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Abstract. Iterative retrievals of trace gases, such as carbonyl
sulfide (OCS), from satellites can be exceedingly slow. The
algorithm may even fail to keep pace with data acquisition
such that analysis is limited to local events of special inter-
est and short time spans. With this in mind, a linear retrieval
scheme was developed to estimate total column amounts of
OCS at a rate roughly 104 times faster than a typical itera-
tive retrieval. This scheme incorporates two concepts not uti-
lized in previously published linear estimates. First, all phys-
ical parameters affecting the signal are included in the state
vector and accounted for jointly, rather than treated as effec-
tive noise. Second, the initialization point is determined from
an ensemble of atmospheres based on comparing the model
spectra to the observations, thus improving the linearity of
the problem. All of the 2014 data from the Infrared Atmo-
spheric Sounding Interferometer (IASI), instruments A and
B, were analysed and showed spatial features of OCS total
columns, including depletions over tropical rainforests, sea-
sonal enhancements over the oceans, and distinct OCS fea-
tures over land. Error due to assuming linearity was found
to be on the order of 11 % globally for OCS. However, sys-
tematic errors from effects such as varying surface emissivity
and extinction due to aerosols have yet to be robustly charac-
terized. Comparisons to surface volume mixing ratio in situ
samples taken by NOAA show seasonal correlations greater
than 0.7 for five out of seven sites across the globe. Further-
more, this linear scheme was applied to OCS, but may also
be used as a rapid estimator of any detectable trace gas using
IASI or similar nadir-viewing instruments.

1 Introduction

Retrieving atmospheric trace gas concentrations from in-
frared satellite observations can be an expensive process, es-
pecially when implementing an inverse method such as opti-
mal estimation (Rodgers, 2000). In this approach, a radia-
tive transfer model (RTM) describing the physics of light
propagating through the atmosphere is iteratively evaluated
for every pixel while comparing the model spectrum of the
estimate to the measurement. Constraints upon the solution
are generally required when estimating more parameters than
are independently represented in the observation. While such
methods approach theoretical limits of detectability, itera-
tively evaluating the RTM can be such a time-consuming pro-
cess that the retrieval fails to keep pace with data acquisition.
In the case of nadir-viewing satellite instruments collecting
over 106 observations per day, like the Infrared Atmospheric
Sounding Interferometer (IASI) described in Hilton et al.
(2011), the computational deficit can limit retrievals to event-
or region-specific analysis. Therefore, fast retrieval methods
are required (in the absence of scalable computer clusters)
for larger data projects, such as global seasonal analysis, until
more significant advances in RTM speed and computational
power are realized.

This paper presents a new method for rapidly retrieving
trace gas abundances as applied towards estimating total ver-
tical column amounts of carbonyl sulfide (OCS). The pro-
posed method is linear in the sense that an estimate for each
pixel is made only once, thus bypassing the iterative steps.
By precalculating the RTM, the retrieval operates roughly
104 times faster than an iterative method using a line-by-line
RTM, even when performance is sped up using monochro-
matic look-up tables (Vincent and Dudhia, 2017). Improving
retrieval speed this dramatically comes at the cost of reduced
accuracy compared to more robust iterative methods. There-
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fore, retrievals focused on individual pixels around specific
scenes are best left for optimal estimation techniques, like the
retrieval developed by Liuzzi et al. (2016), while the method
presented here is useful for rapid monthly-to-seasonal analy-
sis where modest averaging reduces random error to improve
the quality of the mean or median value.

The approach presented here differs from previous work
on fast linear retrievals in two ways: first, an initializa-
tion point is selected from an ensemble of atmospheres
based upon how closely the corresponding model spectrum
matches the observed spectrum. Previous work generally
uses a global or a wide region mean atmosphere as the initial
guess. By selecting from an atmospheric ensemble, the prob-
lem becomes more linear and reduces the non-linear error
introduced by failing to iterate towards a converged solution.
Second, all physical parameters affecting the spectral signal
above instrument noise are jointly estimated to account for
their influence upon the desired quantity (OCS total columns
in this case). One popular alternative, as first described by
von Clarmann et al. (2001), is to create an effective measure-
ment covariance that treats the components of the signal due
to variations in parameters not explicitly retrieved as noise
(Walker et al., 2011; Van Damme et al., 2014). The two meth-
ods (joint retrievals versus effective noise) produce identi-
cal results under idealized conditions. However, in practice
jointly retrieving noticeable physical parameters is expected
to perform better but with a greater number of algebraic op-
erations per estimate.

Atmospheric OCS estimates from IASI observations
throughout 2014 are used as a case study for this new rapid
retrieval method because OCS is an important trace gas for
understanding the global sulfur cycle, is currently poorly
modelled, and is at the edge of detectability with nadir-
viewing instruments like IASI. While OCS is studied here,
the proposed retrieval method can potentially be used for any
detectable trace gas. Aside from introducing a novel retrieval
method, this paper also shows unprecedented seasonal OCS
results from a nadir-viewing hyperspectral instrument.

2 Carbonyl sulfide (OCS): background

Carbonyl sulfide is a molecular reservoir species for atmo-
spheric sulfur. OCS is the longest lived and most abundant
sulfur-containing gas in the unpolluted atmosphere (Notholt
et al., 2006). Therefore, knowledge of OCS distributions,
sources, and sinks is crucial for understanding the global
sulfur cycle. Furthermore, OCS photochemically converts to
sulfate aerosols once vertically convected towards the strato-
sphere, thus affecting global climate by scattering incom-
ing shortwave radiation. In fact, previous work suggests that
OCS is the primary source of stratospheric sulfates during
periods of low volcanic activity (Notholt et al., 2003).

2.1 Sources and sinks

Yearly OCS trends are approximately constant according to
numerous NOAA sample stations across the globe (Montzka
et al., 2007). However, Kremser et al. (2015) detected a slight
increase in both tropospheric and stratospheric OCS since
2001 of 0.5–1.0 % per year over sites in Australia and New
Zealand. Historically, OCS is approximately 25–40 % greater
in concentration today than it was during pre-industrial times
(Aydin et al., 2002; Montzka et al., 2004). Nonetheless, cur-
rent data show that global sources of OCS generally balance
the sinks in the short term (past 3 decades).

The majority of OCS originates from ocean sources, either
by direct emission or secondary production from short-lived
oceanic CS2 or dimethyl sulfide (DMS) gas (Barnes et al.,
1994). The proportions and mechanisms of these sources
are still largely uncertain. However, Launois et al. (2015a,
b) proposed a new model suggesting that direct OCS ocean
emission from photochemically reduced chromophoric dis-
solved organic matter (CDOM) is dominant. The amount of
OCS released from this process is then a function of CDOM
concentrations near the surface, water clarity, and incident
ultraviolet radiation. While CS2 may arise from numerous
sources, including photochemical reduction of CDOM, DMS
is overwhelmingly a product of living oceanic phytoplankton
(Sunda et al., 2002).

The remaining sources of OCS are largely anthropogenic
with a small contribution from anoxic soils, such as marshes
and wetlands. Industrial production of rayon and cellophane
are known to emit CS2, where the majority converts to OCS
on the order of days. Combustion of sulfur-heavy fossil fuels
from coal power plants, petrol (gasoline) engines, and diesel
engines also produces OCS and CS2 as by-products. Another
substantial anthropogenic source of OCS is oil refineries and
natural gas facilities that attempt to remove dissolved sulfur
compounds (mostly H2S) for air quality management. This
greatly reduces SO2 production during combustion, but OCS
and CS2 are created during the recovery operation, which
may leak into the atmosphere (Chin and Davis, 1993).

The vast majority (over 80 %) of OCS is removed from the
atmosphere in conjunction with photosynthesis, either from
vegetative canopy or microscopic organisms in oxic soils,
e.g. Mycobacterium. OCS takes the same diffusive path-
way as CO2 through plant stomata to the reaction sites in
the chloroplasts, where it then reacts with the enzyme car-
bonic anhydrase (CA) and H2O to split OCS into CO2 and
H2S (Protoschill-Krebs and Kesselmeier, 1992). Ingestion of
OCS via leaf uptake only goes one way, meaning, plants
do not respire OCS as they do unused CO2. Since OCS is
roughly 4 times more variable than CO2, Berry et al. (2013)
suggested that remote detection of OCS could be used as
a proxy towards estimating CO2 fluxes over areas of dense
vegetation. The remaining portion of the OCS sink budget is
atmospheric loss due to reaction with the OH− and O− radi-
cals along with stratospheric photolysis (Kettle et al., 2002).
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2.2 Previous estimates from satellite

Aside from the Atmospheric Trace Molecule Spectroscopy
(ATMOS) experiment using manned space flight, OCS was
first observed from satellite by the Interferometric Monitor
for Greenhouse Gases (IMG) (Clarisse et al., 2011). Since
IMG collected data for less than 2 years (1996–1997), satel-
lite remote sensing of OCS was not pursued further until the
launch of the Atmospheric Chemistry Experiment (ACE) in-
strument that began operation in 2003 (Barkley et al., 2008).
ACE is a solar occultation instrument that views the sun
through the limb of Earth’s atmosphere. Therefore, ACE is
well designed for stratospheric sensitivity, but cannot reliably
sound the troposphere below an altitude of approximately
8.5km. There were two major results from this work. First,
they showed that OCS vertical profiles above the tropopause
decrease steadily with altitude, thus confirming that there is
no appreciable source of OCS due to stratospheric chemistry.
Secondly, stratospheric OCS tends to be greater towards the
equator and less at the poles. This general trend was also
confirmed for tropospheric OCS based on a compilation of
zenith-viewing ground observations and balloon campaigns
(Krysztofiak et al., 2015).

In retrospective analysis, Glatthor et al. (2015) used the
limb-viewing Michelson Interferometer for Passive Atmo-
spheric Sounding (MIPAS) instrument to retrieve OCS con-
centrations at the lowermost detectable level, 250hPa, us-
ing standard optimal estimation techniques. The compiled re-
sults from 2002 to 2012 in 5◦ by 15◦ latitude–longitude bins
showed clear evidence of elevated ocean sources and trop-
ical rainforest sinks that vary with season. However, limb-
viewing instruments are not ideal for tropospheric sounding
and the 250hPa level fails to probe the troposphere at high
latitudes since the tropopause decreases in altitude from the
equator.

Most recently, Kuai et al. (2014) developed an optimal es-
timation retrieval scheme to estimate OCS amounts using
the tropospheric emissions sounder (TES). TES is a nadir-
viewing Fourier transform spectrometer (FTS) instrument
aboard NASA’s Aura satellite that was launched into polar
orbit in 2004. TES is similar in many ways to IASI, but with
finer spectral and spatial resolution. However, since TES
does not cross scan transverse to its orbital path like IASI,
the spatial coverage of TES is much less in comparison.

This retrieval first estimates a vertical profile of OCS on
many vertical levels and then averages the levels between
900 and 200hPa because the degrees of freedom for the sig-
nal (DFS) of the profile is less than 1 when using a prior
constraint of 20% OCS variability. The DFS is qualitatively
defined to be the number of independent pieces of informa-
tion that come from the signal rather than the noise (Rodgers,
2000, chap. 2.4). Therefore, only one bulk level of OCS is
ever distinguishable and even then it is a weighted combina-
tion of the true estimate and the a priori, which was taken
by Kuai et al. (2014) to be spatially flat across all locations.

The OCS retrieval is carried out after the routine retrieval
of temperature, H2O, O3, CO, CO2, CH4, surface temper-
ature, emissivity, cloud optical depth, and cloud pressure.
Only scenes with a cloud optical depth less than 0.5 are
considered since cloudy scenes further reduce the OCS in-
formation content. The OCS retrieval itself then jointly in-
cludes CO2, H2O, surface temperature, cloud optical depth,
and cloud pressure in the state vector and uses the posterior
covariances from the preprocessed retrieval as the constraints
for these extra parameters in the OCS retrieval.

A monthly mean of TES OCS results from June 2006
was published in Kuai et al. (2015), which further validated
the concept that direct ocean emissions of OCS are much
greater than previously thought (Berry et al., 2013). The pub-
lished data included retrievals over the ocean around ±40◦

because the DFS rapidly fell to values less than 0.5 outside
of this range. This means that the majority of the estimates at
higher latitudes were dominated by the flat prior OCS field
rather than the true OCS concentrations. To put it another
way, the uncertainties from an unconstrained retrieval out-
side of this latitude range would be greater than the prior
constraint of 20% variability. An alternative approach would
be to lessen the prior OCS constraint to extend the detectable
latitude range, but at the expense of greater uncertainty in
the retrieved values. However, the increase in uncertainty can
be mitigated by averaging over a greater number of pixels,
which reduces uncertainty by the square root of the sample
size. Conversely, if the retrieved estimates are mostly a priori
from tight systemic constraints, then no amount of averaging
changes this fact. Nonetheless, the TES product created by
Kuai et al. (2014) is the current leading retrieval scheme of
tropospheric OCS.

3 Method description

This section methodically discusses the mathematical frame-
work, formulation, and parameter validation of the retrieval
scheme applied to OCS. Caution is advised to not overly
compare the presented method to a standard optimal esti-
mation routine based upon iterating a time-consuming for-
ward model. The intent of this method is to rapidly estimate
OCS in a single step with minimal dependence upon prior as-
sumptions. Retrieval error due to avoiding the residual non-
linearities is statistically quantified for reference.

3.1 Linear retrieval framework

A forward model (F ) is a numerical construct that repre-
sents the physics of how a given state produces an observable
quantity. In this case, F models how electromagnetic radia-
tion propagates through an atmospheric state (x) to yield the
radiance observed by IASI (y) with m number of spectral
channels. The work presented in this paper uses the refer-
ence forward model (RFM) to simulate such spectral radi-
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ances (Dudhia, 2017). When the radiative transfer function
is sufficiently linear about a reference state vector (x0) of
length n, F can be linearized according to

y−F (x0)=K(x− x0)+ ε. (1)

Here, ε is the error in the measured signal relative to the lin-
earized forward model and K ∈ Rm×n, referred to as both the
“weighting function” and the “Jacobian”, is defined to be a
matrix of partial derivatives such that Kij = ∂Fi (x)/∂xj .

Solutions to Eq. (1) can be estimated in the optimal esti-
mation framework by considering a linearization about an a
priori reference state (xa). Estimates of an atmospheric state
(x̂) are given by

x̂ = xa+
(

KTS−1
ε K+S−1

a

)−1
KTS−1

ε (y−F (xa))

= xa+G(y−F (xa)) ,

(2)

where G is referred to as the gain matrix (Rodgers, 2000,
chap. 4). The covariance matrix of the stochastic error in the
measurements is denoted as Sε . Since raw spectra from a FTS
such as IASI are generally uncorrelated, Sε has zeroes in the
off-diagonal elements, while the diagonal elements are the
variances of the signal at that spectral position. However, be-
cause IASI spectra are apodized on-board the satellite (Am-
ato et al., 1998), off-diagonal spectral correlations are thus
introduced into Sε . The term a priori is meant to include
both a mean state, xa, and its covariance, Sa. Inverting Sa
in Eq. (2) applies a “soft” constraint upon the solution, pe-
nalizing estimates that deviate greatly from the atmosphere
provided in the prior estimate.

When the probability density function of the atmospheric
state is symmetric about the expected value, the posterior co-
variance (i.e. the estimated covariance of x̂) is found to be

Ŝx =
(

KTS−1
ε K+S−1

a

)−1
. (3)

This is a convenient result because it means that the uncer-
tainties and correlations between retrieved parameters are
generated as a by-product of the retrieval process. Equa-
tion (3) also highlights the fact that if Ŝx = Sa, then the re-
trieval has done nothing to improve upon the a priori and is
completely insensitive to the estimated parameters.

Further diagnostic information about the retrieval is suc-
cinctly contained in a unitless n×n matrix known as the av-
eraging kernel matrix (AKM), defined as

A=
∂x̂

∂x
=GK. (4)

Using this relation, Eq. (2) can be rewritten in the more in-
sightful but less practical form,

x̂ = (In−A)xa+Ax+Gε, (5)

where In is the identity matrix with n diagonal elements.
Written this way, it becomes clear that the estimate of state,

x̂, is a weighted average of the true state and the prior state.
When A is diagonal, these elements express the fractional
proportion of how sensitive the estimate is to the true state.
Non-zero values in the off-diagonal elements of A track the
correlation between the estimated parameters within x̂. Ide-
ally, A approaches the identity matrix and no prior state ap-
pears in the estimate. However, this is seldom the case for
nadir viewing unless performing a maximum likelihood re-
trieval where there is by definition no a priori information.

Repeated analysis of A can be unwieldy when developing
a retrieval algorithm. Therefore, a scalar “figure of merit”
that allows for multiple matrices of A to be compared in a
straightforward manner is often desirable. The DFS, as men-
tioned in Sect. 2.2, is one such possible metric and is calcu-
lated by taking the trace of the averaging kernel matrix,

ds = Tr (A) . (6)

Perfectly conditioned non-trivial inverse problems will have
DFS values equal to the number of state parameters, n.

With these relations at hand, the proposed retrieval is a di-
rect application of Eq. (2), where the RFM is represented
by F and is used to model IASI radiances and create Ja-
cobian spectra (K). Rather than use a climatological static
mean value for xa as the linearization point, the ensemble
of 80 atmospheres selected to parametrize the RTTOV (Ra-
diative Transfer Model for the Television Infrared Observa-
tion Satellite Operational Vertical Sounder) forward model
(Matricardi, 2008) was used to create a subsequent ensemble
of initial states (xa), model spectra (F(xa)), and gain matri-
ces (G). The model spectrum that most closely matches the
observed IASI spectrum is used to select the initialization
point from the ensemble, which will be discussed further in
Sect. 3.6. Once again, the point of this process of selecting a
model atmosphere from an ensemble is to make the retrieval
as linear as possible without iterating the forward model.

Brightness temperature spectra were intentionally used in-
stead of radiance spectra because removing curvature from
the Planck function improves the linearity of the retrieval
(Rodgers, 2000, chap. 5.1). The downside to this is that the
measurement noise in brightness temperature space (NE1T )
becomes a function of the observation (see the red lines in
Fig. 5, for example). Therefore, the measurement covari-
ances (Sε) were adjusted specifically for each atmosphere
based on the model spectra when computing the gain matri-
ces. Apodization was modelled in the off-diagonal elements
of Sε according to the discussion in Amato et al. (1998).

3.2 Spectral range considered

Identifying OCS spectral features is a straightforward pro-
cess. Figure 1 shows a sample blackbody brightness tem-
perature (BBT) spectrum for the spectral range targeted in
this study (2000–2300 cm−1), including the dominant ν3
rotational–vibrational band of OCS in the thermal infrared
centred at 2060cm−1. Notice that H2O and CO2 are the pri-
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Figure 1. Top shows a simulated IASI BBT spectrum from a desert
(i.e. low humidity) atmosphere covering the spectral range used in
the linear retrieval. Middle and bottom show Jacobian spectra show-
ing the change in BBT for a 1 % increase in volume mixing ratio
(VMR) for the gases listed. The CO2 and N2O spectra represent
tropospheric perturbations, while the remaining four are total col-
umn perturbations. The red bar denotes the area between two H2O
lines where a large portion of OCS information comes from.

mary contaminants here, with additional contributions from
CO and O3. This also shows that there are no isolated OCS
spectral lines and that the other detectable species must be
accounted for explicitly during the retrieval.

The spectral range included in this retrieval is much
larger than the OCS spectral band, which runs from 2040 to
2080 cm−1. This is to provide temperature and contaminat-
ing gas information from the spectrum since location-specific
a priori are not used. In particular, the CO2 and N2O spectral
features are of various line strengths, which saturate at differ-
ent effective altitudes throughout the vertical profile. Since
these two gases are well mixed with low natural variabil-
ity, they provide robust information on atmospheric tempera-
ture. In an iterative retrieval, a much narrower spectral region
would be used and the additional information would be sup-
planted by weather-specific a priori to save time computing
the forward model. Since the forward model is precalculated
in this method, the added spectral range only increases the
number of linear algebra operations.

The spectral characteristics of the observation and the
applied constraints determine the vertical sensitivity of the
retrieval. The weighting functions, i.e. the Jacobian values
from perturbing each individual vertical layer, for OCS at the
strongest spectral point (2071.25 cm−1) are shown in Fig. 2.
Notice that peak OCS sensitivity with IASI is consistently
around 500hPa for all atmospheres and both surface tem-
perature contrast scenarios. This is consistent with the OCS

analyses published in Shephard et al. (2009) and Kuai et al.
(2014). However, when the surface ground temperature is
significantly warmer than the surface air temperature (pos-
itive thermal contrast), then the lowermost tropospheric OCS
becomes up to 3 or 4 times more detectable. This is because
thermal contrast between the surface and the atmospheric
temperature accentuates spectral absorption or emission fea-
tures, which makes them easier to distinguish.

3.3 Defining the state vector and prior covariance

Even though OCS is the desired target, the intent of the joint
retrieval is to simultaneously account for all physical pa-
rameters that affect the observed spectrum above the noise
level. Mathematically, this is handled with the cross terms in
Eq. (2) via the extra rows in K when calculating the gain ma-
trix (G). If they are not accounted for, then the other phys-
ical parameters become biased into the target estimate. If
this were to happen, then one could not say with confidence
whether an OCS enhancement or depletion was actually due
to OCS or something else, such as water vapour or surface
temperature. Once the gain matrix is calculated, only the row
of G corresponding to the desired target (e.g. OCS) needs to
be carried through the multiplication of 1y. However, there
is potential diagnostic information resulting from the other
jointly estimated parameters to be used for assessing retrieval
quality, while computational savings from neglecting all but
one row in G are minor when compared to calculating the
gain matrix itself.

With this in mind, the state vector is chosen to be

x = [OCS, CO, O3, CO2/N2O, H2O1, H2O2, Ts,

T 1, T 2, T 3, T 4
]
T , (7)

where the superscript indexes the vertical location of the re-
trieved atmospheric layer, as visualized in Fig. 3, and the
absence of a superscript for a gas implies a total column
amount. Specifically, the natural logarithm of the volume
mixing ratios (VMRs) is retrieved to enforce positivity in all
of the gases and dampen the effect that water vapour variabil-
ity may have upon the results. The term Ts represents ground
surface temperature. Emissivity is not included in the state
vector because the emissivity Jacobian is highly spectrally
correlated (> 0.9) with the surface temperature Jacobian and
it is indistinguishable from the other without strict use of a
priori. Therefore, considering the surface emission term in
the equation of radiative transfer, it is clear that the retrieved
quantity is effectively εsTs for spectrally grey emissivity. It
is important to note that spectrally changing surface emis-
sivity across the range 2040–2080 cm−1 is currently not ac-
counted for and may influence the OCS results over land.
However, spectral features of solids and liquids tend to be
much broader than gases such that a grey approximation may
be valid. Another source of error that may be more important
than non-grey emissivity is the fact that all atmospheres in the
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Figure 2. Weighting functions for IASI simulations of OCS are shown from vertical layers 1km thick at 2071.25cm−1 for the 80-atmosphere
RTTOV ensemble; they are colour coded by the individual surface air temperature. The left plot represents a ground-to-surface air thermal
contrast scenario of 3K, while the right figure shows a 15K thermal contrast. The dashed line represents the mean weighting function of the
ensemble.

Figure 3. The vertical representations of the temperature and water
vapour Jacobians are shown. These represent triangular perturba-
tions as opposed to rectangular (evenly weighted) vertical perturba-
tions.

ensemble were modelled with a surface emissivity of 0.99,
which neglects downwelling radiation reflected back into the
optical path. In both cases, observations over desert will be
affected the most, with minimal emissivity impact over water
and dense vegetation.

The ratio of CO2 to N2O is included instead of the two
separately to improve the conditioning of the inverse prob-
lem, which means that there is not enough independent infor-
mation in the measurement to estimate both gases and atmo-
spheric temperature without added constraints. Whilst N2O
is a low-variability gas that does not overlap with the OCS
spectral features, the point of including it in the ratio is to
account for variations in CO2 that may affect the OCS esti-
mate. The downside to retrieving a ratio of two gases is that
the knowledge of enhancement of the numerator versus a de-

pletion of the denominator, and vice versa, is sacrificed for
the improved independence of elements in the state vector.

As shown in Fig. 3, four bulk layers of atmospheric tem-
perature are retrieved, ranging from the lower troposphere
through the stratosphere. Additionally, two layers of water
vapour are retrieved. The first layer is the lowermost tropo-
sphere, which primarily accounts for water vapour contin-
uum effects between absorption lines in the Jacobian as a re-
sult of self-broadening from H2O−H2O collisions. The per-
turbation of the second layer peaks at 600hPa, but includes
contributions from the remaining upward levels of the atmo-
sphere and accounts more for the absorption feature centres.

Since the statistical distributions of temperature and water
vapour vertical profiles are well known, the resulting esti-
mates can be constrained to scenarios found on Earth where
clearly unphysical profiles are excluded with a negligible
loss of sensitivity. Furthermore, since atmospheric temper-
ature and water vapour are physical correlated, it is possi-
ble to represent this effect in the prior covariance. Thus, the
80-atmosphere ensemble was vertically binned down to the
bulk layers of the retrieval and was used to calculate the sam-
ple covariance matrix, which includes the cross-state physi-
cal correlation terms. The subsequent correlation matrix is
shown in Fig. 4, with the standard deviations annotated along
the diagonal elements. This sample covariance is then used
as a sub-matrix (6× 6) within the prior covariance (11× 11)
to constrain the water vapour and temperature portions of the
retrieval to physical values within the global range. Further
correlation terms between the remainder of the state elements
are assigned to values of zero.

As a caveat, all elements of the state vector, including
OCS, are technically constrained with finite values in the
diagonal of the prior covariance. This is primarily for the
purposes of developing a test-bed iterative retrieval that uti-
lizes the Levenberg–Marquardt method, which will be dis-
cussed next. OCS variability in the prior covariance is as-
signed to be 200 %. CO and O3 variability is assigned 100 %,
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Figure 4. The correlation matrix is shown for the sample covariance
of the H2O and atmospheric temperature layers calculated from the
80-atmosphere RTTOV ensemble. The standard deviations are an-
notated along the diagonal elements for reference.

the CO2 /N2O ratio is set to 10 %, and surface temperature
is set to 20K. However, this is such a weak constraint that
the DFS for the OCS total column is close to 1 for all atmo-
spheres and is therefore effectively unconstrained.

3.4 Parameter validation using an iterative retrieval

Validation of the retrieval framework, as previously defined,
is crucial towards developing confidence in the resulting es-
timates. Without analysing external data, using an iterative
retrieval one can show that

1. the estimates converge during iteration

2. the OCS spectral signature is noticeable in the residual
spectrum of the converged result when excluded from
the state vector and all other parameters are retrieved

3. the variability of the converged residual spectrum over
many pixels is similar to the expected instrument noise.

Each point is discussed in turn.
The iterative retrieval was written as a test bed for the

faster linear scheme; therefore, the spectral range, state vec-
tor, and prior covariance are the same as previously de-
fined. This non-linear approach is based on the Levenberg–
Marquardt method as discussed in Rodgers (2000, chap. 5.7).
The prior state is taken to be equal to the initial state, which
is selected on a pixel-by-pixel basis from the ensemble of at-
mospheres. Each model atmospheric spectrum is compared

against the measured spectrum and the j th atmosphere that
minimizes the spectral cost, i.e.

χ2
j =

[
y−F

(
xj

)]T S−1
ε

[
y−F

(
xj

)]
, (8)

is chosen as the starting point. For atmosphere selection, only
the diagonal of Sε is used to save computation time when
rastering through the 80 atmospheres. Scenes with calculated
cloud fractions from the Advanced Very High Resolution Ra-
diometer (AVHRR) embedded data (Saunders, 1986) greater
than 20 % are not included. Based on this methodology it
was found that the majority of IASI pixels converged on a re-
sult that reduced the χ2 cost function. While the presentation
of the retrieval development to this point may appear overly
streamlined or ad hoc, in reality this test for convergence can
be used as a figure of merit, and it was repeated methodi-
cally numerous times as the state vector and prior covariance
were modified until settling on the parameters defined in the
previous section. For brevity the details of state vectors and
prior covariances resulting in diverging iterations are not dis-
cussed.

OCS signatures can be shown in the converged residual
spectrum (IASI minus RFM) if all other contributing param-
eters are retrieved. This is done by removing OCS from the
state vector while retrieving the other 10 in its absence. Fig-
ure 5 shows an example of this for an IASI pixel in the North
Atlantic off the coast of Iceland where the retrieved surface
temperature is 281K. Notice that the OCS spectral signature
is clearly above the IASI noise level for a particularly low
surface VMR estimate of 404ppt and matches well to the
predicted OCS residual of the same VMR. It is important to
keep in mind that Fig. 5 is for a single pixel without any spec-
tral averaging to reduce instrument noise. Also apparent is a
substantial spike in the residual centred at 2077cm−1. This
feature is presumably due to line mixing errors within the
RFM for the CO2 Q-branch located at this position. There-
fore, these particular channels should be avoided since they
are poorly modelled.

Once all physical parameters that contribute to the sig-
nal above the noise level are accounted for through the joint
retrieval, then the standard deviation of the spectral differ-
ence between the observation and the model, i.e. the residual,
should be equal to the instrument noise. If this is not the case,
then any parameters that are not completely accounted for
will show an associated spectral feature in the standard de-
viation of the residual spectra. To test this posit, the iterative
retrieval was run over 600 pixels in a 10◦× 10◦ latitude and
longitude box in the equatorial Pacific Ocean. The variabil-
ity of the sample residuals is shown in Fig. 6 along with the
average instrument noise profile in units of brightness tem-
perature. Observe that the variability of the residuals matches
closely to the average instrument noise, with the exception of
a few spectral features due to water vapour (Fig. 1). There-
fore, the retrieval and associated state vector sufficiently ac-
count for the noticeable physical parameters aside from water
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Figure 5. The residual spectrum between the IASI observation and
the converged estimate from the RFM without modelling OCS is
shown as the black line. The red line depicts the instrument noise
level specific to the observed surface temperature of 281K and at-
mospheric temperature profile. The green line represents the ex-
pected OCS signal in the residual for the retrieved VMR of 404ppt.

vapour, which could be further resolved with more vertical
levels along the profile.

There are three options to pursue with regards to unre-
solved but influential H2O levels in the retrieval. Firstly, this
effect could be tolerated as an unaccounted source of error in
the OCS estimates. Secondly, additional layers of H2O could
be included in the state vector and jointly retrieved with an
updated prior constraint. Thirdly, these associated H2O spec-
tral features could be treated as effective noise within the
measurement covariance, thus decreasing the sensitivity of
the retrieval to variations in the water vapour vertical profile.

The first option is undesirable because there is clearly ev-
idence supporting further treatment of H2O. At first attempt,
three layers of H2O were included in the state vector with
a new prior covariance derived from the 80-atmosphere en-
semble. However, it was found that this formulation did not
converge unless a much stronger prior constraint was con-
structed. Therefore, these spectral variations for H2O were
instead treated as noise by creating a vector of scaling factors
that increased the diagonal of the measurement error covari-
ance accordingly. This was accomplished by taking the ratio
of the variance of the residual spectra over the square of the
IASI instrument noise and setting any values less than 1 to
unity, thus making the retrieval less sensitive to unretrieved
layers of water vapour. All estimates of OCS from this point
on further include scaled variances for every diagonal ele-
ment in the measurement error covariances.

3.5 Channel selection

Spectral channels in remote sensing tend to be highly cor-
related, not only by the gas-specific rotational–vibrational
energy transitions, but through other physical effects such
as temperature and pressure. In other words, each channel

Figure 6. Black shows the sample standard deviation of the residual
spectra between the IASI measurements and the converged model
spectra for an ensemble of 600 pixels from the tropical South Pacific
Ocean. Red shows the average instrument noise (NE1T ) for the
IASI observations.

does not normally add independent information and con-
tains a certain amount of redundancy. In theory, adding more
channels to the estimate always increases the total informa-
tion content to varying degrees. In practice, there are spectral
channels that contain more information than others such that
adding channels of negligible importance does little to im-
prove figures of merit (like DFS and posterior uncertainty),
but this increases sensitivity to unaccounted physical param-
eter errors. One method to improve the robustness of a re-
trieval by reducing sensitivity to unaccounted parameters is
to select a subset of spectral channels that contains the major-
ity of information, while excluding the remaining channels
that negligibly contribute.

Channel selection was performed over the 2000–
2300 cm−1 range in order to remove these spectral channels
of little importance. One option is to remove channels while
maximizing a figure of merit for the joint retrieval as a whole.
Another is to maximize just the OCS portion of the retrieval
at the expense of the other retrieved parameters. Since the
other states are included just to improve the OCS estimates,
the latter option is chosen here.

OCS is so weakly constrained that attempting to maximize
the DFS is not appropriate in this instance. In the uncon-
strained case, the DFS is not defined for maximum likeli-
hood estimates. However, it is always desirable to minimize
the posterior uncertainty, whether constrained or not. In this
case, just the uncertainty component of OCS is considered:

σ̂ 2
OCS = Ŝx1,1, (9)

where Ŝx is defined in Eq. (3) and the subscript index denotes
the first diagonal element corresponding to OCS.

The selection begins by first finding the best two spectral
channels that minimize σ̂ 2

OCS after calculating all possible
two-channel combinations. Then a third channel is selected
by adding all remaining channels individually and choosing
the one that reduced σ̂ 2

OCS the most. This process is repeated
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Figure 7. Ranked spectral channels are shown for a mid-latitude at-
mosphere based on their contribution towards minimizing the pos-
terior uncertainty of OCS. The asymptote from including all 1201
channels is shown as the dotted red line.

until all spectral channels have been ranked according to their
contribution towards minimizing the posterior uncertainty of
OCS. The resulting channel ranking for a mid-latitude atmo-
sphere is visualized in Fig. 7, where the best two channels es-
timate OCS uncertainty to be nearly 50 %, while including all
1201 channels reduces the uncertainty to just over 10 %. No-
tice that the first 20 channels reduce uncertainty by a factor
of 2 from the initial pair, but it takes the remaining channels
to gain another factor of 2 reduction. For this retrieval, the
top 100 channels were retained, which yields an uncertainty
of just 12 % (versus 10 %) for this particular atmosphere with
12 times fewer channels.

The resulting selected channels are shown in Fig. 8 for
reference. Channels are selected from this method cover-
ing the entire spectral range rather than just the 40cm−1

OCS interval because these outside channels contribute to
the other jointly estimated 10 parameters that help improve
the OCS retrieval. Channels are only selected insofar as they
contribute to better OCS estimates. The CO2 Q-branch at
2077cm−1 was avoided by heavily penalizing these chan-
nels within the measurement covariance prior to running the
selection. Notice that the selected channels largely avoid the
majority of H2O absorption features and frequently select the
between-band channels associated with water vapour contin-
uum.

3.6 Selecting the initial atmosphere

The validity of the linear retrieval is contingent upon the
choice of initial atmosphere. The initialization point should
be sufficiently close enough to the observed atmosphere that
a single step places the estimate within the uncertainty level
of the true state being observed. Failure to do so results in re-
trieval error due to the non-linearity of the formulated prob-

Figure 8. The top 100 spectral points (red circles) ranked in Fig. 7
from the channel selection are shown for reference as compared
to all 1201 channels from the observed spectrum (black line) for a
mid-latitude atmospheric scenario.

lem. So how should an initial atmosphere be selected in or-
der to minimize the non-linearity error? Three possible tech-
niques are analysed for determining the initial atmosphere
that do not require rerunning the forward model.

1. Select the initial atmosphere whose model spectrum
minimizes the spectral cost function in Eq. (8), as pre-
viously discussed. This method essentially picks the at-
mosphere whose mean spectrum (i.e. averaged along the
spectral axis) is closest to the IASI observation for the
selected spectral channels. The diagonal may be used
to approximate Sε to speed up the process of running
through the 80 atmospheres for each pixel since the se-
lected channels contain few adjacent pairs.

2. Another method is to estimate what the model spectrum
would be after the retrieval, within the linear framework
of the problem, and then select the atmosphere that min-
imizes the projected spectral cost. The retrieved state
can be linearly projected back into spectral space to es-
timate the posterior spectrum,

ŷj =Kj

(
x̂j − xj

)
+F(xj ). (10)

If ŷ is used instead of F(x) in Eq. (8),

χ2
pr;j =

[
y−Kj

(
x̂j − xj

)
−F(xj )

]TS−1
ε[

y−Kj

(
x̂j − xj

)
−F(xj )

]
, (11)

and x̂ is expanded using Eq. (2), then the resulting pro-
jected cost is given by

χ2
pr;j =

[
y−F(xj )

]T(
KjGj − I

)TS−1
ε(

KjGj − I
)[
y−F(xj )

]
. (12)

It is important to note that KG, unlike GK, is gener-
ally not equal to the identity matrix in the unconstrained
least squares retrieval.
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3. Finally, the third method considered is to train a vector
operator to predict the non-linear error in OCS based
upon the spectral difference between the initial model
and measurement spectra. To do this, all possible per-
mutations (80× 79= 6320) of using one state from the
80-atmosphere ensemble as the initial point to retrieve
another atmosphere from the ensemble are calculated
to yield two matrices: an array of initial spectral differ-
ences (1BBT of size 6320×m) and a vector of corre-
sponding linearly retrieved OCS errors (δOCS of size
6320× 1). The goal is to determine a prediction vector
(a of size m× 1) that approximates the following equa-
tion:

δOCS=1BBT× a. (13)

However, since there are only 80 independent atmo-
spheres considered, Eq. (13) is actually underdeter-
mined rather than overdetermined as it may appear at
first glance. Therefore, the dimensionality of the prob-
lem must be reduced if Eq. (13) is to be success-
fully inverted to find a. Subsequently, 1BBT is de-
composed into singular vector components 1BBT=
U3VT, where U and V are the left and right singular
vectors, respectively, and 3 is a diagonal matrix of its
singular values. The inner dimensions of U and VT are
then ranked in order of decreasing singular values and
truncated at 79. Equation (13) is then recast as

UT δOCS= UT (1BBT) V× a′, (14)

where the truncated least squares solution to a′ is cal-
culated. Finally, the prediction vector is found to be
a = Va′.

A fourth possible method would be to select an initial at-
mosphere based on the time of year and proximity to the ob-
served pixel location. However, the RTTOV ensemble is not
well suited for this particular selection method since the at-
mospheres were chosen to maintain statistical properties of
a much larger ensemble and are therefore irregularly spaced
in location and season. A separate ensemble of atmospheres
parsed in regularly spaced latitude and longitude grids at
monthly increments would be more appropriate. Therefore,
this study excludes this fourth possible selection method.

The three listed initial atmosphere selection methods are
compared using the RTTOV ensemble in the absence of in-
strument noise and contaminating parameters so that the er-
ror due solely to non-linearity is assessed. Each atmosphere
of the 80 is used as a test case where the objective is to se-
lect an initial atmosphere from the remaining 79, which min-
imizes the error in the estimate while knowing the true OCS
model value. In the ensemble, all atmospheres contain the

Figure 9. Histograms of the OCS retrieval error due to non-
linearities are shown for four methods of selecting the initial at-
mosphere, x0. The first enumerated method in this section is la-
beled “mean spectrum”, the second “projected cost”, and the third
“trained error prediction”.

same OCS profile because of the lack of information about its
distribution and variability. The model OCS profile is 590ppt
at the surface, constant up to the tropopause, and steadily
decreasing with altitude through the stratosphere. Therefore,
the best initial atmosphere yields a retrieval step closest to
zero because OCS is a flat field throughout the model atmo-
spheres.

Figure 9 shows histograms of the linear assumption er-
ror for the three selection methods discussed. Furthermore, a
method of randomly selecting the initial atmosphere was also
analysed to provide a baseline for comparison. Evidently,
the method that most frequently yielded retrieval errors near
zero was from selecting the atmosphere that minimized the
projected cost (method 2). This was followed by matching
the mean spectrum (method 1). Predicting the retrieval error
(method 3) worked in the sense that it outperformed the base-
line of random selection, but it provided a larger error than
the other two methods.

One may conclude that the initial atmosphere should be
selected based upon minimizing the linearly projected cost.
However, this was attempted with real data and in practice it
became clear that a grossly non-linear starting point, such
as using an initial polar atmosphere for an observation in
the tropics, may occasionally be projected to outperform all
other atmospheres. This is because linear analysis is only
valid in the nearly linear to moderately linear regimes. There-
fore, the method of selecting an initial atmosphere by mini-
mizing the difference in the mean spectra, Eq. (8), was used
in the work presented here because it avoids this particular
problem.

The expected non-linearity error is given by the width of
the distributions in Fig. 9 and the mean spectrum method was
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found to have an error of 11 % on average. This analysis was
also performed using all spectral channels, i.e. without chan-
nel selection, and found to yield an average error of 19 % for
this method. Thus, channel selection is crucial for improving
the OCS retrieval because it makes the problem almost twice
as linear. At first this may seem counter-intuitive because re-
ducing the number of spectral channels results in reduced
linear assumption error. From an information perspective,
adding ranked spectral channels always increases informa-
tion content until the addition becomes asymptotically negli-
gible (see Fig. 7). However, in an imperfect retrieval, adding
spectral channels of minor importance provides additional
inputs for systematic errors to propagate into the estimate.
Therefore, channel selection is a technique to reduce the ef-
fect of systematic errors, such as neglecting non-linearity.

3.7 Geographical considerations

Lowermost tropospheric pressure is influential in the OCS
retrieval not just through the direct effect of pressure broad-
ening the spectral features near the surface, but also because
of pressure-dependent water vapour continuum effects in the
lower troposphere that overlap with all OCS spectral lines.
Surface pressure variations due to geographical altitude must
therefore be accounted for in some way. If not, then the Ja-
cobians and initial column amounts will misrepresent the ob-
servation, especially over mountain ranges and high plateaus.

To do this, separate atmospheric ensembles of model spec-
tra, gain matrices, and initial values were created for surface
pressure scenarios of 1030, 900, 800, and 700hPa. Average
surface pressure was tabulated from ECMWF reanalysis data
and stored as a reference field. Prior to computing the linear
estimates of OCS, the surface pressure for each IASI pixel
based on its latitude and longitude is interpolated from the
saved map. Then the appropriate ensemble is selected based
upon whether the interpolated surface pressure falls outside
or within the bounds of 950, 850, or 750hPa. Applying this
method noticeably removed any high-altitude terrain arte-
facts that systematically appeared in the OCS estimates.

Additionally, temperature contrast between the ground
surface and lowest atmospheric layer affects the sensitivity
of the OCS estimates, as shown in Fig. 2. Thermal contrast is
a particular problem over land, and especially deserts in the
summer, where the surface is heated by solar absorption to
values occasionally greater than 15K above the atmospheric
surface temperature. In the deep Antarctic, there can be a
negative thermal contrast where the surface is actually colder
than the atmosphere and absorption lines switch to emission
features. This effect is far less important over the oceans, be-
cause the heat capacity of water is so great that thermal con-
trast tends to be slightly positive with less variability.

Therefore, the method employed in this work is to treat
IASI observations over ocean as having a routine thermal
contrast of +3K, while allowing for greater variation over
land. Instead of selecting from 80 atmospheres over land with

one thermal contrast option, the ensemble is grown to include
scenarios of −5, 3, 10, and 15K of thermal contrast. There-
fore, an observation over land has 320 possible atmospheric
initialization points to select from. As previously mentioned,
the model atmospheric spectrum that most closely matches
the observed spectrum determines which atmosphere is se-
lected as the initial point.

3.8 Quality filtering

In an iterative retrieval, high confidence in the estimate is
obtained by verifying that the retrieval converged on a mini-
mum χ2 value. This may not be the correct minimum, but the
fact that a minimum was found suggests that the framework
of the problem is behaving in a consistent way. In a one-
step linear retrieval the forward model is not recalculated for
each individual pixel in order to save computation time. Inci-
dentally, other metrics of quality must be evaluated in order
to identify and exclude retrievals that have likely gone awry.
The steps to filter the OCS estimates for quality are described
in detail.

First, any IASI pixels with an AVHRR cloud fraction of
20 % or greater are excluded from consideration prior to
computing the retrieval. The presence of cloud introduces
highly non-linear behaviour that must be modelled properly
if the OCS estimates are to be trusted. This AVHRR cloud
fraction product is not perfect and routinely flags sea ice as
cloud. However, the vast majority of the time it provides a
robust and accurate estimate of the amount of cloud filling
the IASI pixel. Therefore, cloudy scenes are simply avoided
in favour of clear sky observations.

Next, viewing angles noticeably affected by sun glint are
excluded from the retrieval by calculating the specular so-
lar reflection angle based upon the solar and satellite zenith
and azimuth angles (Vincent, 2016, chap. 2.3) and removing
pixels where this angle is less than 18◦. Additionally, there
is a slight overestimation of OCS when observing towards
the limb. Rather than attempting to parametrize or mitigate
this effect, observations with an air mass factor relative to
nadir greater than 1.47 are avoided. This removes the very
far edges of the IASI scan where the surface zenith angle
is greater than 47◦. For surface zenith angles less than this
value, limb effects were not noticeable. Fortunately, the over-
lap of IASI-A with IASI-B is greater than this angular width;
as a result no spatial gaps in coverage are introduced.

Since the retrieval jointly estimates other physical param-
eters in conjunction with OCS, there is further opportunity
for common sense filtering for quality. For example, if the
retrieved surface temperature falls outside of the range be-
tween 230 and 340K, then that pixel is removed from con-
sideration. Furthermore, if the lowest level of retrieved water
vapour has a VMR greater than 4 %, then the observation is
clearly not represented properly and those OCS estimates are
excluded.
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Finally, the projected spectral cost from Eq. (12) can be
used as a retrieval diagnostic given the fact that the atmo-
sphere with the smallest initial spectral cost was selected as
the initialization point. The expectation value of the projected
cost should be approximately equal to the number of spectral
channels (m= 100) if the retrieval is ideally linear. Since the
problem is not linear, the average projected cost will certainly
be greater than m. However, the magnitude of the projected
cost provides a useful prediction as to how well the retrieval
may perform. Thus, a reasonable criteria for accepting a re-
trieved pixel is given by

χ2
pr

m
< 2. (15)

Aside from filtering against cloudy scenes, this provides the
strictest quality test of those mentioned and highlights geo-
graphical areas that are poorly represented by the modelled
atmospheric ensemble.

4 OCS results from 2014

All of the IASI-A and B data from 2014 (19.4Tbytes) were
downloaded and processed in this study using the previously
described linear retrieval technique. OCS total column me-
dian values are shown in Figs. 10–15 for 2-month intervals
in latitude–longitude bins of 0.5◦×0.5◦. Median OCS values
combined from all data in 2014 are shown in Fig. 16. The
median was chosen instead of the mean because the retrieval
actually estimates the logarithm of the total column to en-
force positivity and when raised to the exponential introduces
positive skewness into the distribution of estimates. In other
words, the spread of OCS estimates does not follow a Gaus-
sian (normal) distribution and the heavy tail towards over-
estimation is mitigated by taking the median rather than the
mean. The median also dampens the effect anomalous cases
have upon the statistics of the distribution, whereas one bad
pixel resulting in a wildly high or low total column amount
could artificially dominate the mean.

The number of pixels per bin passing the quality and cloud
free criteria is also shown for reference. Only bins containing
three or more observations are shown and any areas with two
or less observations are considered missing and are coloured
grey. Areas that are systematically low in number of observa-
tions are either routinely flagged as cloudy or routinely pre-
dicted via the projected cost to poorly model the observation.
Notice that areas of sea ice towards the poles are consistently
absent, which is due to AVHRR cloud flagging. However,
persistent glaciers over land contain many more observations
and do not experience this false-positive cloud-flagging ef-
fect. Alternatively, desert areas during the daytime in local
summer are frequently cloud free and marked as such, but
they routinely fail the quality check and contain few esti-
mates. This signifies that the model atmospheres in the en-
semble fail to closely match summer desert scenarios that

are sun illuminated, perhaps because of lower surface emis-
sivity that increases solar and downwelling reflections that
are currently not modelled.

The sample standard deviation of OCS per spatial bin over
the 2-month period is shown in the bottom row of Figs. 10–
15. This gives an estimate of the width of the OCS distribu-
tion based upon the sampling of retrieved values. In an iter-
ative retrieval, the posterior uncertainty from Ŝx is normally
used to represent the error of the retrieval. However, within
the linear framework of this method the posterior uncertainty
derived from the initial guess will systematically underesti-
mate the true error of the OCS retrieval. Thus, the sample
standard deviation provides a metric that is a combination
in quadrature of retrieval noise, natural OCS variability, and
errors due to unaccounted parameters. At a minimum, the
sample standard deviation of OCS will be no less than the
retrieval noise, assuming there is a sufficient number of sam-
ples. Areas that are clearly dominated by retrieval noise are
the Antarctic plateaus, Greenland, and high-latitude land in
the Northern Hemisphere during winter.

4.1 Estimates over ocean

Beginning with the oceans, there is a clear correspondence
between day and night of OCS estimates observed. Prior to
filtering based on the solar reflection angle, it was apparent
that sun glint was an issue for estimates over water, espe-
cially near the equator. However, by excluding observations
along the specular path this issue was mitigated such that the
day and night estimates resemble each other. This is the ex-
pected result because variations in thermal contrast from day
to night over water should be fairly small. Therefore, OCS
should be equally detectable over water regardless of the time
of day.

OCS estimates throughout the year show that there is a
consistent feature of elevated OCS in the South Pacific off
the coast of South America between 0 and −30◦ latitude
(Fig. 16, point 1) that matches well to the direct OCS emis-
sions modelled in Launois et al. (2015b). While there is some
variation throughout the year, this particular feature remains
relatively constant regardless of season. In contrast, further
south there is a large OCS signal that appears to align with
the Antarctic Circumpolar Current (ACC) in both day and
night observations (Fig. 16, point 2). This particular feature
shows a large seasonal variation, with maxima occurring dur-
ing southern hemispheric summer and minima during winter
when incident solar radiance is low. This is the seasonal cycle
one would predict if the primary source of OCS were photo-
chemically reduced CDOM. Before too much is concluded,
it is important to acknowledge the fact that this OCS signal
at−60◦ latitude may be a false positive resulting from a tem-
perature artefact specific to the ACC. However, it is certainly
worth further investigation.

Northern hemispheric ocean areas appear to have max-
imum OCS signal between March and June (local spring)
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Figure 10. January–February 2014: linear estimates of total column
OCS median values are shown in the top row for sun-illuminated
morning (left column) and night-time evening (right column). The
results are binned by latitude–longitude widths of 0.5◦× 0.5◦. The
middle row shows the number of pixels per spatial bin that passed
the quality control checks. The bottom row shows the sample stan-
dard deviation of OCS per bin for the 2-month interval. Spatial bins
with missing data are coloured grey.

Figure 11. Same as in Fig. 10, but for March–April 2014.

Figure 12. Same as in Fig. 10, but for May–June 2014.

with minimum values as the season approaches winter. Once
again this is consistent with how the incident solar radiation
varies with season for photochemical production. OCS fea-
tures that particularly stand out in these areas are the tropi-
cal enhancement during May to June coming off the coast of
Baja California (Fig. 12, point 3) and the high-latitude struc-
tures south of Greenland and north-east of Iceland (Fig. 12,
point 4) in this same time period. Additionally, there appears
to be a consistent enhancement of OCS in the northern In-
dian Ocean by the Saudi Arabian Peninsula (Fig. 13, point
5), which also resembles the model in Launois et al. (2015b).

Interestingly, there is an OCS feature over the Pacific
Ocean between Japan and Alaska (Fig. 11, point 6) that is in
phase, but 1 month delayed, with the high OCS signal over
eastern China and the Tibetan Plateau. This ocean feature be-
gins in January and February, reaches maximum in March
and April, and then dissipates by August. Conversely, the
OCS land signal over China grows substantially in November
and December and then is closer to background levels in May
and June. One possibility is that the enhancement over the
ocean between Japan and Alaska is an OCS plume originat-
ing from China transported by the easterly zonal winds that
dissipates when OH concentrations increase during spring
and summer. Conversely, the two signals may be purely co-
incidental and indicative of two unrelated sources of OCS
or other atmospheric characteristics that produce artificially
high estimates over these regions.

4.2 Estimates over land

Satellite retrievals over land are subject to a greater num-
ber of surface type variations than over the ocean. As a re-
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Figure 13. Same as in Fig. 10, but for July–August 2014.

sult, there are more variants contributing to the signal that
may require a modelled response, such as emissivity, altitude,
surface facets, reflectance distribution functions, and snow
cover. Therefore, one must analyse spatially sharp OCS gra-
dients over land coinciding with geographical features and
overly distinct land–sea boundaries with a certain amount of
scepticism.

Recent work by Glatthor et al. (2015) and Berry et al.
(2013) has shown that there should be a noticeable depletion
of OCS over the Amazon and Congo rainforest areas due to
strong vegetative uptake. This is indeed what is observed in
these data, especially for the observations made during the
day (Fig. 16, point 7). The Amazon and Congo areas show
OCS total columns of approximately 10–20 % less than what
is estimated over nearby oceans at the same latitude. There-
fore, these results are consistent with the idea that vegeta-
tive uptake is a significant sink of OCS. However, notice that
the night-time estimates (Fig. 16, point 8) tend to be slightly
greater than the daytime estimates, which may be indicative
of a physical OCS process with a diurnal signal. It is also pos-
sible that this effect is an artefact of the retrieval. One may
quickly blame thermal contrast between day and night ob-
servations, except that it is the wrong way around from what
is expected. For example, areas over desert like the Sahara
and much of Australia show low OCS at night and higher
OCS during this day. This is because solar heating increases
thermal contrast, which makes trace gases more detectable.
During the night, these low-humidity areas quickly radiate
away their heat and come closer to thermal equilibrium be-
tween the surface and the lower atmosphere, thus decreasing
sensitivity to OCS. Therefore, if the higher night-time OCS

Figure 14. Same as in Fig. 10, but for September–October 2014.

signal over the rainforests is not physical, then it is unlikely
to be solely due to thermal contrast.

Along this same vein, notice that the high-latitude areas
over land near the Arctic (Fig. 10, point 9) show substan-
tially less OCS in the winter months than any other time of
year. The high standard deviations of the estimates during
this time show that these low OCS values may be due to a
loss of detectability as the signal drops from cold temper-
atures over land. The same can be said for estimates over
Greenland and most of Antarctica throughout the entire year,
i.e. the signal-to-noise ratio (SNR) of OCS is too low to have
much confidence in retrievals over these areas. However, sen-
sitivity appears to return for estimates over northern Canada
and Russia during spring, summer, and autumn.

Additionally, there are several areas over land where there
are particularly high OCS signals. Much of the continental
United States shows OCS estimates greater than ocean values
at similar latitudes. The US OCS signal appears to be at a
maximum from March to April and a minimum between July
and August, with a slow build up back to March. If these
estimates are indicative of the true OCS levels, then the July–
August minimum coincides with peak vegetative uptake for
regions at this latitude. Sources of OCS in the United States,
especially anthropogenic and biomass burning, are currently
poorly understood.

Many regions in the Middle East and the north African
Mediterranean coast also show very specific enhancements
of OCS estimates. It is possible that there exists a surface
emissivity feature in these regions that routinely yields spu-
rious elevated OCS values. However, some of this effect is
likely mitigated by the process of calculating the projected
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Figure 15. Same as in Fig. 10, but for November–December 2014.

cost of the retrieval and removing pixels where the model ini-
tial atmospheres are predicted to poorly represent the scene.
Therefore, it may also be possible that these signals are real
and there are large sources of OCS creating local enhance-
ments. If this signal represents physical OCS amounts, then
the source is more likely to be anthropogenic in nature given
that the detail closely follows geographical boundaries of hu-
man population.

Finally, the areas of high OCS signal over China and the
former Soviet republics east of the Caspian Sea especially
stand out in displayed estimates. These are also areas of
known SO2 emissions due to industrial processes and energy
production that are routinely modelled in chemical transport
models, such as TOMCAT (Spracklen et al., 2005). While it
is energetically unfavourable for SO2 to convert to OCS, the
two may be positively correlated in many physical situations,
especially in anthropogenic processes that do not have strict
methods in place to reduce SO2 emissions.

5 Comparisons to NOAA flask samples

Total column estimates of OCS from the linear retrieval were
also compared to VMR flask measurements of OCS col-
lected by NOAA (Montzka et al., 2007). Although IASI to-
tal columns are different from localized point samples, the
intent is to compare seasonal cycles to see if the two are
temporally correlated. The Earth System Research Labora-
tory of NOAA collects surface air samples by flask from
network sites located across the world to measure seasonal
trends of numerous trace gases, including OCS. Flask mea-
surements of OCS tend to have uncertainties within the range

Figure 16. Same as in Fig. 10, but for all of 2014 combined.

of 0.1−6ppt and are normally sampled on a weekly basis, but
may occur less frequently depending upon location. Further
information and the OCS flask data themselves are found on-
line at http://www.esrl.noaa.gov/gmd/hats/gases/OCS.html.

Figure 17 shows the seasonal trend comparisons for IASI
total columns against the NOAA flask measurements for
seven sample sites: four in the Northern Hemisphere and
three in the Southern Hemisphere. The results are displayed
in monthly increments throughout 2014 where the IASI re-
trieved total columns are binned within a 2◦ radius around
the location of the NOAA site. The site abbreviations along
with their latitudes and longitudes are shown in the plot titles.
Additionally, the monotonic (Spearman’s) correlation coef-
ficient (R) and its associated p values (pval) are also dis-
played. Note that p values represent statistical significance
on a scale of 0–1, where values close to zero show signifi-
cance in the sampled correlation, while higher values fail to
reject the null hypothesis. As a rule of thumb, p values less
than 0.05 are generally regarded as statistically significant
(Hung et al., 1997).

Comparing pressure-specific VMR to total column
amount can be tenuous if the true shape of the vertical pro-
file differs greatly from the referenced profile. Furthermore,
the flask samples are not exactly coincident with the IASI
observations in space and time, thus combining to introduce
a certain level of natural error that is difficult to isolate and
quantify. However, by analysing on a monthly basis, these ef-
fects may be mitigated, where the desired outcome is to show
correlation and consistency between the seasonal signals of
the two.
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Figure 17. OCS total column median estimates (red) from the linear retrieval are compared to NOAA flask measurements of OCS surface
VMR (black) binned by 12-month increments throughout 2014. Retrieval estimates are taken from a 2◦ radius about the NOAA site locations.
The shaded red area represents the sample standard deviation of the total column estimates and the black error bars are the standard deviation
of the flask samples within that month (not divided by the square root of the sample size).
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Of the seven, the Harvard Forest (HFM) site shows the
greatest correlation at R = 0.88. It is important to point out
that the flask samples here are taken immediately above
the forest canopy at 30m, while the IASI observations are
most sensitive at mid-troposphere. Notice that the OCS flask
VMR closely follows the total column trend during the win-
ter months but then drops proportionately much lower from
June to September. Work discussed in Sect. 2.1 suggests that
forests are strong sinks of OCS and are therefore most ac-
tive during peak summertime photosynthesis. Therefore, one
would expect this sort of surface drop at canopy level com-
pared to the total column of OCS.

Perhaps the most important comparison is the Mauna Loa
Observatory (MLO) because the air is sampled closer to the
peak sensitivity of IASI at an altitude of 3.5km. Both flask
VMRs and total columns show a clear seasonal cycle of OCS,
reaching maximum in late spring and minimum in early win-
ter, with a correlation coefficient of 0.76. A similar compari-
son was made for the OCS retrievals using TES (Kuai et al.,
2014) to NOAA flask measurements over Mauna Loa during
2011. They found a slightly higher correlation coefficient of
0.80 for their seasonal analysis, which is expected given that
the TES retrieval accounts for non-linearities by iteratively
minimizing the joint cost function.

Correlations similar to Mauna Loa are found at Trinidad
Head (THD), Cape Grim Observatory (CGO), and Palmer
Station in Antarctica (PSA). However, the site at Mace Head
(MHD) shows a lower correlation of only 0.54 between the
surface VMRs and the total columns. Inspection of both in-
dicates that the OCS values at Mace Head are quite variable
throughout the year with no clear seasonal behaviour. In this
case, coincidence between flask samples and IASI observa-
tions becomes much more important due to the variable na-
ture of OCS at this specific location on the west coast of Ire-
land.

Finally, the NOAA site located in American Samoa (SMO)
actually shows a negative correlation between flask samples
and IASI estimates. This is entirely due to the first 2 months
of the year, January and February, while the remainder of the
year shows a positive correlation. This early year depletion
in the total column estimates can be visualized in Fig. 10.
Notice that there is a spatial low in OCS total column that ex-
tends from the Indonesian islands well into the middle south-
ern Pacific during this time of year. Since this is peak season
for photosynthesis in the Southern Hemisphere, it is possible
that American Samoa is downwind of Indonesian and north-
ern Australian strong OCS sinks for January and February,
while the ocean surface near American Samoa is emitting
OCS or its precursor gases. Conversely, it is possible that this
feature is an artefact of some unsensed physical parameter or
a weather effect yielding a non-linear error biased consis-
tently low.

6 Conclusions

A novel linear retrieval method was developed and applied
towards making timely estimates of OCS total columns for
the entirety of IASI observations from 2014. There are two
components that make this retrieval scheme unique in com-
parison to current linear methods. First, physical parameters
that influence the spectral observations over the wave num-
ber range used for OCS are directly accounted for by jointly
retrieving them along with OCS. This differs from previous
methods in that they tend to use an effective measurement
covariance that treats the physical parameters not directly
retrieved as noise. Second, an initial linearization point is
selected from a global ensemble of atmospheres based on
minimizing the spectral difference between the IASI and the
modelled spectral radiances. This step is intended to make
the retrieval more linear, thus reducing the need for iterative
steps that rerun the forward model several times per pixel.

Additionally, an iterative retrieval for OCS was used as
a test bed to develop and validate the framework of the re-
trieval, i.e. the state vector, prior constraints, and initial at-
mosphere selection. Once this was accomplished, an ensem-
ble of IASI observations over the Pacific Ocean was used
to quantify the mean spectral residual for the converged es-
timates and showed that the majority of spectral channels
match to within instrument noise, except for the stronger
water absorption features. Water vapour channels were then
treated as noise by modifying the measurement covariance
diagonals accordingly based on the mean spectral residual.
Finally, channel selection was performed based on the OCS
posterior uncertainty, reducing the number of channels from
1201 to 100, which ultimately made the OCS retrieval almost
twice as linear.

The OCS estimates visualized in 2-month increments dis-
play many interesting features consistent with prior knowl-
edge of its sources and sinks. For example, the daytime to-
tal columns show depletions in the OCS signal over tropical
rainforests, which is consistent with the idea that vegetation
is the strongest sink of OCS. The Pacific Ocean displays spa-
tial features of elevated OCS that vary seasonally and ap-
pear to match the prediction made by Berry et al. (2013) that
there is a large source in the Pacific Ocean, especially in the
Southern Hemisphere. Interestingly, there is a clear band of
high OCS estimates following the circumpolar current north
of Antarctica, which is well known for consistent upwelling
sustained by turbulent gyres. Additionally, regions of land
showing high OCS estimates were found over China, the area
east of the Caspian Sea, and northern coastal Africa leading
to the Middle East. It is possible that these land regions emit
anthropogenic OCS or that there is some surface property
unaccounted for that consistently leads to elevated estimates.

To validate the linear retrieval on a monthly basis, these
OCS results were compared to surface VMR samples col-
lected via flask by NOAA stations across the globe. It was
found that five (three Northern Hemisphere and two South-
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ern Hemisphere) NOAA sites out of seven had seasonal cycle
correlation coefficients greater than 0.7. Further comparisons
to aircraft campaigns and zenith-viewing surface estimates
of OCS are desirable. The HIAPER Pole-to-Pole Obser-
vations (HIPPO) study (http://hippo.ucar.edu) collected air-
borne samples of mid-tropospheric OCS over five campaigns
spanning the Pacific Ocean from January 2009 to Septem-
ber 2011 and was also used by Kuai et al. (2014) for OCS
retrieval validation from TES. Unfortunately, the AVHRR
cloud fraction product was not embedded in the IASI L1C
data until October 2011. Future work may revisit these ear-
lier years of the HIPPO study and add a direct AVHRR data
stream to the algorithm for further validation. Additionally,
the Network for the Detection of Atmospheric Composition
Change (NDACC) collects estimates of atmospheric com-
position from 70 different remote sensing research stations
across the globe (www.ndsc.ncep.noaa.gov). Zenith-viewing
Fourier transform infrared (FTIR) spectroscopy is used by
NDACC to retrieve a multitude of trace gases. While OCS
is one such retrieval product, it is not routinely archived as
other gases are. OCS results from NDACC during 2014 may
be available, but this depends upon a site-by-site inquiry into
the installation points of contact. Therefore, future work may
also include coordination with specific NDACC site opera-
tors prior to an arranged IASI analysis period.

In the absence of a large computational cluster, iteratively
analysing forward models of radiative transfer may still be
too time consuming to evaluate IASI data beyond individual
and area-specific events. In this case, one can reduce the ac-
curacy of the retrieval by treating the problem within the lin-
ear framework presented in this paper while speeding up the
computational process by a factor of roughly 104 (depending
upon the specific retrieval). Analysis of model scenarios sug-
gests that the error due to ignoring non-linearities is about
11 % globally for OCS. Since these linear estimates can be
generated so rapidly, it is possible to use a monthly median
or mean of linear OCS fields as the initial point (x0) or even
the a priori (xa) to improve the efficiency and data quality of
a constrained iterative retrieval.

Work presented here paid particular attention to OCS as
an interesting test case. However, it is important to note that
the linear retrieval method presented, using a multi-element
state vector to jointly account for other physical parameters
and selecting an initialization point from an atmospheric en-
semble, can be applied to any trace gas for any nadir-viewing
instrument similar to IASI. While the OCS results require
further validation, the OCS spatial fields presented are in-
triguing and may lead to future understanding of its sources
and sinks. Furthermore, this method can potentially provide
additional insights for minor trace gases that are, as of yet,
poorly quantified.

7 Data availability

IASI radiance data can be downloaded from numerous
sources, including http://www.eumetsat.int/website/home/
Data/index.html (EUMETSAT, 2017). The NOAA flask
data for OCS were downloaded from http://www.esrl.
noaa.gov/gmd/hats/gases/OCS.html (Montzka, 2017). Fi-
nally, the retrieved OCS values presented in this work
for 2014 (40 GBytes of data) are publicly available
and can be acquired by contacting Anu Dudhia at
anu.dudhia@physics.ox.ac.uk.
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