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Abstract. Formulation of noniterative mathematical expres-
sions for moist thermodynamics presents a challenge for
both numerical and theoretical modellers. This technical note
offers a simple and efficient tool for approximating two
common thermodynamic relationships: temperature, 7', at a
given pressure, P, along a saturated adiabat, T(P,6y,), as
well as its corresponding inverse form 6, (P, T), where 6y,
is wet-bulb potential temperature. Our method allows di-
rect calculation of T(P,6y) and 6y (P, T) on a thermody-
namic domain bounded by —70 <6y, <40°C, P > 1kPa
and —100 < T <40°C, P > 1kPa, respectively. The pro-
posed parameterizations offer high accuracy (mean absolute
errors of 0.016 and 0.002 °C for T (P, 6y) and 6, (P, T), re-
spectively) on a notably larger thermodynamic region than
previously studied. The paper includes a method summary
and a ready-to-use tool to aid atmospheric physicists in their
practical applications.

1 Introduction

Saturated thermodynamics commonly present a challenge
for theoretical studies because moist convective condensa-
tion, such as deep cumulus precipitation, often involves pseu-
doadiabtic (irreversible) processes. The latent heat released
during water vapour condensation is important for estimating
thunderstorm intensity and thickness, precipitation amount
and phase, global climate and atmospheric general circula-
tion (Stull, 2017). These processes are governed by nonlinear
equations that require iteration to solve. Numerical weather
prediction (NWP) models, hence, suffer from the added com-
putational cost to their cloud, precipitation, convection and

turbulence schemes and parameterizations because of the it-
erations required during each timestep of the NWP integra-
tion.

A common iterative approach, such as described by Ca-
ballero (2014), uses step-wise numerical integration along
a saturated adiabat for any constant wet-bulb potential tem-
perature, 6,,. The moist adiabatic lapse rate is derived from
conservation of moist entropy as a function of tempera-
ture, T, and saturated mixing ratio, rs, which itself is a
nonlinear function of 7 and pressure P. To improve ef-
ficiency Davies-Jones (2008) proposed a different iterative
method, based on inverting Bolton’s formula (Bolton, 1980)
for equivalent potential temperature valid for the pressure
range 10 < P < 105 kPa and wet-bulb potential temperatures
—20 < 6y <40°C. As a noniterative alternative, Bakhshaii
and Stull (2013) offer an approximate solution devised us-
ing gene-expression programming. They provide two sepa-
rate sets of equations for determining 7 (P, 6y) and 6y, (P, T)
for the domain bounded by —30 < 6y, <40°C, P > 20kPa
and —60 < T <40°C. The complex nature of the prob-
lem required their splitting of the modelled region into sub-
domains, resulting in error discontinuity. The method also
produced fairly large errors (on the order of 1-2°C) in the
upper atmosphere. Despite the limitations, to our knowledge
the only existing noniterative solution to approximate satu-
rated pseudoadiabats is that by Bakhshaii and Stull (2013).

Our current study presents a different approach for di-
rectly calculating T (P, 6y) and 6y, (P, T) offering improved
accuracy for a larger thermodynamic domain. The method,
described in Sect. 2, normalizes the raw data before fitting
it with polynomials. The resultant approximation is evalu-
ated against the “truth” (the iterated solution) and summa-
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Figure 1. Emagram plot showing select “true” (solid black) and modelled (dashed red) moist adiabats 6y, (difference not apparent at this
scale). Temperature and pressure domains are restricted for clarity. An emagram (energy mass diagram) is a thermodynamic diagram with
the log of pressure on the vertical axis, plotted with maximum and minimum values reversed so that higher in the diagram corresponds to
higher in the atmosphere, where pressures are lower. The noniterative results presented in this paper can be plotted on any thermodynamic

diagram, including tephigrams and skew-T diagrams.

rized in Sects. 3 and 4, respectively. As a Supplement we of-
fer the readers a ready-to-use spreadsheet implementing our
methodology.

The goal of this paper is to provide a simple tool that can
aid analytical modellers in their theoretical work as well as
numerical modellers in reducing the computational cost of
their simulations.

2 Method description
2.1 Data

In order to obtain a set of truth curves for 7' (P, 6,,) we have
used an iterative approach to numerically integrate the equa-
tion for g—f, (Tables 1 and 2) for values in the range of —100 <
0w < 100 °C between 105 > P > 1kPa. The constants used
to devise this solution are consistent with Bolton (1980), un-
less otherwise indicated in Table 1. Note that throughout this
technical note we will rely on a common meteorological con-
vention, by which wet-bulb potential temperature at standard
pressure of 100kPa is used to label moist adiabats. Such ref-
erences, hence, represent curves, rather than constants, and
are written in bold for clarity. We found that numerical inte-
gration along a saturated adiabat 6, from the bottom to the
top of the domain required an increasingly refined pressure
step, as all adiabats tend to absolute zero near the top of the
atmosphere, and each consecutive pressure step corresponds
to a larger temperature jump. For our numerical integration
we used 10~ kPa step for 105 > P > 10kPa, 10~ kPa step
for 10 > P > 2kPa and 10~%kPa step for 2> P > 1 kPa.
The resulting curves (shown on the thermodynamic dia-
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gram in Fig. 1) are taken as truth, to which we fit our
polynomial-based optimization. The noniterative approxima-
tions for T (P, 6y) and Oy (P, T) described below are valid
for thermodynamic ranges bounded by —70 <6,, <40°C
and —100 < T < 40 °C, respectively.

2.2 Approximating T (P, 0)

While the moist adiabiatic curves 6, in Fig. 1 look smooth
and fairly similar, it is challenging for most common opti-
mization routines to capture all of them with one analytical
expression with high accuracy. Due to the inherently nonlin-
ear nature of the process, there is no simple way to collapse
the curves into a single shape. However, to aid fitting, we can
normalize our curves by modelling 6, as a function of a ref-
erence moist adiabat 0. That allows us to model only the
deviations from a reference curve. For our example we used
0.t = —70°C. This particular choice of 0. implies no theo-
retical importance. It is possible to choose any of the directly
calculated normalized adiabats to represent .. Depending
on the choice, the resulting transformed adiabats shift around
the @¢ unity line. The single consideration for choosing a
particular 6 is the ease and accuracy with which it can be
fit by a particular optimization tool.

We use polynomial fitting to describe T (P) for @ e¢. This
is convenient, since polynomials are generally well-behaved
and are computationally easy to use. In particular, they are
both continuous and smooth, while being able to capture a
wide variety of curve shapes. Moreover, they have well un-
derstood properties and a simple form, allowing the model
to be easily implemented in a basic spreadsheet. The choice
of the degree of polynomial depends on the desired preci-
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Table 1. Table of constants.

15039

Constant Description (unit)

Ry =287.058 gas constant for dry air (J K1 kg_l) (Burns, 2015)

Ry =461.5 gas constant for water vapour (J K! kg_l)

Cpa = 1005.7 specific heat of dry air at constant pressure (J K! kgfl)
To =273.15 reference temperature (K)

Py =100 reference pressure (kPa)

e =0.611657 Clausius—Clapeyron constant (kPa) (Koutsoyiannis, 2012)

R
&= R—s =0.6220

ratio of gas constants (kg kgfl)

Table 2. Variable definitions.

Variable Description (unit)

T ambient temperature (K)
P pressure (kPa)

0w

es = egexp [24.921( _ %)](%)5-06
Ly=3.139x 105-2336- T

€s

saturated adiabat where the value of T' defined at P = Py is defined as wet-bulb
potential temperature (K)

saturation vapour pressure (kPa)

latent heat of vaporization (K) (Koutsoyiannis, 2012)

saturation mixing ratio (kg kg_l)

change of temperature with pressure along a saturated adiabat, which can be
iterated to find T vs. P (K kPa_l)

s =EP—e)

Ry Ly
ar _ deT+derS
dP — L\Z/

Rloq

P(14+—5—)

sion level. Since we are examining a fixed range of tempera-
tures relevant to atmospheric applications, the potentially ex-
treme oscillatory behaviour of high-degree polynomials out-
side of the modelled domain is not a primary concern. The
fitted polynomials have no predictive value outside of the
modelled range and serve purely as an interpolation function.
While the large number of possible inflection points associ-
ated with high-degree polynomials may be of a concern near
the edges of the fitting interval, a problem known as Runge’s
phenomenon (Epperson, 1987), the current algorithm relies
on a least-squares method to minimize the effect and achieve
a high-quality fit. For this example, the aim was to ensure that
the mean absolute error (MAE) is on the order of 1072°C,
requiring a 20th degree polynomial to achieve such fit. The
coefficients for this polynomial are provided in Table S2 in
the Supplement.

The next step is to choose a single functional form to rep-
resent the entire family of the transformed curves (i.e., the
moist adiabat deviations from 6f). Each given shape of a
particular curve is then controlled by variable parameters of
the same function. A number of simple functions exists that
are able to model the above relationship. For this work we
tested biexponential, arctan, rational and polynomial func-
tions. Generally, a reasonable (on the order of 1-2°C) fit
can be achieved with both biexponential and arctan functions
using as few as three variable parameters. While efficient,
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results of such a fit are unlikely to be sufficiently accurate
to be useful for real-life modelling applications and, more
importantly, only constitute a part of the solution. The big-
ger concern with these choices is that, unlike polynomials,
they produce variable parameters that do not appear well-
behaved. Discontinuity and asymptomatic behaviour arising
from error minimization for all transformed adiabats renders
the parameter curves very difficult to model. A variety of
functions would be necessary to capture the parameter be-
haviour, which in turn is likely to produce a complex and
discontinuous error field, such as appeared in Bakhshaii and
Stull (2013).

Polynomial fitting does not appear to suffer from such is-
sues. Moreover, the accuracy can be controlled by chang-
ing the degree of the polynomial and, hence, allowing a
higher number of variable parameters. In this example, the
curves were modelled using 10th degree polynomials, re-
sulting in 11 variable parameters. Conveniently, and unlike
other functional forms mentioned above, these parameters
are also well-behaved. They can, again, be modelled using
high-degree polynomials to the desired level of accuracy. Re-
sults of parameter fitting for this given example were again
produced using 20th degree polynomials, with fit coefficients
provided in Table S1 (Supplement). The resulting modelled
(noniterative) moist adiabats can be seen in Fig. 1, compared
to the truth (iterated) values.

Atmos. Chem. Phys., 17, 15037-15043, 2017
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Figure 2. Approximation error between iterated (“truth”) and mod-
elled T along moist adiabats 0.

2.3 Approximating 6\, (P, T)

A similar approach can be used to produce a noniterative
approximation for 6y, (P, T). To obtain a new set of curves
representing lines of constant temperature 7 in 6y, domain,
we have used our existing dataset for —100 < 6, < 100°C
to extract isotherms on a 0.5 °C and 0.1 kPa grid for —100 <
T <40°Cand 105> P > 1 kPa.

Similarly to our earlier approach, we select a single ref-
erence curve Trf = —100°C and use a high-order polyno-
mial to model it as a function of pressure (Table S4 in the
Supplement). We then produce a set of transformed curves
by plotting the isotherms as a function of T'rr. We fit the
transformed curves with 10th degree polynomials, obtaining
a dataset for 11 variable parameters. Finally, we use poly-
nomials to model the variable parameters (Table S3 in the
Supplement). The following section discusses the results and
accuracy of our optimization procedure.

3 Evaluation

To test the accuracy of the proposed method, we compared
our modelled curves for T (P, 6y,) and 6y (P, T) with those
obtained through direct calculation (the truth iterative solu-
tion). The results of the evaluation for T (P, 6y) are shown
in Fig. 2, indicating errors on the order of a few hundredths
of a degree throughout most of the domain. Warmer values
near the top of the domain tend to be modelled least accu-
rately. MAE for the entire modelled thermodynamic region
is 0.016 °C. Error contours for 6y, (P, T') are shown in Fig. 3,
with errors on the order of a few thousandths of a degree
throughout most of the domain and overall MAE = 0.002 °C.
Once again, values near the low-pressure limit tend to be
least accurate. Notably, applying the above optimization on a
slightly shallower pressure domain of P > 2kPa allows im-
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Figure 3. Approximation error between iterated (“truth”) and mod-
elled Oy, along isotherms 7'.

provement of the overall MAE for both approximations by
an additional order of magnitude.

As mentioned earlier, improved accuracy may also be
achieved with the use of even higher degrees of polynomi-
als for parameter fits. However, such precision is unlikely to
be necessary, as some of the thermodynamic relationships
used in the truth iterative computations contain substantially
larger errors than those introduced by the above optimiza-
tion procedure (Davies-Jones, 2009; Koutsoyiannis, 2012).
Moreover, conventional pseudoadiabatic diagrams, such as
those used by US Air Force, Environment Canada and Air
Transport Association of America, differ from each other by
nearly 1 °C at the 20 kPa pressure level (Bakhshaii and Stull,
2013). The specific choice of thermodynamic constants and
relationships undoubtedly affects the definition of truth used
in this work; however, this has little effect on the overall va-
lidity of the approach. Should more precise constant values
and/or thermodynamic relationships become established in
the future, the proposed method can be reapplied to generate
updated fitting coefficients without loss of accuracy (within
the limits of the specific polynomial optimization routine
used).

Though the upper 10kPa of the atmosphere contains the
largest errors with our proposed approach, this vertical sub-
range also presents the most significant challenge for direct
(iterative) numerical modelling. Accurate numerical compu-
tation requires an increasingly refined vertical step for the top
part of the atmosphere. Hence, despite the errors, the pro-
posed approximation offers a more accurate solution than
one would obtain with a direct iterative approach using a
somewhat coarse yet computationally demanding 0.001 kPa
pressure step.

While common weather phenomena generally remain in
the troposphere, the validity of the current method on a
notably larger vertical domain is particularly useful in the
lower latitudes. The deep vertical extent of tropical thun-
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derstorms, hurricanes and typhoons in combination with the
high tropopause altitude (18 km or 8 kPa; WMO, 2017) in the
tropics contribute to large computational costs of modelling
these potentially destructive events.

4 Summary of approach

Individual steps to directly compute T (P, 6y,) and 6y (P, T)
are summarized below. This sample procedure, along with
the required coefficient tables, is provided in a ready-to-use
form in the attached spreadsheet (Supplement).

4.1 Computing T(P, 6y,)

Letn =0,..., 10 correspond to the index of individual poly-
nomial coefficients and m = 20 be the degree of polynomial
fits for Oer(P) and k, (6y ), respectively.

1. Compute coefficients k;, (6y) using polynomial coeffi-

cients as, ..., ap in Table S1 in the Supplement:
m .
knOw) = D agnm—i0 e))
i=0
for 6y, in °C.
2. Compute 6f(P) using polynomial coefficients
b>o, ..., by in Table S2 in the Supplement:
m .
Orei(P) = D bgu_jy P" @)

j=0

for P in kPa. Note for users preferring older pressure
units, 1 kPa=10mb = 10hPa.

3. Compute T (Gref):

n

T(P,0w) =T (ret) = D ki 3)
h=0

where T and 6r are in Kelvins, and values of ko .,
correspond to polynomial coefficients calculated in
Step 1.

4.2 Computing 6y (P, T)

Letn =0,..., 10 correspond to the index of individual poly-
nomial coefficients and m = 20 be the degree of polynomial
fits for Trer(P) and «, (T'), respectively.

1. Compute coefficients «,(7) using polynomial coeffi-
cients ay, ..., @g in Table S3 in the Supplement:

m
kn(T) =D apmiyT"™ )
i=0

for T in °C.
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2. Compute Tf(P) using polynomial coefficients
B20, ..., Bo in Table S4 in the Supplement:
m .
Tret(P) = D Bim—jy P (5)
j=0
for P in kPa.
3. Compute Oy (Trer):
n
Ow (P, T) =0y (Trer) = D _snTrag ", 6)
h=0
where 6y, and T are in °C, and values of « __, corre-

.....

spond to polynomial coefficients calculated in Step 1.

5 Usage example

Meteorologists typically use both 6 (P,T) and T(P,0y)
for moist convection such as thunderstorms, frontal clouds,
mountain-wave clouds and many other phenomena, where a
saturated air parcel moves vertically. The cloud base of con-
vective clouds marks the bottom of saturated ascent, and the
cloud top marks the top.

For example, suppose that the forecast at some tropical
weather station is P =100kPa and T =32°C with dew
point Ty = 21 °C (corresponding to a water vapour mixing
ratio of approximately » = 16 gkg™!). Further suppose that a
force (e.g., buoyancy, frontal uplift, orographic uplift) causes
an air parcel with these initial conditions to rise. Initially this
air parcel is unsaturated (not cloudy), so we do not need to
use the polynomial or iterative equations. Instead, simpler
noniterative equations apply for the thermodynamic state as
the parcel rises dry adiabatically. Namely, its temperature
cools at the dry adiabatic lapse rate (9.8 °Ckm™!), and the
mixing ratio and potential temperature are constant. This air
parcel will become saturated (i.e., cloud base) at the lifting
condensation level (LCL). With this information, other ther-
modynamic equations (Stull, 2017) can be used to find con-
ditions at the LCL: zy ¢, = 1.375km, Prcr = 85.4kPa and
TicL =18.5°C.

Given this initial P and 7 at the LCL, we can use
the polynomial equations provided in this paper to com-
pute which moist adiabat the cloudy air parcel will follow:
Ow(P,T) =24.0°C. If this cloudy air parcel (still following
the 6y (P, T) =24.0°C adiabat) rises to an altitude where
the pressure is P =24.0kPa, then we can use the second
set of polynomial equations in this paper to find the final
temperature of the air parcel at this new height: T(P,0y) =
—39.8°C.

6 Discussion and conclusions

The polynomial method proposed here is accurate, smooth
and computationally efficient. For example, given the cloud
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base and cloud top pressures of the previous example, the
tally of computer operations to find both the initial and the
final temperature is 230 additions and subtractions and 2365
multiplications (where rational numbers to integer powers
are counted as sequential multiplies). This can be compared
to the computation tally for the truth iterative solution, which
requires a total of 2750000 variable pressure steps, where
each step has 8 additions and subtractions, 17 multiplies
(where rational numbers to integer powers are counted as se-
quential multiplies), 9 divides and 2 math functions (e.g., log,
exp, non-integer exponents), totalling to 988 200 000 opera-
tions from the bottom to the top of the domain.

Also, for comparison, some NWP models use a look-up ta-
ble to get the average saturated adiabatic lapse rate A6y, /A P
as a function of P and 7. While this method is fairly fast, it is
also less accurate and approximates the saturated lapse rate
as a series of short straight-line segments instead of a smooth
curve. It also has discontinuous jumps of saturated lapse rate
as T varies along an isobar.

While interpolating values from look-up tables generally
results in random errors, iterative solutions with a coarse step
could potentially suffer from a directional drift due to nu-
merical integration errors, which may introduce a consistent
bias into latent heating profiles. Moreover, near the top of
the atmosphere, where each pressure step corresponds to a
large temperature jump along the moist adiabats the numeri-
cal solutions tend to become unstable. Though both of these
concerns are addressed with the proposed low-cost polyno-
mial method, the broader challenge of our limited overall un-
derstanding of moist convection remains. Existing thermody-
namic relationships are based on the assumption of either a
reversible moist adiabatic or an irreversible pseudoadiabatic
process. Real-world atmospheric processes are likely to be a
combination of both (Iribarne and Godson, 1981). The uncer-
tainty introduced by our limited knowledge of the true state
of saturated air is likely to remain the central obstacle in cap-
turing moist convection.

The polynomial method proposed here provides a com-
putation of high accuracy and smooth variation across the
whole thermodynamic diagram range, at intermediate com-
putation speed compared to the other methods. Moreover,
it helps to model moist thermodynamics on a wider tem-
perature range with roughly 2 orders of magnitude MAE
improvement over the existing solution. In addition to
the reduced computational costs of obtaining solutions for
T(P,60y) and 6 (P,T) in numerical simulations and im-
proving accuracy, we hope that our tool will aid analytical
modellers in their theoretical work.

Data availability. Spreadsheet tool for calculating 7 (P, 6w) and
Ow (P, T) is included as Supplement to this article.
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The Supplement related to this article is available
online at https://doi.org/10.5194/acp-17-15037-2017-
supplement.
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