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Abstract. In a previous study of Quaas et al. (2008) the radia-
tive forcing by anthropogenic aerosol due to aerosol–cloud
interactions, RFaci, was obtained by a statistical analysis of
satellite retrievals using a multilinear regression. Here we
employ a new statistical approach to obtain the fitting pa-
rameters, determined using a nonlinear least square statistical
approach for the relationship between planetary albedo and
cloud properties and, further, for the relationship between
cloud properties and aerosol optical depth. In order to verify
the performance, the results from both statistical approaches
(previous and present) were compared to the results from ra-
diative transfer simulations over three regions for different
seasons. We find that the results of the new statistical ap-
proach agree well with the simulated results both over land
and ocean. The new statistical approach increases the cor-
relation by 21–23 % and reduces the error compared to the
previous approach.

1 Introduction

Aerosols are considered to have a large effect on climate,
both through aerosol–radiation interactions and aerosol–
cloud interactions, by serving as cloud condensation nu-
clei (CCN), therefore increasing Nd and thus cloud albedo
(Twomey, 1974), as well as rapid cloud adjustments
(Boucher et al., 2013). Much work has been done to quantify
the radiative forcing by aerosol–cloud interaction (RFaci),
yet it remains highly uncertain. The annual radiative forc-
ing from aerosol induced changes in cloud albedo were re-
ported as −0.7 Wm−2 with an uncertainty range of −1.8 to
−0.3 Wm−2 (Boucher et al., 2013); this effect could offset

much of the warming from greenhouse gases (Huber and
Knutti, 2011), emphasising the need to understand the effect
so that we can better predict the future climate.

In this study, we concentrate on the RFaci, the change in
cloud albedo with increasing aerosol. An increasing aerosol
at constant cloud water content is supposed to decrease
droplet size, which in turn increases the cloud albedo due
to the increased scattering of the smaller, more numer-
ous cloud droplets. Feingold et al. (2001, 2003) and Mc-
Comiskey et al. (2009) proposed a metric to quantify the
microphysical component of the cloud albedo effect (ACI=
−d lnNd/d lnα), where Nd is the cloud droplet number con-
centration and α is a proxy for the aerosol burden. A va-
riety of proxies has been used to represent the cloud re-
sponse to the change in aerosol, e.g. cloud optical depth (τc),
cloud drop number concentration (Nd) and cloud droplet
effective radius (re). Similarly, various proxies have been
used to represent the total ambient aerosol burden, includ-
ing aerosol number concentration (Na), aerosol optical depth
(τa) and aerosol index (AI). An overview of published rela-
tionships and their biases due to mismatches between pro-
cess and analysis scales are discussed in McComiskey and
Feingold (2012). Values for aerosol–cloud interaction (ACI)
metrics from observations often differ significantly from
model-based values (Quaas et al., 2008, 2009; Bellouin et
al., 2008; Penner et al., 2011, 2012). For example, the obser-
vationally based values of RFaci, often in the range of −0.2
to −0.6 Wm−2 (Quaas et al., 2008; Bellouin et al.,2013),
tend to be weaker than the modelled values in the range
of −0.5 to −1.9 Wm−2 (IPCC, 2007). The differences in
model and observationally based RFaci have to be recon-
ciled. Penner et al. (2011) reported that the lower sensitiv-
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ities of cloud droplet number concentration, when consider-
ing aerosol optical depth (AOD) compared to aerosol index
as aerosol quantity may lead to a significant underestima-
tion in satellite-based RFaci. However, Quaas et al. (2011)
pointed out the weaknesses in the approach used by Penner
et al. (2011). Clearly, further study is needed to reduce the
uncertainties in both observationally and model-based esti-
mates of aerosol RFaci and to reconcile the differences.

Quaas et al. (2008) derived the anthropogenic aerosol
RFaci based on satellite retrievals of aerosol and clouds prop-
erties using statistical relationships between cloud proper-
ties and anthropogenic aerosols without the use of a radia-
tive transfer model. They developed a statistical relationship
between planetary albedo and cloud properties using a mul-
tilinear fit and, further, between the relationships of cloud
properties and aerosol optical depth. Quaas et al. (2008) sug-
gested that uncertainties in the statistical relationship and
fitting parameters introduced uncertainty in the estimate of
RFaci. Therefore, it is useful to reassess the estimated RFaci
by using a new statistical fitting approach. The main objec-
tive of this study is to explore the uncertainty in the satellite-
based quantification of RFaci. This study differs from previ-
ous studies by introducing a new statistical fitting approach
to obtain the fitting parameters for the estimates of RFaci, de-
termined using a nonlinear fit between planetary albedo and
cloud properties. To verify the present approach, the results
from both statistical approaches are compared with the re-
sults from a radiative transfer model.

The rapid socio-economic development in the recent past
has increased the anthropogenic emissions in the south Asian
region along with several parts of the world. South Asia
and its territories are among the potential sources of a vari-
ety of aerosol species (both natural and anthropogenic), and
extensive investigations have been made in the past years
(e.g. Chin et al., 2000; Di Girolamo et al., 2004; Moorthy
et al., 2013). These densely populated regions with increas-
ing power demand, fuel consumption and equally diverse
geographical features are also vulnerable to the impacts of
atmospheric aerosols to the climate (e.g. Liu et al., 2009).
The complex geography of this region contributes significant
amounts of natural aerosols (desert dust, pollen, sea salt, etc.)
to the atmosphere, which mix with anthropogenic ones, mak-
ing the aerosol environment one of the most complex in the
world (Moorthy et al., 2015). The large spatial heterogeneity
of the sources coupled with the atmospheric dynamics driven
by topography and contrasting monsoons make south Asia’s
aerosols very difficult to characterise, and it is also difficult
to model their implications for radiative and climate forcing.
While tropospheric perturbations would produce strong re-
gional signatures, their global impacts still remain marginally
above the uncertainty levels (IPCC, 2013). In recent years,
several studies are carried out on the aerosol characterisa-
tion and its direct effect over south Asia, but there have been
very few studies reported on the aerosol indirect effect us-
ing ground- and satellite-based measurements due to com-

Figure 1. Map of India and surroundings showing the study regions.
The regions covered by red box represent the study locations (Ara-
bian Sea, Bay of Bengal and Central India).

plex aerosol and cloud environments. Therefore, we discuss
the RFaci for both the anthropogenic and natural fraction of
aerosol for a period of 6 years (2008–2013) for three different
regions of south Asia (Fig. 1; Arabian Sea (AS; 63–72◦ E, 7–
19◦ N), Bay of Bengal (BOB; 85–94◦ E, 7–19◦ N) and Cen-
tral India (CI; 75–84◦ E, 20–30◦ N)), having significantly dis-
tinct aerosol environments as a result of variations in aerosol
sources and transport pathways (Cherian et al., 2013; Das et
al., 2015; Tiwari et al., 2015). Additionally, we also discuss
the uncertainties of the results in the following sections.

2 Data

We combine measurements of aerosol, cloud and radia-
tive properties to derive the top of the atmosphere (TOA)
RFaci for both anthropogenic and natural aerosols. Data ac-
quired by MODerate Resolution Imaging Spectroradiometer
(MODIS) and Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) mounted on Aqua (Parkinson, 2003) and the
Ozone Monitoring Instrument (OMI) onboard Aura (Schoe-
berl et al., 2006) are used in this study. We use the broadband
shortwave planetary albedo (α) (Wielicki et al., 1996; Loeb,
2004; Loeb et al., 2007) as retrieved by CERES in combina-
tion with cloud properties from MODIS (Minnis et al., 2003)
and AOD (τa) and fine-mode fraction (FMF) as retrieved
by MODIS onboard Aqua (Remer et al., 2005). Albedo and
cloud properties are from the CERES single-scanner foot-
print (SSF) Level-2 Edition-3A data set at a 20× 20 km2 hor-
izontal resolution, and aerosol properties (AOD and FMF)
at 550 nm from the MYD04 level-2 collection-5.1 data set
at a 10× 10 km2 horizontal resolution are used. We used
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the UV aerosol index (UV-AI; Torres et al., 1998) measured
by OMI-Aura (Levelt et al., 2006) from the OMAERUVG
level-2 version 003 data set at 0.25◦× 0.25◦ grid, which is a
gridded data set containing retrievals from the OMAERUV
(Torres et al., 2007) algorithm. The data from CERES and
MODIS level-2 products are interpolated to a 0.25◦× 0.25◦

regular longitude–latitude grid to separate the aerosol and
cloud properties for anthropogenic and natural aerosols us-
ing UV-AI. Daily data, taken at roughly 13:30 LT, cover the
2008–2013 period.

3 Methods

All statistics between aerosol and cloud properties are com-
puted separately for three regions and for each month of data
at a 0.25◦× 0.25◦ grid resolution. To avoid the greater un-
certainty that is inherent in distinguishing clearly between
aerosols and clouds and the accurate retrieval of cloud prop-
erties, only single-layer clouds with a liquid water path
(LWP) > 20 g m−2 are taken into account. RFaci for anthro-
pogenic and natural aerosols are calculated using the meth-
ods outlined by Quaas et al. (2008) with the new statisti-
cal approach. As a part of this process, the method by Kim
et al. (2007), the MODIS–OMI algorithm (MOA), is em-
ployed to classify the aerosol types into one of four types:
sea salt, carbonaceous, dust and sulfate; this is done using
MODIS FMF and OMI UV-AI data. FMF provides infor-
mation on the representative size of the aerosol. FMF is
close to 1 for mostly small aerosol particles, which implies
an anthropogenic origin, and FMF becomes small for non-
anthropogenic aerosol like dust. UV-AI allows us to detect
the absorption due to the presence of an aerosol layer by
utilising the sensitivity of absorptive aerosol in UV. Under
most conditions, UV-AI is positive for absorbing aerosols
and negative for non-absorbing aerosols. Using these two in-
dependent data sets, aerosol can be classified. Details for the
aerosol classification are discussed in Kim et al. (2007). For
the purpose of this research, the combination of dust and sea-
salt AOD considered as a natural AOD and an anthropogenic
AOD contains the combination of carbonaceous and sulfate.
Further, the RFaci is estimated for both anthropogenic and
natural aerosols.

3.1 Satellite-based estimate of RFaci

RFaci is a function of the relationship between AOD and Nd
in a cloud. Nd is not directly provided by a satellite product
and must be computed using cloud optical thickness (τc) and
effective droplet radius (re) for liquid water clouds assum-
ing adiabaticity (Brenguier et al., 2000; Schüller et al., 2005;
Quaas et al., 2006; Bennartz, 2007; Rausch et al., 2010).

Nd = γ τ
1/2
c r

−5/2
e ; (1)

a constant value of γ =1.37× 10−5 m−0.5 (Quaas et al.,
2006) is used in this study. A limitation of this assumption is

that it applies rather well to the stratiform clouds in the ma-
rine boundary layer but less so for convective clouds. A de-
tailed explanation and uncertainty assessment are described
in Bennartz (2007) and Rausch et al. (2010). Recently, Ben-
nartz and Rausch (2017) showed that the uncertainties in the
CDNC climatology from 13 years of Aqua-MODIS observa-
tions are in the order of 30 % in the stratocumulus regions
and 60 to 80 % elsewhere, and CDNC’s contribution to the
total uncertainty for this study is discussed in the following
section.

Quaas et al. (2008) have adopted the Loeb (2004) ap-
proach for the estimate of planetary albedo. Albedo (α) of
a cloud scene can be well described by a sigmoidal fit as

α ≈ (1− f )[α1+α2lnτa] + f [α3+α4(f τc)
α5 ]

α6 , (2)

where α1–α6 are fitting parameters obtained by a multilin-
ear regression, where α5 is set as 1 (Ma et al., 2014). De-
pendency of τa is introduced to include the clear part of the
scene in the above equation, and f is the cloud fraction. The
satellite-based estimate of RFaci for anthropogenic and natu-
ral aerosols can be expressed as

1F
RFaci
ant/nat =fliqA(f,τc)

1
3
d lnNd

d lnτa[
lnτa− ln(τa− τ

ant/nat
a )

]
S, (3)

where A(f,τc)= α4α5α6 [α3+α4(f τc)
α5 ]

α6−1(f τc)
α5d ln

Nd/d ln τa is the sensitivity of cloud droplet number con-
centration (Nd) to a relative change in AOD. It is computed
as the slope of the linear regression fit between the natural
logarithm of Nd and AOD (Quaas et al., 2008). This value is
calculated on a month-by-month basis and is unique to each
region studied. τa is the total AOD, whereas τ ant/nat

a are the
anthropogenic and natural AOD derived from the FMF and
UV-AI as estimated above. A(f,τc) is the empirical function
relating albedo to f and τc. S is the daily mean solar in-
coming solar radiation. RFaci is calculated separately for the
anthropogenic and natural aerosols for all three regions for
each month.

A goal of the present study is to assess the uncertainty in
the satellite-based estimate of the RFaci. For that purpose,
we adopted the new statistical nonlinear least square fitting
approach to obtain the six fitting parameters in Eq. (2). Non-
linear least square methods involve an iterative improvement
to parameters values in order to minimise the residual sum
of squares between the observed values and the predicated
value of the dependent variables. We used the Levenberg–
Marquardt (L–M) algorithm (Levenberg, 1944) in the non-
linear least square approach to adjust the parameter values in
the iterative procedure. This algorithm combines the Gauss–
Newton method and the gradient descent method. In the gra-
dient descent method, the sum of the squared errors is re-
duced by updating the parameters in the steepest descent
direction. In the Gauss -Newton method, the sum of the
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squared errors is reduced by assuming the least squares func-
tion is locally quadratic and by finding the minimum of the
quadratic. The L–M algorithm acts more like a gradient de-
scent method when the parameters are far from the optimal
value and acts more like the Gauss–Newton method when
the parameters are close to their optimal value. More detail
of this method is given in the literature (Levenberg, 1944;
Transtrum et al., 2010; Transtrum and Sethna, 2012). In the
present study, instead of considering α5 =1 in the multiple
regression, as in Quaas et al. (2008) and Ma et al. (2014),
we obtained the values of all six fitting parameters using a
nonlinear fitting approach (L–M algorithm) for each month
and region. To get an impression of the performance of our
statistical approach, we correlate α and RFaci at TOA ob-
tained from both statistical fitting methods (multilinear and
nonlinear) vs. α and RFaci simulated by a radiative transfer
model for all three regions. The following section gives de-
tailed information about the simulation of α and RFaci using
the radiative transfer model.

3.2 Simulation of planetary albedo (α) and RFaci

In order to verify both the statistical approaches, we per-
formed a radiative transfer simulation to obtain α and RFaci
for all three regions. Radiative transfer calculations are per-
formed with the SBDART (Santa Barbara DISORT Atmo-
spheric Radiative Transfer; Ricchiazzi et al., 1998), which is
a plane-parallel radiative transfer code based on the DISORT
algorithm for discrete-ordinate-method radiative transfer in
multiple scattering and emitting layered media (Stamnes et
al., 1988). The discrete ordinate method provides a numeri-
cally stable algorithm to solve the equations of plane-parallel
radiative transfer in a vertically inhomogeneous atmosphere.
Simulations are carried out for the solar spectrum (0.2–
4.0 µm) for all three regions. Following the study by Quaas
et al. (2008), Bellouin et al. (2013) performed a similar study
with MACC reanalysis data, in which RT simulations, using
a Monte Carlo method, were carried out to obtain the stan-
dard deviation for the uncertainty analysis. However, in the
present study, RFaci is simulated using an RT model (SB-
DART) to validate the performance of both the statistical ap-
proaches used to compute the RFaci using the statistical rela-
tionship between satellite measurements.

In the present study, simulations are carried out to sim-
ulate first α and later RFaci for the given inputs. Here α is
evaluated as the ratio of broadband outgoing (or upwelling)
shortwave flux to the incoming (or downwelling) solar flux.
Inputs to the model include profiles of temperature and wa-
ter vapour which are resolved into 32 layers extending from
1000 to 1 mbar and come from European Centre for Medium-
range Weather Forecast (ECMWF) reanalysis data. Table 1
shows the list of input parameters and their source provided
to the RT model for the estimate of RFaci. The total columnar
amount of atmospheric ozone is provided from OMI-Aura.
Surface albedo is set to 0.15 to represent a typical land cover

Table 1. The list of parameters and their sources used as an input to
the SDBART model for the simulation of RFaci.

Input parameters Source

Temperature and water vapour
(for 32 layers extending from
1000 to 1 hPa)

ECMWF reanalysis

Total columnar ozone OMI-Aura

Surface albedo For land – 0.15
For ocean – default
value of “ocean” (given
in SBDART)

Cloud effective droplet radius MODIS
retrievals reported in
CERES-SSF product

Cloud liquid water path
Cloud fraction

Geometrical thickness of cloud Computed from
MODIS and ECMWF
data

value for CI, and a predefined option for the ocean surface is
used for the oceanic regions (AS and BOB). In the SBDART
model, the cloud parameter inputs are effective droplet ra-
dius (re), liquid water path (LWP) and the cloud fraction,
all of which are taken from MODIS retrievals reported in
the CERES-SSF product. The geometrical thickness of cloud
(CGT) is computed as the difference between cloud top and
bottom heights. Cloud top height is taken from the CERES-
SSF product and cloud base height is evaluated using the
geopotential height profile from ECMWF data. Only liquid
water clouds are considered in the estimation of RFaci. The
upwelling and downwelling fluxes are computed individually
for all three regions at satellite (MODIS-Aqua as a reference)
overpass time.

The local radiative forcing associated with the RFaci is es-
timated as the difference between the perturbed and unper-
turbed radiative fluxes caused by perturbation in Nd due to
the addition of aerosols while keeping the same meteorology.
RFaci is diagnosed by making two calls to the radiative trans-
fer code: the first call used the unperturbed satellite-derived
Nd and the second used perturbed Nd due to anthropogenic
and natural aerosols. The numerical evaluation of radiative
flux for the perturbed case starts by determining the finite
perturbation of cloud droplet number concentration (1Nd),
calculated as follows:

1N
ant/nat
d =

d lnNd

d lnτa
[lnτa− ln(τa− τ

ant/nat
a )]. (4)

The finite perturbation in Nd is evaluated separately for an-
thropogenic and natural aerosol to estimate the radiative flux
for the perturbed case. The perturbed value of Nd

′ (Nd+

1Nd) is used to obtain a perturbed value of re using Eq. (5)
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Figure 2. Scatter density plots of model-simulated albedo and albedo computed using both statistical fitting methods (nonlinear and multi-
linear fit) using satellite measurements for all three regions.
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for constant liquid water content because re is used as an in-
put to the radiative transfer code.

Nd
′
= ql/(

4
3
πr3

e ρw), (5)

where ρw is the liquid water density and ql the liquid water
content (ql = liquid water path/geometrical thickness). RFaci
is diagnosed as RFunperturbed–RFperturbed radiative fluxes at
the top of the atmosphere because increased concentrations
of aerosol reduce the effective radius of cloud particles, and
smaller cloud particles reflect more radiation back to space.
The following section describes the details of the regression
analysis of α and RFaci performed between values from sta-
tistical approaches and simulated values.

4 Results

4.1 Regression analysis

As stated in Sect. 3.1, the satellite-based estimates of RFaci
are dependent on the fitting parameters α1–α6, obtained here
from the two different statistical fitting approaches (multi-
linear and nonlinear). The parameters obtained from these
two approaches are listed in Table S1 in the Supplement for
all three regions investigated in this study. These parameters
vary with months since we conducted both the fitting ap-
proaches for each month, but only the mean seasonal param-
eters are shown here. The main differences in fitting parame-
ters from both methods are found in the values of α4, α5 and
α6. The magnitude of the coefficients α4 and α6 is larger in
the nonlinear fit than the multilinear regression fitting, which
may reduce the magnitude of the coefficient α5. To accom-
plish the objective of this study, we correlate α and RFaci at
TOA obtained from both statistical fitting approaches (mul-
tilinear and nonlinear) with estimates obtained from the ra-
diative transfer model for all three regions. Figure 2 shows
scatter density plots of comparison between model-simulated
albedo and the albedo computed from satellite measurements
at a 0.25◦× 0.25◦ grid resolution using both statistical meth-
ods for all three regions. This regression analysis suggests
that the albedo fitted by the new statistical approach (non-
linear fit) agrees well with the model-simulated albedo over
both land and ocean. The scatter of the results from the non-
linear fit around the 1 : 1 line is much smaller compared
to the multilinear fit, which is also reflected in the coef-
ficients of determination (R2) ranging from 0.74 to 0.79.
However, a reduction in over- and underestimation at very
large and very small albedos, respectively, is found in the
nonlinear fit compared to the multilinear statistical approach.
This is also clearly reflected in the values for the root mean
square error (RMSE), which reduces from 0.042–0.065 to
0.010–0.017, supporting the expectation that the new statis-
tical method is more reliable. Additionally, a comparison be-
tween the planetary albedo computed using both statistical

fits and the CERES retrieved albedo is shown in Fig. S1 in the
Supplement for all three regions. Similar to the results dis-
cussed above, the analysis shows good agreement between
the CERES-derived albedo and the one calculated using the
nonlinear fit.

In addition, we performed a comparison of RFaci ob-
tained from satellite measurements using both statistical ap-
proaches with RFaci simulated by SBDART for each sea-
son and for each region. Figure 3 illustrates the linear re-
gression of RFaci from the two statistical approaches plotted
against RFaci obtained from the radiative transfer model for
both anthropogenic and natural aerosols for all seasons and
all three regions. The analysis showed good statistical agree-
ment with Pearson’s correlation coefficient r = 0.82 and 0.75
and RMSE= 0.037 and 0.042 Wm−2 for the anthropogenic
and natural fraction of aerosols, respectively. An examina-
tion of Fig. 3 reveals that the nonlinear fitting approach re-
duces the scatter seen for the multilinear fit and the improve-
ment in correlation with the simulated forcing. The nonlin-
ear fit increases the correlation by 21–23 % and reduce the
RMSE by 0.007–0.011 W m−2 compared to the multilinear
approach. The relative difference between the RT-simulated
and the statistically computed RFaci is computed for both the
statistical methods. The mean relative difference in RFaci for
the anthropogenic fraction of AOD is 0.021 W m−2 in the
nonlinear and 0.033 W m−2 in the multilinear statistical ap-
proach, whereas for the RFaci of the natural fraction of AOD,
it is 0.032 W m−2 in the nonlinear and 0.053 W m−2 in the
multilinear statistical approach. This suggests that the use of
the nonlinear fitting approach reduces the uncertainty by 36–
39 % compared to the multilinear regression.

4.2 RFaci and uncertainties

Aerosols and clouds vary substantially as a function of time
in all regions; thus, it is interesting to analyse aerosol–cloud
interactions as a function of season. Figure 4 shows the
seasonal variability of 6-year averaged radiative forcing by
aerosol–cloud interaction for the three regions as defined
above. The maximum anthropogenic RFaci is found over
oceanic regions (AS: −0.15 W m−2; BOB: −0.16 W m−2)
instead of regions over land (CI: −0.12 W m−2) with high
anthropogenic emissions. This is because maritime clouds
are more susceptible to changes in the concentration of an-
thropogenic aerosols (Quaas et al., 2008). In contrast, the
natural RFaci is generally stronger over land (−0.15 W m−2)

than over oceanic regions (AS: −0.098 W m−2; BOB:
−0.07 W m−2). It is seen that the anthropogenic RFaci is
strongest during winter over AS and BOB, with values near
−0.19 and−0.22 W m−2, whereas it is strong (−0.2 W m−2)

during the pre-monsoon over CI (land). The dominance of
natural aerosols in the pre-monsoon results in a large natural
RFaci both over land (−0.15 W m−2) and ocean (−0.098 and
−0.07 W m−2).
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Figure 3. Comparison between satellite-based RFaci using both statistical fits and the one simulated by the SBDART model for all three
regions and for all seasons. The different colours indicate the regions, whereas the different symbols indicate the different seasons. Note that
the fit is separately performed for each season and each region.

A direct comparison of the satellite to simulations-based
RFaci shows a good correlation. However, both satellite-
estimated and -simulated RFaci are subject to errors, and it
is useful to compute the associated uncertainties in the above
results due to various parameters. Uncertainty involves the
ones due to satellite retrievals of AOD which can be highly
biased in the vicinity of cloud due to swelling (Koren et al.,
2007) and also due to 3-D effects (Wen et al., 2007). Since
both biases may be particularly high for thick clouds, our
estimate of the RFaci could be still be overestimated. The un-
certainty in MODIS retrievals of AOD from validation stud-
ies (Levy et al., 2007) was quantified at 0.03+ 0.05τa over
ocean and 0.05+ 0.15τa over land. However, since we use
the MODIS–OMI algorithm (Kim et al., 2007) to estimate
the anthropogenic and natural fraction of AOD, uncertainty
in this is given as 1σ standard deviations as per Table S2.
From satellite intercomparison, the uncertainty in radiative
flux retrievals by CERES is estimated at 5 % (Loeb, 2004),
and uncertainty in cloud optical depth is 21 % (Minnis et al.,
2004). The uncertainties due to the sensitivity of Nd to a

relative change in AOD (d ln Nd/d ln τa) contribute most
to the total uncertainty. For Nd sensitivities to changes in
AOD, standard deviations are derived from minimum and
maximum values obtained for each season. Following the
study by Bellouin et al. (2013), the standard deviations are
derived from minimum and maximum values by defining a
4-sigma interval, which covers the large range of sensitivi-
ties and spatio-temporal variabilities. To define the standard
deviations in RFaci due to variation in d ln Nd/d ln τa, RFaci
is recomputed using those standard deviations of Nd sensi-
tivities to changes in AOD. Table 2 shows the seasonal and
regional sensitivities of d ln Nd/d ln τa along with their sta-
tistical standard deviation, which is computed from the min-
imum and maximum values for each season. The associated
range in RFaci for both the anthropogenic and the natural
fraction of AOD is also shown in Table 2, where the stan-
dard deviation of RFaci shows the variation due to change in
d ln Nd/d ln τa, which finally contributes to the total uncer-
tainty. In addition to this, the computed RFaci in this study is
associated with the statistical fitting approach as described in
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Figure 4. Seasonal variability of 6-year averaged RFaci obtained using the nonlinear fit for all three regions for both anthropogenic and
natural aerosols along with mean values.

Sect. 3. As mentioned earlier, two different statistical fitting
methods are used to obtain the regression coefficients for the
estimate of RFaci. In the present study, except for the statis-
tical fitting method, all the variables and methodologies are
the same for both statistical approaches. Therefore, we used
the relative difference between the RT-simulated and statisti-
cally computed RFaci as an uncertainty due to the choice of
the statistical fitting approach for both the statistical fitting
methods. As shown in Sect. 4.1, the mean relative differences
for the nonlinear and multilinear approaches are 0.021 and
0.033 W m−2, respectively, in RFaci for anthropogenic frac-
tion, whereas for the RFaci of the natural fraction of AOD,
these are 0.032 and 0.053 W m−2 for nonlinear and multilin-
ear statistical approaches, respectively. Table 3 lists the un-
certainty due to different parameters involved in the satellite-
based estimate of RFaci. We quantify the relative error as the
square root of the sum of the squared relative errors for all in-

dividual contributions. This yields an influence of these rel-
ative uncertainties in the input quantities on the computed
RFaci of ∼ ± 0.08 W m−2. It should be noted that we refer
here to the published quantifiable uncertainties in the satel-
lite retrievals. The limitation involved in this approach or the
uncertainties in the satellite retrievals contribute to the over-
all uncertainty, which is difficult to quantify.

In addition to above error budget, there are uncertainties
involved in the RT-simulated RFaci due to various parame-
ters, as shown above. In this regard, the surface albedo plays
a major role in the simulation of RFaci. In the standard ap-
proach, we have considered a surface albedo value 0.15 for
land and the predefined option for the ocean surface albedo
is used for the oceanic regions in the present study. To quan-
tify the uncertainties involved due to assumptions about the
surface albedo, we have simulated RFaci with different plau-
sible surface albedo values and computed statistics as shown
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Table 2. Seasonal and regional sensitivities d ln Nd/d ln τa of cloud droplet number concentration Nd to the changes in aerosol optical
depth used in this study. The given standard deviation is derived from minimum and maximum values for a particular season. The associated
range in RFaci is also estimated where the standard deviation of RFaci shows the variation due to change in d ln Nd/d ln τa. Variation due to
change in d ln Nd/d ln τa.

Region Winter Pre-monsoon Monsoon Post-monsoon

AS 0.384± 0.146 0.408± 0.189 0.272± 0.131 0.18± 0.102
d lnNd
d lnτ BOB 0.314± 0.136 0.414± 0.15 0.194± 0.104 0.148± 0.088

CI 0.214± 0.107 0.178± 0.105 0.107± 0.069 0.122± 0.071

Rfaci for AS −0.19± 0.036 −0.14± 0.056 −0.08± 0.036 −0.16± 0.036
anthropogenic BOB −0.22± 0.062 −0.16± 0.036 −0.07± 0.02 −0.2± 0.036
fraction CI −0.13± 0.02 −0.2± 0.036 −0.05± 0.034 −0.16± 0.036

Rfaci for AS −0.12± 0.036 −0.18± 0.036 −0.03± 0.04 −0.06± 0.036
natural BOB −0.08± 0.026 −0.11± 0.026 −0.04± 0.039 −0.06± 0.017
fraction CI −0.16± 0.027 −0.22± 0.055 −0.1± 0.027 −0.14± 0.036

Table 3. Lists the sources of uncertainties and their values involved
in the satellite-based estimate of RFaci in the present study.

Source of uncertainty Values

Total AOD 0.03± 0.05.τa
over ocean
0.05± 0.05.τa
over land

MODIS–OMI algorithm
(for the estimate of
anthropogenic and natural
fraction of aerosol)

1σ standard deviation
as per
Table S2

Flux retrieval from CERES 5 %

Cloud optical depth retrieval
from CERES

21 %

Cloud droplet number
concentration

see Table 2

Statistical fitting approach 0.021 W m−2 in
nonlinear for
anthropogenic fraction;
0.032 W m−2 in
nonlinear for natural
fraction;
0.033 W m−2 in
multilinear for
anthropogenic fraction;
0.053 W m−2 in
multilinear for natural
fraction

in Table S3a and b. The statistics show that the considered
values of surface albedo are suitably representative of the
study regions. In addition, RT simulation have their own lim-
itations and uncertainties, e.g. inherent code accuracy, over-

estimate in calculated RF due to plane-parallel bias and 3-D
radiative transfer effect. It would be useful to explore these
issues in the future. However, in the present study, RT simu-
lation is used to evaluate the results computed with satellite-
based measurements. There is scope to improve the present
study with the upcoming data set retrieved from spaceborne
active remote-sensing instruments, with the improved satel-
lite products and with the new statistical relationship.

5 Conclusions

In this study, we employed a new nonlinear statistical fitting
approach to develop the statistical relationship. A satellite-
based algorithm is used to quantify the anthropogenic and
natural fraction of aerosol optical depth for the computation
of RFaci from satellite retrievals. In order to verify α and
RFaci estimates using the new statistical approach (nonlinear)
along with the previous statistical approach (multilinear fit),
these are compared with the results obtained from radiative
transfer simulations. The results show a better agreement be-
tween model-based estimates and the one estimated using the
nonlinear approach compared to the multilinear approach.
The nonlinear approach relatively increases by 21–23 % the
correlation coefficient and reduces the RMSE by 0.007 to
0.011 W m−2 compared to multilinear approach. The nonlin-
ear fitting approach reduces the relative difference by 36–
39 % compared to the multilinear regression method. The
RFaci is found to be consistent with the value found by the
statistical relationship between aerosol and cloud properties
from MODIS and CERES, respectively, and radiative trans-
fer calculations. Further studies using the data retrieved from
advanced instruments, e.g. lidar and radar, may be useful to
test the assumption made in the present study concerning the
proxy of the aerosol column and the overestimation of AOD
over land and to deal with multi-layer clouds.
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