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1 CCFM in standard ECHAM (without HAM)

The simulations using standard ECHAM were at T63L47 (same tropospheric vertical resolution
as ECHAM-HAM but extended to 0.01 hPa, with a 2 x 10-minute leapfrog timestep), as
described in Stevens et al. (2013). The reason for this is that the supported resolutions for
ECHAM and ECHAM-HAMMOZ differ, and using a supported choice for each ensures that
both control simulations are comparable with those carried out elsewhere. In these simulations,
aerosols are taken from the MAC climatology (Kinne et al., 2013).
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Figure S1: Annual mean (from left to right) liquid water path (LWP), ice water path (IWP),
cloud cover and surface precipitation from 30-year AMIP-type simulations using ECHAM
(without HAM) with Tiedtke-Nordeng and CCFM (L—2) convection. Note that the LWP and
IWP scales are different from those in Figure 2 in the main article for ECHAM-HAM due to
the quite different magnitudes. (The numbers in parentheses show the annual global mean of
each quantity.)
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Figure S2: Annual and zonal mean (from left to right) liquid water content (LWC), ice water
content (IWC) and cloud fraction from 30-year AMIP-type simulations using ECHAM (without
HAM) with Tiedtke-Nordeng and CCFM (L—2) convection. Note that the LWC and ITWC
scales are different from those in Figure 3 in the main article for ECHAM-HAM due to their
quite different magnitudes.
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Figure S3: Taylor diagrams comparing (a,d) monthly mean precipitation, (b,e) COSP-simulated
column cloud fraction, and (c,f) COSP-simulated 3D cloud fraction between one-year simulations
using ECHAM-HAM with Tiedtke-Nordeng convection and with CCFM in each configuration,
and the Global Precipitation Climatology Project (GPCP) and CALIPSO-GOCCP respectively.

The left column (a—

c) shows the use of different initiation levels in the CCFM sub-cloud model

(all with a temperature perturbation of 2.8 K; the right column (d-f) shows the use of different

temperature perturbations (all in L—2 configuration). The line segments extending from each
point indicate the normalised mean bias as suggested in Taylor (2001)
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Figure S4: Difference in short- and long-wave upwelling radiative fluxes and cloud radiative ef-
with Tiedtke-Nordeng and CCFM (L—2) convection, and a CERES-EBAF climatology.

fects at the top of the atmosphere between 30-
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Figure S5: Taylor diagrams comparing monthly mean short-wave (a), long-wave (b) and net
(c) radiative fluxes (left) and corresponding cloud radiative effects (right, d—f) at the top of
the atmosphere between one-year simulations using ECHAM-HAM with Tiedtke-Nordeng
convection and with CCFM in each configuration, and a CERES-EBAF climatology. The line
segments extending from each point indicate the normalised mean bias as suggested in Taylor

(2001).



Amazon Congo Indonesia

2.5 2.5 2.5

- - TRMM 3B42
— Tiedtke
2.0 2.0F —cCFM (L-2)

Seasonal
Norm. precip. flux
Norm. precip. flux
Norm. precip. flux

0.0 2 4 6 8 10 12
Month
3.0 3.0 3.0
25 25 2.5
5 3 3 3
& 520 =20 €20
[ o Qo
~ %’_ 1.5 g 15 “é 15
© . : : X
€ £10 €10 €1 o%
5 9 o o
A z =z P4
0.5 0.5 0.5
0'00 3 6 9 12 15 18 21 24 0'00 3 6 9 12 15 18 21 24 0'00 3 6 9 12 15 18 21 24
Hour (local time) Hour (local time) Hour (local time)
3.0 3.0 3.0
— 2.5 2.5 2.5¢
B ox x x
S 2 2 El
o *20 =20 =20
[} o Q.
2 S S ©
~ g 1.5 g 1.5 g 1.5
© X X .
c £1o0 £10 €10
o [=} (=]
=2 =2 z z
a 0.5 0.5 0.5
00 3 6 9 12 15 18 21 24 0'00 3 6 9 12 15 18 21 24 0'00 3 6 9 12 15 18 21 24
Hour (local time) Hour (local time) Hour (local time)

Figure S6: Normalised seasonal (top) and diurnal (below) cycles of precipitation in the
Amazon (left), Congo (centre) and Indonesia (right) regions from a ten-year overlap between
the TRMM 3B42 product and AMIP-type simulations using ECHAM (without HAM) with
Tiedtke-Nordeng and CCFM (L—2) convection. The shaded regions indicate the interannual
standard deviation of each data set. The dotted lines show the cycles from one-year simulations
using alternative CCFM configurations. The diurnal cycles are in the local time of each region,
and are shown for March and August; the full set of months is shown in Figures S10-12.



Amazon, January

Amazon, February

Amazon, March

2.5 25 25
« 2.0 >(2.0' XZ.O'
= =l =l
= = =
215 i=3 215)
o 9] (%3
o o o
Q Q Q
£ 1.0 g £ 1.0
o o (=}
=z P-4 z
0.5 0.5}
O'00 3 6 9 12 15 18 21 24 O'OO 6 9 12 15 18 21 24 0.0 3 6 9 12 15 18 21 24
Hour (local time) Hour (local time) Hour (local time)
Amazon, April Amazon, May Amazon, June
2.5 25 25
x 2.0 >(2.0' XZ.O'
=] =l 2
= = =
215 =3 g
v v o
o o o
[} b Q Q
£ 1.0 g £
o o o
=z P-4 z
0.5
O'00 3 6 9 12 15 18 21 24 0'00 6 9 12 15 18 21 24 0'00 3 6 9 12 15 18 21 24
Hour (local time) Hour (local time) Hour (local time)
Amazon, July Amazon, August Amazon, September
2.5 25 25
»
« 2.0 x 2.0} x 2.0} [
3 =3 =] . A
= = = AR
815 815} 815f g "
o b, o ™) o <
9 o . o
[} ’ o Q =
E 1.0 E 1.0k g 1.0}
o o o
=4 =z =
0.5 0.5 0.5
0'00 3 6 9 12 15 18 21 24 0.0 6 9 12 15 18 21 24 00 3 6 9 12 15 18 21 24
Hour (local time) Hour (local time) Hour (local time)
Amazon, October Amazon, November Amazon, December
2.5 25 25
« 20 « « 20F
3 2 =
= = =
215 =3 S1.5)
o o o
9 o o
[o% R [o% Q
€ 1.0 € € 1.0
£ < £
o o (=]
= P4 z
0.5 0.5}
0'00 3 6 9 12 15 18 21 24 0‘00 6 9 12 15 18 21 24 0.0 3 6 9 12 15 18 21 24

Hour (local time)

Hour (local time)

Hour (local time)

Figure S7: Normalised diurnal cycles of precipitation in the Amazon region from a ten-year
overlap between the TRMM 3B42 product and AMIP-type simulations using ECHAM-HAM
with Tiedtke-Nordeng and CCFM (L—2) convection. The shaded regions indicate the inter-
annual standard deviation of each data set. The dotted lines show the cycles from one-year
simulations using alternative CCFM configurations. The diurnal cycles are in the local time of
each region. Line colours and styles as per Figure 9 in the main article.
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Figure S8: Normalised diurnal cycles of precipitation in the Congo region from a ten-year overlap
between the TRMM 3B42 product and AMIP-type simulations using ECHAM-HAM with
Tiedtke-Nordeng and CCFM (L—2) convection. The shaded regions indicate the interannual
standard deviation of each data set. The dotted lines show the cycles from one-year simulations
using alternative CCFM configurations. The diurnal cycles are in the local time of each region.
Line colours and styles as per Figure 9 in the main article.
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Figure S9: Normalised diurnal cycles of precipitation in the Indonesia region from a ten-year
overlap between the TRMM 3B42 product and AMIP-type simulations using ECHAM-HAM
with Tiedtke-Nordeng and CCFM (L—2) convection. The shaded regions indicate the inter-
annual standard deviation of each data set. The dotted lines show the cycles from one-year
simulations using alternative CCFM configurations. The diurnal cycles are in the local time of
each region. Line colours and styles as per Figure 9 in the main article.
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Figure S10: Normalised diurnal cycles of precipitation in the Amazon region from a ten-year
overlap between the TRMM 3B42 product and AMIP-type simulations using ECHAM (without
HAM) with Tiedtke-Nordeng and CCFM (L—2) convection. The shaded regions indicate the
interannual standard deviation of each data set. The dotted lines show the cycles from one-year
simulations using alternative CCFM configurations. The diurnal cycles are in the local time of
each region. Line colours and styles as per Figure S6.
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Figure S11: Normalised diurnal cycles of precipitation in the Congo region from a ten-year
overlap between the TRMM 3B42 product and AMIP-type simulations using ECHAM (without
HAM) with Tiedtke-Nordeng and CCFM (L—2) convection. The shaded regions indicate the
interannual standard deviation of each data set. The dotted lines show the cycles from one-year
simulations using alternative CCFM configurations. The diurnal cycles are in the local time of
each region. Line colours and styles as per Figure S6.
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Figure S12: Normalised diurnal cycles of precipitation in the Indonesia region from a ten-year
overlap between the TRMM 3B42 product and AMIP-type simulations using ECHAM (without
HAM) with Tiedtke-Nordeng and CCFM (L—2) convection. The shaded regions indicate the
interannual standard deviation of each data set. The dotted lines show the cycles from one-year
simulations using alternative CCFM configurations. The diurnal cycles are in the local time of
each region. Line colours and styles as per Figure S6.
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