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Abstract. We introduce system identification techniques to
climate science wherein multiple dynamic input–output re-
lationships can be simultaneously characterized in a single
simulation. This method, involving multiple small perturba-
tions (in space and time) of an input field while monitoring
output fields to quantify responses, allows for identification
of different timescales of climate response to forcing with-
out substantially pushing the climate far away from a steady
state. We use this technique to determine the steady-state re-
sponses of low cloud fraction and latent heat flux to heating
perturbations over 22 regions spanning Earth’s oceans. We
show that the response characteristics are similar to those
of step-change simulations, but in this new method the re-
sponses for 22 regions can be characterized simultaneously.
Furthermore, we can estimate the timescale over which the
steady-state response emerges. The proposed methodology
could be useful for a wide variety of purposes in climate
science, including characterization of teleconnections and
uncertainty quantification to identify the effects of climate
model tuning parameters.

1 Introduction

Understanding the response of climate models to perturba-
tions is one of the core questions in climate science. Some of
the emergent behaviors in climate model response, particu-
larly on small temporal and spatial scales, can be challenging
to interpret. This is in part due to issues with low signal-to-
noise ratios (SNRs), climate system nonlinearities, and other
far-field effects.

Simulations to understand climate response frequently use
abrupt or “step” changes in an exogenous input field (e.g., an
abrupt increase in the CO2 concentration) or “ramp” changes
(e.g., a 1 % increase in the CO2 concentration each year).
However, in climate model simulations, the input signal can
be chosen based on criteria specific to the intended goal of
the simulation. Any input signal will result in a portion of
the response that is linear and a portion that is nonlinear, and
increasing the magnitude of the input has the potential to am-
plify nonlinearities. Avoiding this prospect requires multiple
ensemble members or longer simulations to increase SNR,
which becomes quite expensive if one wishes to assess mul-
tiple perturbations (e.g., changes in multiple geographical re-
gions). As we discuss in the following section, many types of
simulations that are commonly employed in climate science
to investigate climate model response suffer from issues as-
sociated with this tradeoff. Moreover, they are not designed
to investigate multiple input–output relationships simultane-
ously, necessitating larger computational cost to investigate
complex systems.

Here we introduce a method of identifying input–output
relationships in climate models for multiple simultaneous
perturbations with relatively low computational expense and
without the typical difficulties in signal detection arising
from strong forcing and nonlinearities that are found in other
methods commonly used in climate science. An additional
advantage of this method is that it is dynamic (characterizes
a range of timescales) rather than static (only characterizes
the steady-state response). This methodology is commonly
called system identification in engineering fields (Pintelon
and Schoukens, 2012). In subsequent sections, we discuss
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the process of system identification, its utility as compared
to other commonly used methods of assessing climate sys-
tem behavior, and potential implications for understanding
far-field effects.

2 System identification

System identification refers to the process of using input and
output time series to understand the (possibly dynamic) rela-
tionship between them. For example, if one wants to under-
stand the climate response to a change in the CO2 concen-
tration, one can create a time-varying series of CO2 concen-
trations, insert it into a climate model, and analyze various
output fields (like global mean temperature or cloud fraction)
to understand how those output fields change in response to
the inputs. Characterizing input–output relationships should
be done in a way that depends on the system to be character-
ized and on the objectives of the analysis. One can choose the
frequency content of the input signal that one uses to charac-
terize the system.

Any system will respond differently to input signals at
different frequencies (that is, the input–output relationship
is in general dynamic). However, for many real-world sys-
tems, there is some sufficiently low frequency for which the
response is approximately the same as the equilibrium or
steady-state response; this is called the quasi-static regime.
A conceptually simple approach to characterizing a sin-
gle input–output relationship in the quasi-static regime is
a step response simulation, in which the input is abruptly
changed. We discuss step response simulations in more detail
in Sect. 2.1 below.

If one is interested in estimating the fully dynamic re-
sponse (i.e., on different timescales over which the response
varies), then the signal energy needs to be injected over a
range of frequencies. There are several strategies for accom-
plishing this (e.g., Kravitz et al., 2016b). A sinusoidal input
puts the maximum possible power into a single frequency.
However, characterizing the system at multiple frequencies
requires multiple sinusoids. One could also use a wider band
of frequencies (e.g., band-pass-filtered white noise) at the
cost of input power.

If one wishes to characterize multiple input–output rela-
tionships simultaneously (i.e., not by conducting one simu-
lation for each input), then the different input signals need
to be chosen uncorrelated from each other; this is clearly not
possible with step inputs. As an example, one could choose
multiple sinusoids with non-equal frequencies, which is ef-
fective if one wishes to characterize quasi-static behavior for
all of the input–output relationships. Careful choice of fre-
quency may be necessary because any nonlinearities will ex-
cite oscillations in the output that are higher harmonics of the
input (e.g., an input signal of 10 Hz will result in output only
at 10 Hz if the system is linear, but also at 20, 30, 40, ... Hz if
there are nonlinearities); as such, it is often useful to choose

non-commensurate frequencies to quantify the magnitude of
the nonlinear portion of the response. If there are multiple
input variables, and if one is interested in an estimate of the
fully dynamic system, the input signals all need to contain
broad frequency content but must be mutually uncorrelated.
This is the case on which this manuscript focuses; we discuss
this in more detail in Sect. 2.2 below.

2.1 Step response simulations

Step response simulations, in which a sustained perturbation
is applied to the system, are common in climate science (e.g.,
Good et al., 2013). An example is the abrupt4xCO2 simula-
tion (illustrated in Fig. 1a), in which the CO2 concentration
is abruptly quadrupled from its preindustrial value, and the
model behavior then evolves over time. The abrupt4xCO2
simulation is a standard experiment in the Coupled Model In-
tercomparison Project Phase 5 (CMIP5; Taylor et al., 2012).
These sorts of simulations are easy to perform, and they often
have high SNRs, which makes for relatively straightforward
analysis.

However, there are several features of such step response
simulations which, depending on the situation, may be detri-
mental to analysis. As described previously, if one wishes
to evaluate the steady-state or quasi-static behavior, step re-
sponse simulations are often an excellent tool. However, they
are not well suited for evaluating fully dynamic behavior.
This can be seen through the frequency decomposition of a
step function (calculated via Laplace transform):

H(s)=
1
s
, (1)

where s = iω, and ω is (angular) frequency. At high frequen-
cies, the input signal does not contain much energy, so unless
there is sufficient amplification by the system at these fre-
quencies, evaluating transient or short-term behavior is diffi-
cult and may require averaging multiple ensemble members.

Moreover, depending upon the magnitude of the step
change and the details of the dynamical system, the result-
ing climate can be pushed relatively far away from the initial
climate. This has the potential to exacerbate nonlinearities
in the climate response. As can be seen in Fig. 1b, doubling
the estimated effective radiative forcing (the y intercept) or
the estimated equilibrium temperature (the x intercept) for an
abrupt doubling of the CO2 concentration does not give the
same answer as for an abrupt4xCO2 response. In Fig. 1, dif-
ferences between these estimated quantities are 4 and 10 %,
respectively. In some circumstances, this may be an accept-
able margin of error, and it may not be in others.

The departure from linearity can be seen more clearly
when calculating the amount of heat added to the system
from these runs. The total heat accumulated through a given
year n can be estimated by

1Qn =

n∑
i=1

1Ri · 86 400 · 365 ·A, (2)
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Figure 1. An illustration of nonlinearities in the climate system in-
duced by step response simulations that, although not dominating
climate system behavior, are potentially non-negligible. All sim-
ulations were conducted with the fully coupled general circula-
tion model HadCM3L (Jones, 2003). Top panel shows time se-
ries of the change in global mean temperature in abrupt2xCO2
(green) and abrupt4xCO2 (red) simulations; approximate steady-
state values are indicated by dashed lines. Middle panel shows an-
nual mean temperature change and top-of-atmosphere (TOA) net
radiative flux differences (1R) from a preindustrial control (circles)
for the first 50 years of twice the abrupt2xCO2 simulation (blue) and
the abrupt4xCO2 simulation (red); lines are ordinary least-squares
regression through the respective circles. Bottom panel shows ap-
proximate global heat uptake for twice the abrupt2xCO2 simula-
tion (blue) and the abrupt4xCO2 simulation (red) calculated as in
Eq. (2); black line shows the difference between the blue and red
lines.

where1Ri is the net top-of-atmosphere (TOA) radiative flux
imbalance (W m−2) in year i that is the result of the step
function perturbation, and A is Earth’s surface area (m2).
These quantities are plotted in Fig. 1c for abrupt4xCO2 and 2
times abrupt2xCO2. Although nonlinearities account for ap-
proximately 1 % of the difference between these two plotted
quantities, the net difference represents a substantial amount
of heat.

2.2 Generating multiple uncorrelated broadband input
signals

Although useful for certain applications, step response sim-
ulations are not ideal for characterizing system behavior at
all frequencies, and one cannot attribute the effects of mul-
tiple simultaneous step perturbations unless the responses to
different inputs are independent. Simultaneously character-
izing multiple dynamic input–output relationships requires
constructing a set of inputs that have broad frequency con-
tent and are mutually uncorrelated.

The frequency content of the input signals is a choice,
depending on the timescale in which one is interested. For
example, if one cares about teleconnections on sub-annual
timescales, then one could choose high-pass-filtered white
noise with a cutoff frequency corresponding to a timescale
of 1 year. Similarly, if one were not interested in the high
frequency response (which may also be more difficult to dis-
tinguish from internal variability), one could choose a set of
low-pass-filtered white noise signals. If one wishes to avoid
the issue of adding substantial amounts of heat to the climate
system (as was described in the previous section), one could
ensure that the input signals are chosen to have zero mean;
this condition is automatically satisfied by white noise.

Once these signals are generated, the next step is to ensure
that they are mutually uncorrelated. This is accomplished by
the Gram–Schmidt process. Let {vi}ni=1 be a set of n gener-
ated input signals with the appropriate frequency content for
the problem of interest. Beginning with the first signal, and
for each subsequent signal, one subtracts off any correlation
with the previous signals to obtain the set {ui}ni=1. Mathe-
matically, this is represented by

u1
u2
u3

=

=

=

. . .

v1
v2− proju1

(v2)

v3− proju1
(v3)− proju2

(v3)
(3)

where

proju(v)=
〈v,u〉

〈u,u〉
u (4)

and 〈 , 〉 represents an inner product (straightforward for dis-
crete time; a common representation of an inner product in
continuous time is an integral, as in Eq. 6 below). The final
stage is renormalization, where the final signals to be used
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{ei}
n
i=1 are given by

ei =
ui

||ui ||
. (5)

Each of these signals in the set {ei} is uncorrelated and has a
maximum root mean square (amplitude in the `2 norm) of 1
(these can be scaled as needed), and all signals have the same
frequency content as the original signals {vi}.

We define the signals to be uncorrelated (orthogonal) if

T∫
0

ei(t)ej (t) dt = 0 (6)

for i 6= j , where T is the length of the signals (summa-
tion can be used instead of integration for discrete systems).
This criterion will ensure minimal cross-talk between the re-
sponse patterns excited by individual signals, but only in the
quasi-static regime where there is little dependence upon fre-
quency. Ensuring minimal cross-talk on the fully dynamic
range of frequencies would require the criterion

T−τ∫
0

ei(t)ej (t + τ) dt = 0 (∀τ ≤ t) (7)

for i 6= j . This additional criterion accounts for lag effects
(quantified as a phase shift between the input and output
fields) over a range of timescales on which processes op-
erate. As will be discussed later, for the variables analyzed
here, the quasi-static state is reached relatively early in the
simulations, so lag effects are not of substantive concern.

2.3 Climate model simulations

Once the signals are generated, the procedure is straightfor-
ward. In a climate model simulation, one modifies each of
the input fields by perturbing them according to their corre-
sponding input signals (here, adding the input signals to the
fields; see Sect. 3.2 and 3.3 below for more concrete exam-
ples). After the simulation is completed, an estimate of the
quasi-static sensitivity of the output to changes in the input
can be obtained by projecting any time series from the result-
ing simulation (U ) onto one of the original signals ai via

PU,i =
〈ai,U 〉

〈ai,ai〉
. (8)

For example, if ai is a signal describing perturbations to sea
surface temperatures in the Pacific Ocean (K), and if U is a
time series of maps of total cloud cover (%), then PU,i will
be a two-dimensional field with units % K−1. If the response
is truly static (independent of frequency), then this projec-
tion gives the best estimate of the sensitivity. Estimates of the
dynamic (frequency-dependent) response can be obtained by
first band-pass-filtering both the input and output signal prior

Figure 2. The 22 regions that were perturbed (see Sect. 3.1) in this
study. Regions are approximately equal in area, and no region spans
multiple ocean basins.

to the projection in Eq. (8). By choosing different filters, one
can identify how the input–output relationship depends on
frequency and in particular identify the timescale at which
the response is quasi-static (approximately independent of
frequency). This is the procedure followed in Sect. 3.3. Us-
ing an appropriate low-pass filter to focus on the quasi-static
regime gives a better estimate of the input–output relation-
ship than using Eq. (8) directly on the full time series.

3 Demonstration of the technique

3.1 Experimental design

To apply perturbations, we need to decide on what to per-
turb and what to analyze. Here the perturbations applied are
to air temperature near the surface over 22 regions cover-
ing the world’s oceans (Fig. 2), as well as the Mediterranean
Sea, chosen for its fairly large area and potential climatic im-
portance (e.g., Paeth et al., 2016). This choice of input is an
idealized representation of a change in heat flux at the sur-
face that might be due to a change in surface sensible heat
flux (through some perturbation we do not specify here) or
through a surface radiative flux change like what might be
produced by marine cloud brightening (Latham et al., 2012).
We then analyze the effects of these multiple simultaneous
uncorrelated broadband perturbations on low cloud cover
and latent heat flux in climate model simulations. All sim-
ulations were conducted using the fully coupled Community
Earth System Model (CESM) version 1.2.0 (Hurrell et al.,
2013) with 2◦ horizontal atmospheric resolution and approx-
imately 1◦ resolution in the ocean. All simulations were con-
ducted against a preindustrial control background.

The first step is to generate the sequences that will be used
to guide model perturbations. We are a priori uncertain as to
the timescales on which the chosen outputs will respond. As
such, the most agnostic choice for the input signals is white
noise, which has zero mean and content at all frequencies.
(Note that, because this procedure must be discretized, any
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input signal is effectively low-pass-filtered, where the highest
frequency contained in the signal corresponds to the model
time step, which is 30 min.) For the purposes of this illus-
tration, we choose to low-pass-filter the white noise signals
with a cutoff frequency of 1 week. This choice of cutoff fre-
quency minimizes the response excited at diurnal or weekly
timescales, which is a plausible choice if one wishes to char-
acterize climatological response and eschew meteorological
response.

The next step is to choose the update rate, i.e., how of-
ten the perturbation to the climate system is changed. By the
Nyquist limit, the slowest possible update rate is twice the
filter cutoff frequency, i.e., half a week. The difference be-
tween the cutoff frequency and the update rate is analogous
to the problem of aliasing in sampling a sinusoidal curve: the
sampling frequency can be different from the frequency of
the actual sine wave, but obtaining an accurate fit of the si-
nusoid is easier if the curve is sampled more frequently, and
there is a mathematical lower limit as to the minimum num-
ber of points required to obtain that fit. Here we choose the
update rate to be every model day, wherein the perturbation
is maintained for an entire model day. Because of practical
limitations, all simulations in this study are conducted for
20 years. For all analyses of the system identification sim-
ulation in this study, we do not explicitly consider response
times longer than 1 year. Beyond 1 year, there are too few
points to average to obtain adequate estimates of the signal
above the estimated error.

We generate 22 uncorrelated sequences as described ear-
lier and use these sequences to perturb temperature in the
lowest model layer over each of the 22 regions in Fig. 2. The
sequences are normalized so that values range between −1
and 1 K, with a median magnitude of 0.3 K. Because the se-
quences were generated from white noise, they have a mean
value of 0 K. Figure 3 shows an example of 1 of the 22 se-
quences for both the time domain and the frequency domain.
In the time domain, the sequence is visually indistinguishable
from white noise, but in the frequency domain the frequency
content becomes immediately clear.

After the sequences are generated, the next step is to use
them to guide perturbations in the model. Consider region
A, one of the regions to be perturbed, and also consider its
corresponding sequence {zAi }

7300
i=1 , where 7300 is the number

of days in the 20-year simulation (CESM has 365 days in
all years). Let T Ai be the temperature of the lowest model
layer of region A on day i. Then for each model day i, T Ai
is replaced by T Ai + z

A
i at each model time step on that day.

This process is done simultaneously for all other regions that
are being perturbed. We note that, because the {zAi } are uni-
form across each region, there will be discontinuities at the
region boundaries, which could pose problems, particularly
for spectral dynamical cores. Further research will need to be
undertaken to reveal how this can best be handled; one possi-

bility could be scale space smoothing methods (Marvel et al.,
2013).

Of course, while “adding temperature” to a model layer
is straightforward in a climate model, this procedure is un-
physical. In physical terms, this can be thought of as adding
a heat source to the model. If the maximum perturbation is
1 K, then the maximum amount of heat flux (W m−2) added
is

1Q=
1.0K · cp · ρ ·h

τ
, (9)

where cp is the specific heat capacity of air
(∼ 1000 J kg−1 K−1), ρ is the density of air (∼ 1.2 kg m−3),
h is the height of the lowest model layer (∼ 100 m), and τ
is the model time step (1800 s). Because the perturbation
is changed on a daily basis, the perturbation is the same
for all model time steps on a given day. By Eq. (9), the
maximum heat flux into any one region is approximately
67 W m−2. This is a rather large perturbation over such
an expansive region, but it is important to remember that
the long-term mean of the perturbations over the course
of the entire simulation is zero (Fig. 3a), so to first order
there is no long-term net heat added to any one region
or the climate system as a whole. This can be placed in
context with a step response simulation in which there is a
sustained 1 K increase in the lowest model layer over one
region. This sustained temperature increase corresponds
to approximately 3.4× 1022 J of added heat per year of
simulation. Figure 4 shows a comparison between the
interannual standard deviations of the preindustrial control
run and the system identification ensemble. (By interannual
standard deviation, we mean that the average over each year
of simulation is used as an independent degree of freedom
in the calculation.) Although we expect variability to be
different between the two runs (the system identification
perturbation is adding variability at a variety of frequen-
cies), differences in standard deviations between the two
simulations are negligible. This supports our claim that the
perturbations added to the system identification simulations
do not substantially alter the long-term climate.

All system identification simulation results subsequently
presented are averages over an ensemble of five system iden-
tification simulations, for which five different sets of se-
quences were generated. Inter-ensemble variability is dis-
cussed in Sect. 3.4.

3.2 Steady-state response

Figure 5 provides an illustration that this method can recover
some features the step response. The system identification
panels (middle) were created by projecting (Eq. 8) the entire
time series of the output fields (low cloud fraction or latent
heat flux) onto the sequence corresponding to a region in the
northwest Indian Ocean. The step response panels were cal-
culated from an ensemble of five simulations in which, begin-
ning from a preindustrial control run, the temperature in the
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Figure 3. Time domain (left) and frequency domain (right) representations of one of the 22 sequences used in this study to perturb temperature
(see Sect. 3.1). The sequences are low-pass-filtered white noise with a cutoff frequency corresponding to a timescale of 1 week.

lowest model layer over that region was instantaneously in-
creased by 0.5 K, and that temperature change was sustained
for 20 years. The maps displayed in the bottom panels of
Fig. 5 are twice (i.e., normalized to a perturbation of 1 K)
an average over all 20 years of three ensemble members of
that simulation minus an average over the preindustrial con-
trol simulation. As can be seen from this figure, the system
identification simulation is different from the preindustrial
control simulation (top row of Fig. 5) and matches the broad
features of the step response simulation quite well. There are
differences between the step response and the system identi-
fication simulations, which could be due to the following:

1. The step response simulation involves adding approx-
imately 1.7× 1022 J of heat to the climate system per
year over 20 years (for a sustained 0.5 K perturbation),
potentially exciting nonlinearities in the response (see
Sect. 3.5 below), whereas to first order the system iden-
tification simulation adds no net heat.

2. The step change (Eq. 1) and the system identification
inputs have different frequency contents and hence ex-
cite different responses on the timescales being ana-
lyzed in Fig. 5. More specifically, the step response sim-
ulation is injecting a lot more energy at low frequen-
cies than the system identification simulation, so the
step response is in effect the low-frequency response.
Conversely, the system identification simulation injects
a similar amount of energy over a wide range of fre-
quencies, so the resulting plot in Fig. 5 is on average
representative of the response at higher frequencies. As
such, perfect agreement would not be expected.

3.3 Frequency-dependent response

As was stated previously, one of the advantages of this
method (in addition to giving estimates for all 22 regions
simultaneously) is that it can characterize the input–output
response dynamically (on many timescales) instead of only
revealing the quasi-static response. Different relationships
(e.g., local climate response or teleconnections) have differ-
ent timescales on which different responses occur; by selec-
tively band-pass-filtering the signals when performing pro-
jections, one can isolate the climate response on specific
timescales (as was discussed in Sect. 2.2).

As an example, Fig. 6 shows the sensitivity of low cloud
fraction to a 1 K temperature perturbation over the northwest
Indian Ocean (the same region previously analyzed), calcu-
lated for different bands spanning approximately 1-month
timescales. The input–output relationships in Fig. 6 appear
to show the strongest signal on shorter timescales (although
the shortest timescale that can be evaluated here is 2 weeks),
with a peak response on the order of 1–2 months. The SNR
declines considerably as longer timescales are analyzed, and
after a few months there is no discernible signal beyond the
noise. Figure 7 shows a similar picture for latent heat flux.
This difficulty with ascertaining the signal from bands rep-
resenting successively longer timescales is that the signal re-
mains relatively constant with lower frequencies, whereas the
“noise” (climate variability) increases with lower frequencies
(not shown).

The results for sensitivities for band-pass-filtering with a
timescale of 1–2 months look quite similar to the steady-
state response patterns in Fig. 5. Figure 8 shows that in-
cluding these early timescales as well as successively longer
timescales does not affect how well the steady-state re-
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Figure 4. Interannual standard deviation for the simulations considered here. Values are calculated using the annual mean maps as inde-
pendent degrees of freedom. The preindustrial control values are calculated using a single 40-year simulation (39 degrees of freedom). The
system identification values are calculated using a five-member ensemble of 20-year simulations (95 degrees of freedom). Differences are
the middle panels minus the top panels.

sponse is recovered. (Figure 5 shows inclusion of the longest
timescales that appear in the simulations.) This indicates that
for the two variables evaluated here the quasi-static response
is reached quite early in the simulations. This is consistent
with the known rapidity of cloud and latent heat flux ad-
justments (examples of fast responses) to change (Cao et al.,
2012). Such information is in principle evident in the step re-
sponse simulations, although the signal only emerges above
the noise when averaging the step response over a few years.

3.4 Statistical significance

We performed two tests of statistical significance on our re-
sults. The first is to assess whether the results of the system

identification simulations are distinguishable from noise, and
the second is to assess inter-ensemble robustness of the re-
sults.

First, we generated 1000 sequences with the same charac-
teristics as those described in Sect. 3.1, but they are not mutu-
ally uncorrelated. We then projected (using all 7300 points in
each sequence) the preindustrial control simulation onto each
sequence, forming a 1000-member ensemble of sensitivity
maps. We then calculated the standard deviation across that
ensemble to get an estimate of the range of values that might
be expected from an unperturbed simulation, i.e., how large
the impact of natural variability is on the system identifica-
tion estimates. The responses estimated from system identi-

www.atmos-chem-phys.net/17/2525/2017/ Atmos. Chem. Phys., 17, 2525–2541, 2017
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Figure 5. Steady-state response of low cloud fraction (left column) and latent heat flux (right column) for a 1 K perturbation to the lowest
model layer over the northwest Indian Ocean. Top row shows projections of the unperturbed preindustrial control simulation onto the input
sequences; no response beyond climate system noise is expected. Middle row shows projections of the system identification (perturbed)
simulations onto the input sequences (all 20 years of simulation). For comparison, the bottom row shows step response simulations in which
the highlighted region has a sustained temperature increase over the 20-year simulation (values shown are averages over the entire 20-year
period). Although somewhat noisy, the system identification simulations are capable of recovering the broad features of the step response.

fication are more than 2 times larger than the standard devia-
tion expected due to natural variability.

For the second test, Fig. 9 shows the standard deviation
of the ensemble sensitivity (projections use all 7300 points
in each sequence), where in calculating standard deviations
each of the five input sequences/ensemble members is con-
sidered an independent degree of freedom. Results show that
there is somewhat more variability in the system identifica-
tion ensemble than in the preindustrial control simulation.
Figure 10 shows the ensemble mean sensitivity values (re-
peated from the middle row of Fig. 5) and those same fields
but masked out where values are not statistically significant

at the 95 % confidence level according to a two-sample un-
paired Student’s t test calculated on the inter-ensemble stan-
dard deviation (Fig. 9). The results directly in the areas that
are being perturbed are statistically significant, as are some
far-field features at the midlatitudes.

3.5 Nonlinearity

As was mentioned previously, one of the potential sources
of differences between the system identification and step re-
sponse simulations is nonlinearities excited by the step re-
sponse. To further explore these nonlinearities, we conducted
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Figure 6. Sensitivity of low cloud fraction to a 1 K temperature perturbation to the northwest Indian Ocean (see Fig. 2). Different panels
were calculated from projections on band-pass-filtered time series (see Sect. 3.3).

two additional step response simulations involving perturba-
tions over the northwest Indian Ocean of +0.2 and −0.5 K.
The sensitivity maps (Figs. 11 and 12) take the results of
these simulations and divide by the perturbations to yield
sensitivity maps that are comparable to those presented pre-
viously.

The results verify that the step response simulations do in-
deed introduce nonlinearities into the climate system. In the
0.2 K simulation, there are many noisy features of climate re-
sponse due to the lower signal-to-noise ratio inherent in that
simulation than in the original 0.5 K simulations. We also
note that the results presented for the 0.2 K simulation will
inherently be noisier than for the 0.5 K simulations due to the
difference in the number of ensemble members incorporated
in the averages. The −0.5 K simulation indicates substantial

nonlinearities in the response in the form of asymmetries.
The 0.5 K response appears to be stronger than the −0.5 K
response, although there are few locations that show promi-
nent responses in one simulation but not the other.

These results suggest the need for a “gold standard” of the
linear response to perturbations. Then the step response and
system identification responses can be compared with that
standard to ascertain the degree to which each simulation in-
troduces nonlinearities. Such endeavors are beyond the scope
of this paper, in particular because it would require an explo-
ration to determine the methodology that is most appropriate
for extracting the linear response. We discuss some potential
methods in the following section.
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Figure 7. As in Fig. 6 but for the sensitivity of latent heat flux changes to a 1 K temperature perturbation to the northwest Indian Ocean.

4 Discussion and conclusions

Here we have illustrated a method of characterizing dynamic
climate system behavior in a computationally efficient way
that does not strongly excite nonlinearities. All of the results
presented were an average of three 20-year simulations in
which 22 regions are perturbed simultaneously. If these re-
lationships were discovered using step response simulations,
the computational expense would be quite a bit greater, as
computing the step response for n regions requires n simu-
lations. However, there may still be reasons why the more
computationally expensive approach of step change simula-
tions might be conducted, particularly if one wishes to char-
acterize nonlinear behavior.

Section 2.2 presented one method of generating sequences
for the perturbations. Instead, one could design sequences

that alternate pseudo-randomly between positive and neg-
ative perturbations of a fixed magnitude. These so-called
spread spectrum techniques (Simon et al., 1994) are useful
in situations where the inputs can only meaningfully accept
binary values (e.g., the presence or absence of sea ice or snow
cover).

The results in Sect. 3.3 revealed the importance of physical
understanding in both choosing input signals and interpreting
the results. The results indicated that low cloud fraction and
latent heat flux respond to change rather rapidly; such infor-
mation clearly would have been useful if the response time
of these fields had not been known. In retrospect, the energy
input on timescales longer than a few months is wasted for
the purpose of understanding these two variables. However,
other variables operate on longer timescales, so input over
such a wide band may still prove useful for analyses of other
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Figure 8. As in Fig. 6 and 7 but for bands including wider ranges of frequencies.

variables. If one knew a priori that one were interested in
processes that occur over a specific range of timescales (e.g.,
the effects of Pacific sea surface temperature perturbations
from El Niño on California rainfall), one could simply input
white noise that is band-pass-filtered in correspondence with
those times. Our purpose here is to demonstrate this tech-
nique, which is widely applicable to a variety of input–output
relationships, depending on the interests of the practitioner.

For example, in Fig. 5, one can see synoptic-scale sensitiv-
ity in latent heat flux in the midlatitude storm tracks. Based
on this figure alone, and in the absence of a physical mecha-
nism to cause such changes, it is difficult to say whether there
are discernible responses to the input perturbation or simply
noise. However, the advantage of system identification is that
it immediately provides one with tools to further investigate

the potential for a response. Figure 7 further shows that the
magnitude and even the sign of these features vary depend-
ing on the timescale in which one is interested. Analyzing
the response to a different perturbed region (not shown) can
help ascertain whether that response is particular to pertur-
bations in a single region or whether this is the result of ex-
citation of a natural mode of variability; in the latter case,
information about the timescale of response can aid in identi-
fying which mode of variability is being excited. In addition,
one could isolate particular spatial areas that one wishes to
analyze (for example, by spatial averaging over the midlat-
itudes) and compute the transfer function (MacMartin and
Tziperman, 2014) to ascertain magnitude, phase, and spec-
tral coherence of the relationship between that feature and
the input signal. Through these explorations, one has a much
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Figure 9. Inter-ensemble standard deviations of the sensitivities of low cloud fraction and latent heat flux. Sensitivities are calculated via
projection onto the full sequences that are 7300 days in length. For the control simulation, ensemble members were generated by projecting
the control run onto each of the five sequences considered here. Differences are the system identification inter-ensemble standard deviation
(middle panels) minus the control inter-ensemble standard deviation (top panels).

greater chance of teasing out a physical mechanism that can
explain the teleconnection seen in the results. Many of these
possibilities are lost in step response simulations.

The results in Sect. 3.3 also revealed that a step response is
not necessarily an ideal simulation to reveal the quasi-static
response of these variables. The response is quasi-static at
low frequencies, but noise increases with lower frequencies,
meaning that, as long as one is in the quasi-static regime,
SNR is higher for higher frequencies. As such, the system
identification simulation that is band-pass-filtered over high
frequencies can provide a “better” (less noisy) estimate of
the sensitivity than the step response, which represents low
frequencies. More specifically, due to contamination of the
step response by nonlinearity and due to a lower signal-to-

noise ratio, the system identification panels in Fig. 5 better
represent the steady-state response than the step-change sim-
ulation. Note that this line of reasoning only works in this
case because the steady-state response is established early in
the simulation; other input–output relationships may require
greater care in ascertaining the steady-state response.

The present study is intended to introduce system identifi-
cation to climate science through an example and has barely
begun to reveal the potentials and limitations of system iden-
tification. The methodology appears to be effective (for cer-
tain variables) when 22 regions are perturbed with a fairly
low amplitude input signal, but it likely would not work for
1000 regions, as the SNR would be too low (due to forcing
over such a small area) to allow for meaningful detection of
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Figure 10. Top row shows sensitivities calculated by projection over the entire 7300-day simulation (repeated from the middle panels of
Fig. 5). Bottom panels show the same values but masked out (grey) where they are not statistically significant at the 95 % confidence level
(two-sample unpaired Student’s t test) as calculated from the standard deviation values presented in Fig. 9.

signals, and cross-talk between the regions would interfere
too heavily with ascertaining quantitatively robust results. At
the heart of this latter concern is nonlinearity. This method is
based on linear theories and will not produce useful results
for systems that are highly nonlinear (although the same is
true of most methods, including step response simulations).
The choice of boundaries between the regions may also have
divided regions that potentially have physical connections.
For example, in Fig. 2, the Atlantic Ocean is covered by four
regions, and no region spans the Equator. This artificial in-
troduction of an equatorial boundary would prevent identifi-
cation of behavior in the Atlantic equatorial region. In prin-
ciple, after separately identifying input–output relationships
for the North and South Atlantic, we could add the two re-
sults to identify the response of the entire Atlantic basin, but
this might wash out more regional signals. Moreover, if the
response to one input is positive and to another is negative,
then the sum of these two responses may be small, masking
sensitivities of smaller regions. These caveats are indicative
of potential failings not in the approach but in our application
of it.

A point worth mentioning is the choice of input signal
magnitude and how that may introduce concerns related to
nonlinearities and the signal-to-noise ratio. In the present
manuscript, we chose a maximum amplitude of the input sig-

nal to be 1 K. This choice was somewhat arbitrary. Larger
input signals will improve the detectability of the response
but are also more likely to introduce nonlinearities. Smaller
signals are less likely to introduce nonlinearities but will also
have lower signal-to-noise ratios, making the response harder
to determine. In addition, the spectra of responses will likely
differ for different regions, so some regions may ultimately
require different input signal magnitudes to achieve the same
response confidence. An important future endeavor in estab-
lishing this system identification methodology will be to rig-
orously define and quantify both the signal-to-noise ratio and
the degree of nonlinearity in the response. This will aid in de-
termining the “optimal” magnitude of input signals.

Although system identification requires the assumption of
linearity, the linear part of the response represents a substan-
tial portion of the total response in a wide range of situations.
Linear, time-invariant emulators, of which pattern scaling is a
special case, show good fidelity to general circulation model
simulations for a wide range of variables and forcings (e.g.,
Barnes and Barnes, 2015; Kravitz et al., 2016a; MacMartin
and Kravitz, 2016; Santer et al., 1990). Other methods, such
as Green’s function approaches (Hassanzadeh and Kuang,
2016) or application of the fluctuation dissipation theorem
(Leith, 1975; Gritsun and Branstator, 2007; Ring and Plumb,
2008; Cooper and Haynes, 2011; Fuchs et al., 2015), are
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Figure 11. Sensitivity (left column) and differences in sensitivity (right column) of low cloud fraction to different magnitudes of step change.
All values are in units of K−1. Top left shows the sensitivity to a sustained increase in lower atmospheric temperature by 0.5 K (as in previous
figures). Middle left and bottom left show sensitivity to sustained lower atmospheric temperature changes of 0.2 and −0.5 K, respectively.
These are calculated by conducting simulations in which heat is added or subtracted accordingly, and then the results are normalized by
the perturbation. The 0.5 K simulation results are for an average of five ensemble members; other simulation results are for single ensemble
members.

other linear methods that have shown skill in recovering com-
plex climate model behavior. Each of these methods has ad-
vantages and disadvantages; there is a great deal of promise
in utilizing multiple complementary approaches to under-
stand (linearized) input–output relationships in climate mod-
els. Also, as was briefly mentioned in Sect. 3.5, it is crucial to

understand which situations are dominated by linear behav-
ior versus which situations have a substantial nonlinear com-
ponent both to understand the applicability of linear methods
and to better quantify climate system nonlinearities.

The potential applications of this technique are numer-
ous. Here we have briefly mentioned teleconnections; some

Atmos. Chem. Phys., 17, 2525–2541, 2017 www.atmos-chem-phys.net/17/2525/2017/



B. Kravitz et al.: System identification 2539

Figure 12. As in Fig. 11 but for latent heat flux sensitivity (W m−2 K−1).

specific examples include El Niño–Southern Oscillation
(ENSO) effects (e.g., Alexander et al., 2002) or propaga-
tion of the Madden–Julian Oscillation (e.g., Matthews, 2000;
Gill, 1980). In particular, ENSO explorations (wherein the
inputs could be changes in tropical Pacific sea surface tem-
peratures) will be a useful future test of this method, as the
ENSO cycle can be as long as 7 years, but responses can hap-
pen on the order of weeks to months (Alexander et al., 2002).
However, exploring ENSO teleconnections would likely re-
quire inputs with different frequency content than is used

here. Our choice of white noise is the most agnostic choice,
but as described previously it is clearly not optimal if one has
prior information about the dynamics of the system.

The method could also be used to explore the effects of
marine cloud brightening to ascertain the optimal location to
induce a perturbation (Latham et al., 2012), keeping in mind
that model behavior is likely different from real-world behav-
ior or even behavior in other models. Parkes (2012) showed
preliminary results indicating that, with careful application,
this method could be used to identify an “everywhere-to-
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everywhere transfer function” (S. Salter, personal communi-
cation, 2012) that fully characterizes the climate system re-
sponse to marine cloud brightening in different regions. It
could also be used to explore source–receptor relationships,
which yield clearer and more quantitatively precise results
but at the expense of computational cost. Moreover, these
relationships are often uncovered via step response simula-
tions. System identification could additionally be used in un-
certainty quantification (UQ) studies to understand the cli-
mate response to perturbations in model tuning parameters.
Current methods of UQ are quite expensive and involve step
changes in tuning parameters, so the results of most UQ stud-
ies do not capture the full dynamic range of climate model re-
sponse. This is not meant to be an exhaustive list but merely
an illustration of the sorts of problems where system identi-
fication may be useful.

5 Code and/or data availability

All model output and the analysis code will be available upon
request. Please contact the lead author to obtain this informa-
tion.
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