatial scales. For ex-
ample, Miller et al. (2013) find large CH4 emissions in Texas
and Oklahoma that do not fit the spatial distribution of cows,
and CH4 measurements in that region correlate with mea-
surements of higher-order alkanes. The authors conclude that
a large fraction of those emissions are likely due to oil and
gas operations. Turner et al. (2015) reach similar conclusions
using satellite observations from GOSAT.

Numerous future opportunities would improve scientists’
ability to merge bottom-up inventories, inverse modeling,
and atmospheric GHG data for better GHG source attribu-
tion:

5.1 Combine the strengths of existing datasets

Many inverse modeling studies to date use only in situ or
satellite GHG data to estimate emissions. CH4 inverse mod-
eling studies for North America provide a good example.
Miller et al. (2013) use in situ observations from long-term
monitoring stations, Wecht et al. (2014a) use remote sensing
observations from Envisat/SCIAMACHY, and Turner et al.
(2015) use remote sensing observations from GOSAT. Future
studies may be able to attribute emissions more effectively
by leveraging the strengths of all available in situ and remote
sensing datasets. Different datasets often bring complemen-
tary strengths for this attribution: remote sensing datasets
have broad spatial coverage and in situ datasets have com-
plete temporal coverage and greater sensitivity to surface
emissions, among other strengths. A number of challenges
may have prevented the synthesis of multiple datasets in past
efforts: large datasets entail a number of computational chal-
lenges, the data are not always accessible, and the observa-
tions can have different information content or error char-
acteristics that are challenging to balance in a single frame-
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work. Future efforts that can combine these disparate datasets
likely stand the best chance of attributing emissions to spe-
cific source sectors.

5.2 Expand several existing measurement strategies

Expanded GHG measurements would also advance efforts to
attribute emissions to specific source sectors. As discussed
earlier, some of the most successful top-down efforts to at-
tribute emissions have been intensive aircraft campaigns.
These campaigns are more flexible than the long-term mon-
itoring network and can easily target source sectors of inter-
est by flying in specific regions, in flight patterns that encap-
sulate the source of interest, and by flying at certain times
of year that have fewer competing biogenic sources. An ex-
pansion of these campaigns would enable scientists to tar-
get specific source sectors, including CO2 emissions from
large power plants, CH4 from agriculture, and CH4 from coal
mines, among other source sectors. These aircraft campaigns
could then be used to estimate regional-scale EFs. Existing
aircraft campaigns, for example, target CH4 leakage rates for
a range of different oil and gas drilling basins (see Sect. 3.1–
3.2). The long-term in situ atmospheric network and GHG
monitoring satellites could be used to intelligently extrapo-
late and gap-fill these regional EFs at larger spatial scales
and to identify broad trends over time.

In addition, successful cases of sector-specific attribution
have usually involved observations that span multiple spatial
and temporal scales. This strategy allows scientists to bridge
between the regional scale that atmospheric observations are
best able to constrain and the facility-level scale where inven-
tories are strongest. For example, atmospheric observations
can be used to identify regional differences between top-
down and bottom-up estimates. Subsequent facility-level and
on-road measurements can indicate why those regional dif-
ferences occurred and how to improve EFs in a way that will
bring inventories into agreement with top-down estimates.
This measurement strategy can be expensive and requires ex-
tensive coordination, but several studies employ it success-
fully in the case of oil and gas CH4 emissions (e.g., Allen,
2014; Brandt et al., 2014; Peischl et al., 2015). Bottom-up
and top-down estimates of these emissions disagree at re-
gional and national spatial scales (e.g., Miller et al., 2013;
Turner et al., 2015). Subsequent facility and on-road mea-
surements elucidate why: a small number of malfunctioning
facilities account for a large percentage of emissions. EFs
that account for this skewed distribution are more consistent
with regional top-down estimates (e.g., Brantley et al., 2014;
Lavoie et al., 2015; Subramanian et al., 2015).

Effective source attribution will also likely require the use
of secondary tracers. Measurements of some secondary trac-
ers, like ethane, have expanded markedly in the past several
years with advances in instrumentation. With that said, mea-
surements of tracers like radiocarbon are only available for
some of the long-term US monitoring sites.

5.3 Improve inverse modeling strategies with an eye
toward secondary tracers

The inverse modeling community has yet to develop in-
verse modeling strategies that can fully leverage observa-
tions of secondary tracers. This task is not straightforward
and would likely require the development of new strategies.
These strategies would need to quantify heterogeneities in
the ethane content of natural gas or the disequilibrium effect
in the case of radiocarbon. Furthermore, these strategies may
need to relate the primary and secondary tracers in a single
statistical framework and account for uncertainties in that re-
lationship. Observations of these secondary tracers have his-
torically been very sparse, so few existing studies focus on
designing statistical inverse modeling frameworks to fully
exploit these tracers.

5.4 Develop detailed activity data as part of bottom-up
efforts

Top-down efforts, like those outlined above, can help in
developing regional-scale EFs for different source sectors.
These studies can be particularly helpful when EFs are chal-
lenging to determine at facility scale. For example, direct
measurements of oil and gas facilities are difficult to design
because a small number of leaks account for the majority of
emissions, and these large emitters may be difficult to find
and/or representatively sample (see Sect. 2.3).

In contrast to EFs, activity data can only come from
bottom-up inventory efforts. In fact, top-down efforts depend
upon reliable activity data for attributing emissions (Sect. 3.1
and 3.3). Efforts to improve these activity datasets would
markedly improve source attribution. In many cases, these
activity data exist but are not publicly available or are not
available in gridded form. Gurney et al. (2007) cite local
fuel sales or electric utility bills as examples. CH4 emis-
sions from oil and gas provide an additional example. Oil
and gas wells generally report production figures to state reg-
ulatory agencies, but this reporting varies by state, does not
have a consistent format, and can be difficult to find (e.g.,
http://pmc.ucsc.edu/~brodsky/wellindex.html). The inacces-
sibility of accurate activity data for oil and gas operations is
a barrier to source attribution in recent national-scale CH4
inverse modeling studies (Miller et al., 2013; Turner et al.,
2015). Maasakkers et al. (2016) represents an important step
forward in this area; the authors develop gridded versions of
the EPA’s activity data. These activity data are key to con-
necting inverse modeling results with bottom-up estimates
of specific source sectors. Future bottom-up efforts should
particularly focus on the development and public release of
gridded activity data.

In synthesis, future improvements in bottom-up invento-
ries and top-down strategies would likely complement one
another and translate into more reliable, sector-specific emis-
sion estimates; scientists will likely need to combine both
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strategies to robustly estimate GHG emissions from individ-
ual sources. Improved activity data would lead to gridded
inventory estimates with more accurate spatial and tempo-
ral patterns. Top-down frameworks could then harness these
patterns, along with more extensive, future GHG observa-
tions, to estimate regional-scale EFs for specific source sec-
tors. National-scale observations of secondary tracers like
radiocarbon and ethane would further strengthen these top-
down efforts for applicable source sectors. This coordinated,
combined approach offers the most promising opportunity to
evaluate state and national GHG emission reduction policies
in the US.
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