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Abstract. Currently, the National Oceanic and Atmospheric
Administration (NOAA) National Weather Service (NWS)
runs the HYSPLIT dispersion model with a unit mass re-
lease rate to predict the transport and dispersion of volcanic
ash. The model predictions provide information for the Vol-
canic Ash Advisory Centers (VAAC) to issue advisories to
meteorological watch offices, area control centers, flight in-
formation centers, and others. This research aims to provide
quantitative forecasts of ash distributions generated by ob-
jectively and optimally estimating the volcanic ash source
strengths, vertical distribution, and temporal variations us-
ing an observation-modeling inversion technique. In this top-
down approach, a cost functional is defined to quantify the
differences between the model predictions and the satel-
lite measurements of column-integrated ash concentrations
weighted by the model and observation uncertainties. Mini-
mizing this cost functional by adjusting the sources provides
the volcanic ash emission estimates. As an example, MODIS
(Moderate Resolution Imaging Spectroradiometer) satellite
retrievals of the 2008 Kasatochi volcanic ash clouds are used
to test the HYSPLIT volcanic ash inverse system. Because
the satellite retrievals include the ash cloud top height but
not the bottom height, there are different model diagnostic
choices for comparing the model results with the observed
mass loadings. Three options are presented and tested. Al-
though the emission estimates vary significantly with differ-
ent options, the subsequent model predictions with the dif-
ferent release estimates all show decent skill when evaluated
against the unassimilated satellite observations at later times.

Among the three options, integrating over three model layers
yields slightly better results than integrating from the sur-
face up to the observed volcanic ash cloud top or using a
single model layer. Inverse tests also show that including the
ash-free region to constrain the model is not beneficial for
the current case. In addition, extra constraints on the source
terms can be given by explicitly enforcing “no-ash” for the
atmosphere columns above or below the observed ash cloud
top height. However, in this case such extra constraints are
not helpful for the inverse modeling. It is also found that
simultaneously assimilating observations at different times
produces better hindcasts than only assimilating the most re-
cent observations.

1 Introduction

Large amounts of ash particles are produced during violent
volcanic eruptions. After the initial ejection momentum car-
rying them upwards, ash particles rise buoyantly into the
atmosphere. Then, volcanic ash travels away from the vol-
cano following the atmospheric flow. Fine ash particles may
remain in the atmosphere for days to weeks or longer and
can travel thousands of miles away from the source (Rose
and Durant, 2009). They have severe adverse impacts on
the aviation industry, human and animal health, agriculture,
buildings, and other infrastructure (Prata and Tupper, 2009;
Gordeev and Girina, 2014; Wilson et al., 2011; Horwell and
Baxter, 2006; Wilson et al., 2012). To help prepare for and
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mitigate such impacts, it is important to not only monitor but
also to forecast the volcanic ash transport and dispersion.

Starting with a memorandum of understanding (MOU)
signed between the United States National Oceanic and At-
mospheric Administration (NOAA) and the Federal Avia-
tion Administration (FAA) in December 1988, the NOAA
Air Resources Laboratory (ARL) developed a volcanic ash
forecast transport and dispersion (VAFTAD) model for emer-
gency response, focusing on hazards to aircraft flight opera-
tions (Heffter and Stunder, 1993). Currently, the NOAA Na-
tional Weather Service (NWS) runs the HYSPLIT dispersion
model (Draxler and Hess, 1997; Stein et al., 2015a) with a
unit mass release rate to qualitatively predict the transport
and dispersion of volcanic ash. The model predictions pro-
vide important information for the Volcanic Ash Advisory
Centers (VAAC) to issue advisories to meteorological watch
offices, area control centers, flight information centers, and
others.

In order to quantitatively predict volcanic ash, realistic
source parameters need to be assigned to the volcanic ash
transport and dispersion models. Mastin et al. (2009) com-
piled a list of eruptions with well-constrained source param-
eters. They found that a mass fraction of debris finer than
63 µm (m63) could vary by nearly 2 orders of magnitude
between small basaltic eruptions (∼ 0.01) and large silicic
ones (> 0.5). Default source parameters were assigned to the
world’s more than 1500 volcanoes. They may be used for
ash cloud modeling when few observations are available in
the event of an eruption.

With the advancement of remote-sensing techniques,
satellites have played an important role in detecting and mon-
itoring volcanic ash clouds (Seftor et al., 1997; Ellrod et al.,
2003; Pergola et al., 2004). An automated volcanic ash cloud
detection system has been developed and continuously im-
proved (Pavolonis et al., 2006, 2013, 2015a, b). In addi-
tion to detecting and monitoring ash clouds, satellite mea-
surements allow many ash cloud characteristics to be quan-
tified. For instance, Wen and Rose (1994) used two-band
data from the NOAA Advanced Very High Resolution Ra-
diometer (AVHRR) to retrieve the total mass of a volcanic
ash cloud from the eruption of Crater Peak/Mount Spurr
on 19 August 1992 in Alaska. Using multispectral satellite
data from the AVHRR/2 and ATSR-2 instruments, Prata and
Grant (2001) provided a quantitative analysis of several prop-
erties of the Mount Ruapehu ash cloud in New Zealand, in-
cluding mass loading, cloud height, ash cloud thickness, and
particle radius. The quantified ash cloud parameters can be
directly inserted into transport and dispersion models as “vir-
tual sources” far from the vent. Wilkins et al. (2014, 2016)
applied this technique to the eruption of Eyjafjallajökull in
2010 using infrared (IR) satellite imagery and the NAME
model. It was also applied by Crawford et al. (2016) to the
2008 Kasatochi eruption using the HYSPLIT model.

Under a general data assimilation and inverse modeling
framework, satellite measurements can be used to constrain

the model and estimate emission parameters using various
techniques. For instance, Stohl et al. (2011) applied an in-
version scheme to the Eyjafjallajökull eruption using a La-
grangian dispersion model with satellite data and demon-
strated the effectiveness of the method to yield better quan-
titative volcanic ash predictions. Schmehl et al. (2012) pro-
posed a variational technique that uses a genetic algorithm
(GA) to assimilate satellite data to determine emission rates
and steering winds. A HYSPLIT inverse system based on a
four-dimensional variational data assimilation approach has
been built and successfully applied to estimate the cesium-
137 releases from the Fukushima Daiichi Nuclear Power
Plant accident in 2011 (Chai et al., 2015). The present work
further develops the HYSPLIT inversion system to estimate
the time- and height-resolved volcanic ash emission rate by
assimilating satellite observations of volcanic ash. The sys-
tem is tested with the 2008 Kasatochi eruption using the
satellite retrievals from passive IR sensors.

The paper is organized as follows. Section 2 describes the
satellite observations of volcanic ash, the HYSPLIT model
and configuration, and the inverse modeling methodology.
Section 3 presents emission inversion results, and Sect. 4 dis-
cusses the corresponding volcanic ash forecasts with the es-
timated source terms. A summary is given in Sect. 5.

2 Methodology

2.1 Satellite observations

The volcanic ash observations are based on MODIS re-
trievals from the Terra and Aqua satellites. They include ash
mass loading, cloud top height, and effective particle radius.
Pavolonis et al. (2013, 2015a, b) described the details of the
retrieval methodology and how the ash cloud observations
are derived from the retrieved parameters, such as radiative
temperature and emissivity. Here, volcanic ash observations
from the 2008 Kasatochi eruption at five different instances
are utilized. The observations were projected onto a latitude–
longitude grid with a resolution of 0.05◦ latitude and 0.1◦

longitude. Figure 1 shows the volcanic ash mass loadings and
ash cloud top heights of five granules. Each granule contains
6 minutes of data covering an area of approximately 1500 km
along the orbit and 1650 km wide. Note that the satellite ob-
servations outside the shown domain are discarded. As the
discarded data are mostly located upwind of the volcano
vent, they are not expected to provide useful information to
estimate the source strength. The places where satellite re-
trievals did not detect the existence of ash show zero mass
loading. It will be shown later that such ash-free regions may
be used along with the observed ash cloud to constrain the
dispersion model. Note that the ash-free regions do not ap-
ply to regions with missing ash mass loadings due to me-
teorological clouds or other reasons. Table 1 shows the ob-
servation time and the number of grid cells with and without
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Figure 1. MODIS volcanic ash mass loadings (left) and ash cloud top height (right) listed from top to bottom by observation time (see
Table 1 for detail). “+” shows the location of the Kasatochi volcano (52.1714◦ N, 175.5183◦W). Note that the satellite observations to the
left of the map domain are not used in this paper.
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Table 1. Description of MODIS ash cloud observations. “Ash cells”
and “clear cells” show the number of grid cells with and without
detected ash, respectively. The total mass is obtained by integrating
mass loadings over the observed region.

Observation time Ash Clear Total mass
cells cells (kg)

G1 13:40 UTC on 8 August 2008 3778 92 230 9.68×108

G2 00:50 UTC on 9 August 2008 9604 56 161 6.69×108

G3 12:50 UTC on 9 August 2008 13 226 107 104 5.37×108

G4 00:00 UTC on 10 August 2008 13 876 98 686 3.72×108

G5 11:50 UTC on 10 August 2008 15 088 100 211 3.25×108

ash detected for each granule. The clear regions dominate the
satellite observations. Integrated mass loadings based on the
satellite data are also listed in Table 1. They decrease from
9.68×108 kg for the first granule (G1) to 3.25×108 kg for
the last granule (G5). This probably reflects the gradual loss
of the total volcanic ash mass due to deposition. Note that
the total mass is likely slightly underestimated for the sec-
ond granule (G2), where the satellite lost sight of the eastern
edge of the ash cloud.

2.2 HYSPLIT model configuration

In this study, volcanic ash transport and dispersion are
modeled using the HYSPLIT model (Draxler and Hess,
1997, 1998; Stein et al., 2015a). A large number of three-
dimensional Lagrangian particles are released from the
source location and passively follow the wind afterward. A
random component based on local stability is added to the
mean advection velocity in each of the three-dimensional
wind component directions to simulate the dispersion. Ash
concentrations are computed by summing each particle’s
mass as it passes over a concentration grid cell and dividing
the result by the cell’s volume.

Both the NOAA Global Data Assimilation System
(GDAS) (Kleist et al., 2009) and the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim
global atmospheric reanalysis (Dee et al., 2011) were used as
inputs for HYSPLIT. The basic information of the two data
sets is listed in Table 2. The concentration grid is set at 0.05◦

of resolution for latitude and 0.1◦ for longitude with a verti-
cal spacing of 2 km extending from the surface to 20 km.

A total of 290 independent HYSPLIT simulations were
run with a unit emission rate released from all possible com-
binations of 29 different hours from 19:00 UTC on 7 Au-
gust 2008 to 23:00 UTC on 8 August 2008 and 10 different
2000 m layers. Note that at the first layer, particles are re-
leased from the top of the vent from 300 m above sea level to
2000 m. At other layers, particle releases are uniformly dis-
tributed throughout the layer at the center of the grid as a line
source. In each simulation, particles of four different sizes
are released as different pollutants with different fall speeds
according to Stokes’s law (Heffter and Stunder, 1993). At all

release time and height combinations, the contributions to the
total mass are assumed to be constant at 0.8, 6.8, 25.4, and
67.0 % for particle sizes of 0.6, 2.0, 6.0, and 20.0 µm, respec-
tively. The same particle size distribution was originally used
in the NOAA ARL VAFTAD model (Heffter and Stunder,
1993). Webley et al. (2009) evaluated the sensitivity of the
grain size distribution on the modeled ash cloud and found
that this predefined distribution is sufficient for HYSPLIT
volcanic ash simulation. MODIS effective particle radii (reff)
are retrieved to describe the ash particle size distributions.
However, radii greater than 15–20 µm are not retrieved since
the retrievals cannot be performed reliably when reff exceeds
15 µm (Pavolonis et al., 2013).

2.3 Model diagnostic

As shown in Sect. 2.1, satellite observations provide ash mass
loadings and ash cloud top heights after detecting ash. There
are several options to construct the model counterparts for
observed ash cloud mass loadings. Three different model di-
agnostic choices are tested here. In the first option, model
volcanic ash concentrations from the ground or sea level up
to the model layer where the observed cloud top height re-
sides are integrated to calculate the mass loadings in the
model simulation. In the second option, the single model
layer where the retrieved cloud top height resides is used
to construct the mass loadings. However, the retrieved cloud
top heights are associated with uncertainties. Pavolonis et al.
(2013) showed that the retrieved cloud top height had a low
bias of 0.77 km relative to lidar. Crawford et al. (2016) com-
pared MODIS cloud top height retrievals with CALIOP ver-
tical profiles for the same event. In general, the MODIS top
heights agree well with the top aerosol level indicated by
CALIOP profiles but can be off by several kilometers. When
CALIOP shows two levels of ash, the MODIS top height falls
between them. In addition, the cloud top height retrievals typ-
ically lie in the middle of thick ash cloud layers rather than at
the top (Pavolonis et al., 2013). To compensate for such un-
certainties in ash cloud top height position, the third option is
designed to integrate model volcanic ash concentrations over
three model layers, i.e., from one layer below to one layer
above the cloud top layer.

When ash is not detected, the grid cells are flagged as clear
or ash-free. This is equivalent to zero mass loading for the en-
tire atmospheric column at such a location. In this case, the
model counterpart is obtained by integrating simulated con-
centrations from the surface to the domain top. Constraining
the model simulation with these zero-value observations is
expected to help remove spurious sources from which the
transport and dispersion will likely generate additional ash
clouds that are not observed.

At locations where ash is detected, the observations can
be further exploited to provide additional constraints. As ash
cloud top heights are provided along with the mass load-
ings, they indicate that no ash is above the cloud top. How-
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Table 2. Description of GDAS and ECMWF meteorological data.

Data set Horizontal Vertical pressure levels Output
resolution interval

GDAS 1◦× 1◦ every 25 hPa from 1000 to 900 hPa; every
50 hPa from 900 to 50 hPa; 20 hPa

3 h

ECMWF 0.75◦× 0.75◦ every 25 hPa from 1000 to 750 hPa; every
50 hPa from 750 to 250 hPa; every 25 hPa
from 250 to 100 hPa; 70, 50, 30, and 20 hPa

6 h

ever, no information can be inferred for the region below
the cloud top. As a result, each ash cell actually generates
two pieces of information. Besides the observed volcanic ash
cloud mass loadings mentioned earlier, a clear atmospheric
column above the cloud top is the other implicit piece of
information that can be used in emission inversion. Sim-
ilar to using zero-value observations at ash-free locations,
the integrated mass loadings above the ash cloud top may
also be used to filter out unlikely sources. When the “ob-
served” ash cloud is assumed to be limited to one single
model layer or three layers, it is also possible to add no-ash-
below-cloud constraints in the inverse modeling. Although
such constraints are based on an assumption that is not al-
ways true, it will be tested nonetheless.

In addition to detected ash and clear cells, another sce-
nario exists when satellite observations cannot provide pos-
itive or negative answers for ash detection, e.g., due to me-
teorological cloud obstruction. In such a case, no useful in-
formation can be used to constrain the model. For the 2008
Kasatochi eruption, overlying meteorological clouds were
nearly absent, and valid observations appear across the satel-
lite swaths.

2.4 Transfer coefficient matrix (TCM)

A transfer coefficient matrix (TCM) of 290 columns can be
generated using all or a subset of the re-gridded MODIS ob-
servations listed in Table 1 and the results of the 290 HYS-
PLIT simulations with unit emission. A transfer coefficient
in the TCM is essentially the mass loadings at an observation
point that the row represents, resulting from a dispersion run
with a unit emission that the column indicates.

Figure 2 shows the two-dimensional transfer coefficient
matrices averaged over all ash pixels for five granules. As a
transfer coefficient corresponds to the mass loadings result-
ing from a unit ash release rate, integrating over more model
layers would produce larger transfer coefficients. It is clearly
seen that the single layer option, shown as the middle column
in Fig. 2, has the averaged TCMs with the lowest values. Fig-
ure 2 also shows that integrating from the surface up to the
ash cloud top layer generally results in TCMs with the largest
values among the three options. As the option to add over
three layers (right column in Fig. 2) includes a layer above
the cloud top layer that is not included in option one, transfer

coefficients at the upper layers may have larger values. Note
that a block of zero transfer coefficients after 10:00 UTC on
8 August appear for G1. Ash releases after the observation
time of G1 do not affect the G1 observations. In addition, re-
leases need time to travel to the observed location. Figure 2
shows that, as expected, the averaged transfer coefficients
tend to be smaller for later observations due to dispersion.
The averaged TCMs using ECMWF meteorological data (not
shown) are similar to the GDAS results shown here.

2.5 Emission inversion

Following a general top-down approach, the unknown emis-
sion terms are obtained by searching for the emissions that
would provide the model predictions that most closely match
the observations. In the current application with the known
volcano location, the emission rates vary with time and re-
lease heights. With the potential emission time period di-
vided into 29 hourly intervals and the release heights sepa-
rated into 10 vertical layers, the discretized two-dimensional
unknown emission has 290 components to be determined.

Similar to Chai et al. (2015), the unknown releases can be
solved by minimizing a cost functional that integrates the dif-
ferences between the model predictions and the observations,
the deviations of the final solution from the first guess (a pri-
ori), and other relevant information written into penalty terms
(Daley, 1991). For the current application, the cost functional
F is defined as

F =
1
2

M∑
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j=1
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qij − q

b
ij

)2

σ 2
ij

+
1
2

M∑
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o
m
)2

ε2
m
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where qij is the discretized two-dimensional emission over
M = 29 h and N = 10 layers. qbij is the first guess or a pri-
ori estimate, and σ 2

ij is the corresponding error variance.
Note that we assume that the uncertainties of the release
at each time–height are independent of each other so that
only the diagonal term σ 2

ij of the typical a priori error co-
variance matrix appears in Eq. (1). For emission points at
which the release generates no simulated ash corresponding
to any of the assimilated observations, the first guesses re-
main unchanged. To avoid unrealistic release rates for such
emission points, we chose a small constant emission rate
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Figure 2. Averaged TCMs using GDAS meteorological data with three different options for calculating the model mass loadings (column 1,
integrating from the surface to the observed cloud top; column 2, calculated for a single layer where the observed cloud top height resides;
column 3, integrating over three layers centered at the observed cloud top layer). Rows 1–5 (from top to bottom) correspond to observations
G1–G5.
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of 104 g h−1 (≈ 2.8× 10−3 kg s−1) at all hours and layers
as the first guess. Large uncertainties are given in the fol-
lowing tests to reflect the fact that little was known for the
mass emission rates. ah

m and ao
m are the mass loadings sim-

ulated by HYSPLIT and retrieved by MODIS, respectively.
The observations here refer to both the volcanic ash mass
loadings for the ash cloud and the zero values for the ash-
free regions, which are later included as extra constraints in
Sect. 4.3. Zero mass loadings also include those calculated
over the atmospheric columns above or below ash clouds as
discussed earlier in Sect. 2.4. ε2

m includes the variances of the
observational and representative errors. For simplicity, ε2

m are
referred to as observational errors hereafter and are assumed
to be uncorrelated. Dubuisson et al. (2014) studied the re-
mote sensing of volcanic ash plumes from SEVIRI, MODIS,
and IASI instruments. The total uncertainty in MODIS mass
loading resulted from errors in the input atmospheric param-
eters, such as ash layer altitude, particle size distribution, and
particle composition, and was estimated to be ∼ 50 %. Their
inter-comparison among six satellite configurations shows
a standard deviation of 0.3 g m−2 for the mean mass load-
ing estimates. In this study, the observational errors are es-
timated using εm = 0.50× ao

m+ 0.3 g m−2. No smoothness
penalty term is included in the cost functional because of the
abrupt nature of the volcanic eruptions. A large-scale bound-
constrained limited-memory quasi-Newton code, L-BFGS-B
(Zhu et al., 1997), is used to minimize the cost functional F
defined in Eq. (1). The maximum number of cost functional
evaluations is set as 250 for cases in Sect. 3 and 2500 for
those in Sect. 4. To ensure non-negative qij solutions from
the optimization, qij is converted to ln(qij ) as input to the
L-BFGS-B routine. An alternative to this is enforcing the
qij ≥ 0 with lower bounds enabled by the L-BFGS-B rou-
tine. As they solve the same mathematical problem, these
two options are expected to arrive at the same results with
enough iterations. Chai et al. (2015) provide a detailed dis-
cussion on the conversion of control and metric variables. Al-
though they showed that using logarithmic concentration dif-
ferences in the cost functional performed better than directly
using concentration differences in their application, the loga-
rithmic conversion on the metric variable am is not beneficial
for the current application. This is because the range of the
volcanic ash mass loadings here is much smaller than that of
the cesium-137 air concentrations encountered in their appli-
cation. In addition, the utilization of zero mass loadings in
many ash-free regions prohibits using ln(ao

m). In this study,
the mass loadings are directly compared in the cost func-
tional without logarithmic conversion.

3 Emission estimates

The emission estimates obtained by minimizing the cost
functional F introduced in Eq. (1) highly depend on the un-
certainties given to the a priori and observations. Sensitivity

tests are first performed by changing the magnitudes of the
a priori error variances, while the observational error estima-
tion is fixed. Chai et al. (2015) demonstrated that the emis-
sion inversion results were not sensitive to the first guess of
the emissions when large uncertainties are presumed.

In the sensitivity tests, ash cloud data at G1 and G2 are
assimilated. Note that the zero mass loading values for ash-
free regions are not used here. Large a priori error variances
are presumed with σij ≈ 1012 g h−1 (≈ 2.8×105 kg s−1) and
σij ≈ 1016 g h−1 (≈ 2.8× 109 kg s−1). In these cases, the
HYSPLIT simulated mass loadings were calculated by inte-
grating from the surface to the observed ash cloud top heights
at the ash cells. Figure 3 shows that the emission inversion re-
sults are slightly different from each other when the a priori
errors are assumed differently, as expected. However, similar
patterns are apparent for both cases with the different a pri-
ori error variances. A peak release greater than 5000 kg s−1 is
observed at 04:00 UTC on 8 August 2008 at the 6–8 km layer
for both cases. This demonstrates that the emission estimates
are most decided by the satellite data when a priori errors are
assumed to be large enough. Note that a larger a priori term
with smaller a priori error variances in Eq. (1) typically helps
the minimization procedure in emission inversion. Since the
results using the two a priori errors are similar, the a priori er-
ror variances are set as σij ≈ 1012 g h−1 (≈ 2.8×105 kg s−1)
in the following tests.

Waythomas et al. (2010) characterize the eruption by three
major explosive events and two smaller events. Events one
and two started at 22:01 UTC on 7 August and 01:50 UTC
on 8 August, respectively. These two events reached 14 km
and produced water-rich but ash-poor clouds. Event three
happened at 04:35 UTC on 8 August. It generated an ash-
rich cloud that rose up to 18 km. About 16 h of continuous
ash emission was punctuated with events four and five at
07:12 UTC and 11:42 UTC on 8 August.

Figure 4 shows the emission estimates using all three op-
tions in calculating model mass loadings. The zero values
for ash-free regions are not used here. The emission results
are significantly different with different options. For cases
in which the model counterparts of the satellite mass load-
ings are obtained by integrating from the surface to the cloud
top, the ash releases started at 01:00 UTC on 8 August 2008
from the 8–10 km layer. The emissions lasted for 4 h and ex-
tended to multiple layers, reaching up to the 14–16 km layer
and down to the 4–6 km layer. After 1 h without ash, moder-
ate volcanic ash releases continued for 6 h until 12:00 UTC
on 8 August, mainly between 8 and 16 km. A small ash emis-
sion of less than 80 kg s−1 is seen at the 12–14 km layer start-
ing at 15:00 UTC for 1 h. If the model mass loadings are ob-
tained by only considering a single layer where the cloud top
height resides, the resulting release source terms are limited
to layers between 12 and 16 km. The ash releases started at
03:00 UTC on 8 August and lasted for 3 h before resuming
again 2 h later. With emissions on and off for the next 2 h
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Figure 3. Volcanic ash release results with different a priori er-
ror estimations (top, σij ≈ 2.8× 105 kg s−1; bottom, σij ≈ 2.8×
109 kg s−1). The TCMs for the emission inverse were generated us-
ing HYSPLIT runs with GDAS meteorological data. Only the ash
cells from the satellite data at G1 and G2 are used in the emission
inverse. The model counterparts are obtained by integrating from
the surface to the ash cloud top heights at ash cells.

at the 14–16 km layer, the ash release continued for 6 h and
peaked between 14:00 and 15:00 UTC on 8 August at the
12–14 km layer. There is also an isolated emission point at
the 14–16 km layer starting at 23:00 UTC on 8 August and
lasting for 1 h. In the last case, for which the model mass
loadings are calculated by integrating over three layers cen-
tered at the cloud top layer, the ash releases are drastically
different from the first two cases. The ash releases start much
earlier, at 20:00 UTC on 7 August, and the release heights
are within the 14–18 km range. The release then extended
to more layers, but the main sources went lower. This lasted
for 13 h before stopping at 09:00 UTC on 8 August. A sec-
ond spurt of ash release started at 11:00 UTC from the 14–
16 km layer and remained above 12 km before pausing again
5 h later. Several weaker ash releases are found between the
14 and 18 km layers at later times, from 19:00 UTC on 8 Au-
gust to 00:00 UTC on 9 August.

The three emission estimates in Fig. 4 do not reproduce
the eruption as described by Waythomas et al. (2010), but
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Figure 4. Volcanic ash release estimates with different options in
the model mass loading calculation: (top) integrating from the sur-
face to the cloud top (same as Fig. 3, top), (center) calculated for a
single layer where the cloud top height resides, and (bottom) inte-
grating over three layers centered at the cloud top layer.

they manage to capture some characteristics of the eruption.
Without information on the vertical profiles of the ash cloud,
how the mass loadings are interpreted greatly affects the re-
lease estimates, as shown by the drastic differences between
the estimates in Fig. 4. Thus, it is difficult to generate reliable
and accurate actual volcanic ash emission estimates if the ash
cloud vertical structures are undetermined. However, it will
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be shown later that such emission estimates can still help to
improve ash cloud forecasts.

4 Ash predictions with top-down emission estimates

A series of tests was performed to find the best inverse mod-
eling setup. In Sect. 4.1, the evaluation metrics are described.
In Sect. 4.2, the choices for calculating the model counter-
parts of the satellite mass loadings are compared. In Sect. 4.3,
whether to use the ash-free region to constrain the model
is investigated. In Sect. 4.4, the effect of keeping older ob-
servations when newer observations become available is dis-
cussed.

4.1 Evaluation metrics

For the model evaluation, total column mass loadings are
constructed by integrating predicted concentrations from the
surface to the domain top. They are used to compare the
satellite observations in each granule shown in Fig. 1, in-
cluding both ash and clear points. The aim is to use the to-
tal column mass loadings instead of any of the options de-
scribed in Sect. 2.4 to provide a fair comparison among the
three options by avoiding the complexities associated with
the vertical structures of the volcanic ash cloud. Note that
Crawford et al. (2016) excluded masses below 2 km when
integrating the model results to obtain the mass loadings be-
cause the satellite retrieval is less sensitive to low-level ash.
Such exclusion may improve the evaluation statistics, but it
is not expected to affect the inter-comparison between differ-
ent model runs. Mean bias (MB), fractional bias (FB), root
mean square error (RMSE), normalized RMSE (NRMSE),
and the Pearson correlation coefficient (R) are calculated. FB
and NRMSE are scaled by the average of model and obser-
vation means. In addition, the critical success index (CSI)
defined below is calculated for ash detection:

CSI=
NHit

NFalseAlarm+NHit+NMiss
. (2)

A threshold of 0.1 g m−2, the approximate lower limit
of the MODIS satellite data set, is used to categorize ash
existence for both the model predictions and the observa-
tions.NHit,NFalseAlarm, andNMiss denote the numbers of grid
points where ash is predicted and observed, where ash is pre-
dicted but not observed, and where ash is observed but not
predicted by the model, respectively.

Following Draxler (2006), the Kolmogorov–Smirnov pa-
rameter (KSP) and the “rank” are calculated. The KSP mea-
sures the largest difference between the cumulative distribu-
tion functions of the model predictions and the observations.
As shown in Eq. (3), the rank adds up four components that
all range from 0 to 1. The larger rank values indicate a better
overall performance of the model results:

Rank= R2
+

(
1−
|FB|

2

)
+CSI+ (1−KSP). (3)

4.2 Model mass loadings

The HYSPLIT predictions using the estimated source terms
after assimilating the G1 and G2 observations are evaluated
against the satellite observations of G2, G3, G4, and G5.
Note that the zero mass loadings for ash-free regions are not
used here. The three options to calculate the model ash mass
loadings discussed earlier are employed in the inverse mod-
eling. The statistics are listed in Table 3.

Comparing against the G2 observation, Table 3 shows
that integrating over three model layers yields (option M1)
slightly better results based on most statistics. This is true
for cases with both GDAS and ECMWF meteorological
fields. The advantage of the M1 option is not apparent when
comparing against other observations. Based on rank, the
ECMWF cases are better than the GDAS cases against G2,
but the ranks for the ECMWF cases deteriorate faster with
time and become worse than the GDAS cases when the
model output is compared to the G4 and G5 observations.
The model predictions have the best statistics compared
against G4 than against the other satellite granules (G2, G3,
and G5). The case with GDAS meteorological fields and the
three-layer mass loading option M1 has the best rank of 3.02
(FB= 0.04, R = 0.72, CSI= 0.62, KSP= 0.10). If only G2
observations were assimilated, the model performance would
be expected to peak when compared against G2. However, as
both the G1 and G2 observations are assimilated, this is no
longer true. The effect of assimilating different observations
will be discussed later in Sect. 4.4. Table 3 shows that the
model tends to underestimate the ash mass loadings of G2
and G3 and then mostly overestimate the ash mass loadings
of G4 and G5. It results in the best FB against G4 for GDAS
cases and the best FB against G3 for ECMWF cases as the
FB signs change. Since the volcanic ash will disperse with
time, the average mass loadings get smaller. This is reflected
in a basic trend of decreasing RMSEs with time, although the
NRMSEs slightly increase.

While different evaluation metrics may not always agree
with each other, the overall performance parameter rank pro-
vides a simplified way to compare the model results. Only the
ranks are listed and used to compare the model predictions
hereafter. Using HYSPLIT ensembles, Stein et al. (2015b)
estimated the uncertainties of the rank as 0.08, 0.08, 0.09,
0.08, 0.11, and 0.07 for six different tracer releases. The un-
certainties of the rank for the current application could vary,
but they are not expected to be too different.

4.3 Extra constraints

As discussed in Sect. 2.3, ash-free regions indicate zero
mass loadings for the entire atmospheric columns. Cloud
top heights can also be used to enforce ash-free atmospheric
columns above volcanic ash clouds. In addition, ash-free at-
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Table 3. Evaluation statistics against the G2, G3, G4, and G5 observations for cases with different ways to calculate model mass loadings.
G1 and G2 are assimilated for all cases listed here. MET is meteorological input; OBS indicates satellite observations used for evaluation;
ML is mass loading; MA is integrating from the surface to the cloud top; M0 is calculated for a single layer where the cloud top height
resides; M1 is integrating over three layers centered at the cloud top layer; MB is the mean bias; FB is the fractional bias; RMSE is the root
mean square error; NRMSE is normalized RMSE; R is the Pearson correlation coefficient; CSI is the critical success index; and KSP is the
Kolmogorov–Smirnov parameter. Rank is defined in Eq. (3).

MET OBS ML MB FB RMSE NRMSE R CSI KSP Rank
(g m−2) (g m−2)

GDAS MA −0.09 −0.45 0.63 2.98 0.60 0.52 0.05 2.61
G2 M0 −0.10 −0.45 0.68 3.25 0.54 0.54 0.04 2.58

M1 −0.10 −0.47 0.63 3.03 0.60 0.58 0.04 2.66

MA −0.04 −0.38 0.28 3.07 0.64 0.55 0.05 2.72
G3 M0 −0.03 −0.28 0.33 3.40 0.60 0.59 0.04 2.77

M1 −0.03 −0.32 0.30 3.13 0.61 0.61 0.05 2.77

MA −0.01 −0.10 0.18 2.40 0.72 0.62 0.12 2.96
G4 M0 0.01 0.10 0.25 3.02 0.65 0.64 0.07 2.96

M1 0.00 0.04 0.19 2.39 0.72 0.62 0.10 3.02

MA −0.01 −0.09 0.21 3.21 0.43 0.43 0.23 2.34
G5 M0 0.01 0.19 0.25 3.33 0.41 0.45 0.22 2.31

M1 0.01 0.12 0.22 3.12 0.43 0.45 0.25 2.32

ECMWF MA −0.06 −0.26 0.61 2.67 0.66 0.53 0.03 2.81
G2 M0 −0.04 −0.16 0.72 3.00 0.65 0.58 0.05 2.87

M1 −0.07 −0.32 0.60 2.69 0.69 0.63 0.04 2.90

MA −0.01 −0.13 0.34 3.25 0.62 0.52 0.04 2.80
G3 M0 0.01 0.05 0.45 4.01 0.60 0.56 0.04 2.85

M1 −0.02 −0.15 0.35 3.40 0.61 0.55 0.04 2.80

MA 0.01 0.16 0.28 3.21 0.68 0.55 0.13 2.80
G4 M0 −0.07 −0.32 0.60 2.69 0.69 0.63 0.04 2.90

M1 0.02 0.18 0.34 3.87 0.63 0.56 0.08 2.78

MA 0.01 0.18 0.26 3.55 0.42 0.45 0.21 2.33
G5 M0 0.05 0.51 0.37 4.17 0.43 0.44 0.20 2.17

M1 0.02 0.28 0.29 3.76 0.42 0.45 0.20 2.28

mospheric columns below the ash cloud may be assumed if
an ash cloud thickness is estimated. Note that the term “above
or below ash cloud” is in relation to the chosen model’s cloud
diagnostic. For instance, if the M1 option is chosen, above-
and below-ash-cloud constraints are enforced over the model
layers outside the three ash layers. Whether such extra con-
straints benefit the inverse modeling is tested here using the
22 inverse cases listed in Table 4. The ranks evaluated against
G2–G5 are listed. It is found that when the additional con-
straints of including the clear pixels outside the ash cloud are
used, the ranks decrease. This holds true against G2–G4 for
all three mass loading calculation options and for both sets
of meteorological data. Two exceptions are found against G5
for the ECMWF cases with the M0 and M1 options, in which
ranks increase from 2.17 to 2.32 and 2.28 to 2.38, respec-
tively. Enforcing the extra constraints of the ash-free regions
makes the inversion results very sensitive to transport errors
since the HYSPLIT simulated ash plume outside the MODIS

ash cloud starts to affect the emission inversion results. Ta-
ble 4 shows that the emission inversion with extra constraints
of clear pixels using ECMWF data performs better than us-
ing GDAS data, except in a single case with the MA option
against G4.

Adding the extra constraints of a clear column above the
ash cloud generally causes a decrease in rank. An exception
is the ECMWF case with the M1 option (three model layers
used for mass loading calculation) in which the extra “top”
constraint results in marginally better predictions evaluated
against G5 (a rank of 2.39 versus 2.38). It is found that the
ECMWF cases perform better than all of their GDAS coun-
terparts after adding the top constraints. When the constraints
of a clear column below the ash cloud are further added for
the M0 and M1 options, the ranks decrease significantly, es-
pecially for the M0 option in which a single model layer is
used to construct the model mass loadings. Clearly, model
and observation uncertainties have to be carefully addressed
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Table 4. Ranks of the inverse tests with various extra constraints evaluated against the G2, G3, G4, and G5 observations (OBS). For mass
loading (ML), MA is integrating from the surface to the cloud top; M0 is calculated for a single layer where the cloud top height resides; and
M1 is integrating over three layers centered at the cloud top layer. For extra zero observation constraints, H is with clear pixels; T is with
a clear column above the ash cloud; and B is with a clear column below the ash cloud. Ash cells are assimilated in all inverse cases. The
satellite data at both G1 and G2 are used for all cases listed here.

OBS ML GDAS ECMWF

– H H+T H+T+B – H H+T H+T+B

MA 2.61 2.26 2.00 – 2.81 2.50 2.20 –
G2 M0 2.58 2.03 1.65 1.17 2.87 2.46 1.82 1.22

M1 2.66 2.27 2.17 1.81 2.90 2.63 2.54 2.00

MA 2.72 2.38 2.04 – 2.80 2.53 2.17 –
G3 M0 2.77 2.21 1.74 1.37 2.85 2.61 1.83 1.33

M1 2.77 2.36 2.25 1.88 2.80 2.61 2.56 2.06

MA 2.96 2.64 2.23 – 2.80 2.50 2.37 –
G4 M0 2.96 2.45 1.83 1.40 2.90 2.81 2.03 1.38

M1 3.02 2.62 2.51 2.05 2.78 2.74 2.72 2.17

MA 2.34 2.05 1.73 – 2.33 2.28 2.01 –
G5 M0 2.31 2.08 1.52 1.05 2.17 2.32 1.77 1.05

M1 2.32 2.04 1.96 1.70 2.28 2.38 2.39 1.81

to take advantage of the extra constraints in order to benefit
the emission inversion. This requires further investigation in
future studies.

4.4 Older observations

As newer observations become available, whether to include
the older observations in the assimilation remains a question.
Table 5 lists the statistics for 10 cases evaluated against gran-
ules 2–5 using both GDAS and ECMWF fields. In the in-
verse modeling, only ash pixels were used, and the model
mass loadings are calculated by integrating over three lay-
ers centered at the cloud top layer (M1 option). It is found
that assimilating G2 and G1 yields greater ranks when com-
paring against G3 and G4 observations than assimilating G2
alone. At G5, there is little difference between the two strate-
gies. Note that assimilating G2 alone helps to generate better
statistics against the same observations than assimilating G1
and G2 at the same time, although this does not help the G3
forecasts about 12 h later.

After G3 is available, three strategies to utilize the avail-
able observations G1, G2, and G3 are tested. The re-
sults show that assimilating G2 along with G3 observations
achieves better forecasts at G4 and G5 moments than assimi-
lating only G3. It is also found that including G1 in the assim-
ilation does not make much difference. Again, the assimila-
tion of G3 alone results in a closer match between the model
predictions and the G3 observations, but the forecasts at later
times are worse than when the earlier observations are also
assimilated.

Figure 5 shows the comparison between the MODIS ob-
servations and the HYSPLIT simulations using the estimated

source terms obtained by assimilating G1, G2, and G3 with
both GDAS and ECMWF meteorological fields, listed as the
last two cases in Table 5. The simulated ash clouds corre-
sponding to G1 are narrower than the satellite observations,
and the mass loading values are underestimated. Crawford
et al. (2016) found that cylindrical source terms performed
better than the line sources assumed here. Waythomas et al.
(2010) showed that the source area was quite broad with
a width of about 75 km from 06:00 UTC to 10:00 UTC on
8 August 2008. Inverse modeling with cylindrical sources
will be investigated in the future. The HYSPLIT simulations
with both meteorological fields agree well with granules G2
and G3, and this is reflected by the high rank vales (Table 5).
This is expected, as the same observations were assimilated
to obtain the ash release rates. Against G4, the model results
capture the ash cloud locations and magnitudes very well
for both cases. The case with GDAS input appears to have
similar mass loading values as the observations, while the
ECMWF case has a narrow ring inside the main ash cloud
with higher values than the MODIS observations. In addi-
tion, the ECMWF case shows two tails, while the GDAS case
has only one tail resembling the MODIS observations. Both
cases show tapering shapes of the tails, which appear dif-
ferent from the satellite view. Against the later observations
of G5, the HYSPLIT simulations start to deviate from the
MODIS, as indicated by the lower rank. Both the GDAS and
ECMWF simulations capture the ash cloud at similar loca-
tions as observed by the satellite but show smoother struc-
tures. It is speculated that meteorological fields with higher
spatial and temporal resolutions might be able to improve the
ash cloud predictions.
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Figure 5. Volcanic ash mass loadings from MODIS (left) and HYSPLIT simulations with GDAS (center) and ECMWF (right) from top
to bottom by observation time (see Table 1 for detail). “+” shows the location of the Kasatochi volcano (52.1714◦ N, 175.5183◦W). The
white areas indicate regions outside the satellite granules for MODIS observations. For HYSPLIT simulations, the white areas indicate zero
mass loadings in order to reveal the ash cloud boundaries. The ash release rates for the HYSPLIT simulations were obtained by assimilating
granules G1, G2, and G3. In the inverse modeling, only ash pixels were used, and the model mass loadings are calculated by integrating over
three layers centered at the cloud top layer.
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Table 5. Ranks against G2–G5 for HYSPLIT simulations after assimilating various combinations of observation inputs. The model counter-
parts of the satellite mass loadings are calculated using the M1 option, i.e., integrating over three layers centered at the cloud top layer. Only
the ash cells are assimilated for all the inverse cases listed here. “()” indicates that the observations have been assimilated.

Inputs GDAS ECMWF

G2 G3 G4 G5 G2 G3 G4 G5

G2 (2.70) 2.69 2.86 2.27 (2.90) 2.76 2.76 2.29
G1,G2 (2.66) 2.77 3.02 2.32 (2.90) 2.80 2.78 2.28

G3 2.59 (3.16) 2.89 2.20 2.43 (3.07) 2.78 2.10
G2,G3 (2.69) (2.94) 2.94 2.26 (2.76) (2.91) 2.81 2.23
G1,G2,G3 (2.61) (2.93) 2.96 2.28 (2.77) (2.98) 2.86 2.20

There were several lidar observations of the Kasatochi
ash cloud provided by the CALIPSO satellite (Winker et al.,
2010; Kristiansen et al., 2010; Crawford et al., 2016). The
HYSPLIT simulations shown in Fig. 5 are also compared
against the 532 nm backscatter vertical profiles along the
three CALIPSO overpasses coincident with G1, G4, and G5.
The comparisons reveal that both the GDAS and ECMWF
simulations captured the main ash cloud features at approxi-
mately the same location and altitude.

5 Summary

An inverse system based on HYSPLIT has been developed to
solve the effective volcanic ash release rates as a function of
time and height by assimilating satellite mass loadings and
ash cloud top heights. The Kasatochi eruption in 2008 was
used as an example to test and evaluate the current top-down
system with both GDAS and ECMWF meteorological fields.

When quantifying the differences between the model pre-
dictions and the satellite observations, the model coun-
terparts can be calculated differently using the three-
dimensional model concentration results because the ob-
served ash cloud bases are unknown. Three options to con-
struct the model mass loadings are tested for this inverse sys-
tem, integrating volcanic ash concentrations from the surface
up to the cloud top height or only using one or three model
layers. It is found that the emission estimates vary signif-
icantly with different options. However, all of the predic-
tions with the different estimated release rates show decent
skill when evaluated against the unassimilated satellite ob-
servations at later times. The option of integrating over three
model layers yields slightly better results than integrating
from the surface up to the cloud top or using a single model
layer.

The extra constraints of enforcing zero mass loading in
the ash-free regions are tested with the inverse system. The
model predictions using the emission estimates generated
with such extra constraints are worse than those using the
emission estimates generated by only assimilating the ash
pixels. Additional “no-ash” constraints for the atmosphere

columns above or below the observed ash cloud top height
are found to further deteriorate the subsequent model predic-
tions using the top-down emission estimates.

Assimilating multiple granules at different times proves to
be beneficial. As new observations become available, the ef-
fect of 1-day old observations becomes marginal, but assim-
ilating mass loadings from the most recent observations and
those from about 12 h earlier yields better results than only
assimilating the most recent observations.

The spatial and temporal resolutions of the meteorologi-
cal fields may need improvement for future studies. The line
source assumed here can be replaced by more realistic cylin-
drical sources in the future. A simple particle size distribution
with four different particle sizes is used at all release heights
and times. With the MODIS effective radius available, a more
realistic way to represent the particle size distribution can be
explored.

6 Data availability

The HYSPLIT model is available at http://ready.arl.noaa.
gov/HYSPLIT.php. The forward HYSPLIT simulation con-
figurations are provided with doi:10.1002/2016JD024779 as
its supporting information. Other model and observation data
are available upon request.
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