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SPAMS 23 

Individual particles are introduced into SPAMS through a critical orifice. They are focused 24 

and accelerated to specific velocities, determined by two continuous diode Nd:YAG laser beams 25 

(532 nm), which are used to trigger a pulsed laser (266 nm) to desorp/ionize the particles. The 26 

produced positive and negative molecular fragments are recorded. In summary, a velocity, a 27 

detection moment, and an ion mass spectrum are recorded for each ionized particle, while there is 28 

no mass spectrum for not ionized particles. The velocity could be converted to dva based on a 29 

calibration using polystyrene latex spheres (PSL, Duke Scientific Corp., Palo Alto) with 30 

predefined sizes. The accuracy for the derived dva is within ±10%.  31 

 32 

Aethalometer data analysis 33 

The absorption coefficients at seven different wavelengths (370, 450, 520, 590, 660, 880 and 34 

950 nm) were obtained by the Aethalometers. A variable attenuation (ATN), is defined to 35 

represent the filter attenuation through the sample spot on a filter (Weingartner et al., 2003; 36 

Arnott et al., 2005; Backman et al., 2016). It is well known that the measured ATN may differ 37 

from the true aerosol absorption due to ‘filter loading effect’, a phenomenon which appears as a 38 

gradual decrease of instrumental response as the aerosol loading on the filter increases (Arnott et 39 

al., 2005). Therefore, two calibration factors are introduced to convert aethalometer attenuation 40 

measurements to “real” absorption coefficient (Weingartner et al., 2003). At 880 nm wavelength, 41 

light absorption can be attributed to BC alone rather than the other aerosol particles due to their 42 

significantly less absorption at long wavelength (e.g., Sandradewi et al., 2008; Yang et al., 2009). 43 

For AE–31, a specific attenuation cross-section σATN of 16.6 m2 g−1, recommended by the 44 

manufacturer, was applied to calculate the EBC concentration with the equation: EBC = 45 

bATN/σATN, where bATN is the optical attenuation coefficient. For AE-33, the ATN was converted 46 

to an EBC concentration using the mass absorption cross section of 7.77 m2 g−1 according to the 47 

method recommended by Drinovec et al. (2015).  48 
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The AE-31 used in the present study may suffer from the effects described above. Differently, 49 

the AE-33 has been improved by the incorporation of a filter loading correction part, based on a 50 

two parallel spot measurement of optical absorption. It could provide a real-time output of the 51 

“loading compensation” parameter to compensate for the “loading effect”. The details of the 52 

principle of operation, data deduction, and error budget of the AE-33, the inherent uncertainties in 53 

its technique and the corrections are extensively available in the literature (Drinovec et al., 2015). 54 

Therefore, we reported EBC concentration from the results of AE-33. The detection limit for EBC 55 

measurements is < 10 ng m-3 with uncertainty at ~2 ng m-3 at the time-base of 1 minute 56 

(http://www.mageesci.com/). As noted in the manuscript and Fig. S10, the EBC measured by AE-57 

31 is significantly correlated (R2 = 0.9, p < 0.001) with that measured by AE-33. Therefore, EBC 58 

concentrations derived from AE-31 were not corrected for the calculation of Mfscav,EBC.  59 

As shown in Fig. S10, AE-31 might underestimate ~15% of EBC for cloud INT particles in the 60 

calculation of Mfscav,EBC. It is also noted that a threshold of 8 µm might underestimate the mass 61 

concentration of cloud RES EBC, since the size of droplets might extend to as low as 3 µm. 62 

Unfortunately, the size distribution of cloud droplets was not available for our study. Therefore, we 63 

assumed that the largest underestimate of the cloud RES particles is 30% to assess the uncertainties 64 

for Mfscav,EBC calculation. The mean Mfscav,EBC was recalculated to be 30-36%, when the assumed 65 

largest underestimate (i.e., 30%)  of the cloud RES particles and ~15% underestimate of the cloud 66 

INT BC were taken into account in R1. Compared to mean Mfscav,EBC = 33%, the overall 67 

uncertainties for the estimate of mean Mfscav,EBC is with 10%.  68 
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Table S1. Average mass concentrations, mass fractions relative to fine particles and scavenged fractions of BC from the literatures. 69 

Site site type season (year) 
ave (± std) 

(μg m-3) 

mass 

fraction 

Mfscav,EBC 

(%) 
References 

Shenzhen, Southern China urban Summer (2011) 4.0 ± 3.1 ~11% -a (Lan, et al., 2013) 

Guangzhou, Southern China urban Summer (2008) 8.86 - - (Wu, et al., 2013) 

Guangzhou, Southern China urban Fall(2010) 4.3 ~4%b - (Zhang, et al., 2013) 

Shenzhen, Southern China urban Fall(2009) 6.0 ± 6.3 - - (Huang, et al., 2012) 

Guangzhou, Southern China Rural Summer (2008) 2.62 - - (Wu, et al., 2013) 

Ba Guang village, southern China Rural Fall(2009) 2.6 ± 1.0 - - (Huang, et al., 2012) 

Mt. Soledad (251 m m.s.l.) marine Summer (2012) 0.07 - - (Schroder, et al., 2015) 

Yongxing Island, Southern China marine Summer (2008) 0.54 - - (Wu, et al., 2013) 

A coastal Chilean hill, (Valparaíso), 

450 m a.s.l. 
low-altitude Winter (2013) 0.34 - 0.95 - 13 - 50 (Hitzenberger et al., 2016) 

Puy de Dome (France), 1465 m a.s.l. mid-altitude 
Winter-spring 

(2001) 
- - 33 - 74 (Sellegri et al., 2003) 

Nova Scotia, Canada (Below 1 km) mid-altitude Summer (1993) 0.06 ± 0.01 - 2 - 32 (Chylek et al., 1996) 
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a not available. 70 

 b mass fraction relative to PM3.  71 

Nova Scotia, Canada (1-3 km) mid-high-altitude Summer (1993) 0.22 ± 0.03 - - (Chylek et al., 1996) 

Mt. Rax (1644 m a.s.l.)  high-altitude Spring (1999) 0.43 - - (Hitzenberger et al., 2001) 

Mt. Rax (1644 m a.s.l.)   high-altitude  Spring (2000) 0.72 - 54 ± 25 (Hitzenberger et al., 2001) 

Alpine Jungfraujoch (Switzerland), 

3850 m a.s.l.  
high-altitude Summer (2004) 0.06 - 61 (Cozic et al., 2007) 

Alpine Jungfraujoch (Switzerland), 

3850 m a.s.l.  
high-altitude Winter (2004) 0.05 - - (Cozic et al., 2007) 
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 72 

 73 

Figure S1. A scheme of the instrumentation setup in this study. The dash line 74 

illustrates that the sampling pipe was either connected to Inlet 1# or Inlet 2#. As described 75 

in section 2.1, the cloud INT and RES particles were intermittently measured by these 76 

instruments during Cloud III, through manually connect the sampling pipe to either Inlet 77 

1# or Inlet 2# at approximately one-hour intervals. The GCVI includes various sensors to 78 

monitor the temperature/RH, visibility (http://belfortinstrument.com/products/all-79 

environment-visibility-sensor/), and rainfall/snow 80 

(http://www.meltyourice.com/products/controllers/ds-82/). The integrated rainfall/snow 81 

sensor helps to exclude sampling during rainy periods. TEOM 82 

(https://www.thermofisher.com) measures the mass concentration of aerosol with the 83 

detection limited of ~100 ng m-3, with an accuracy of ±0.75%. MSP SMPS  84 

(https://www.mspcorp.com) measures the number-based size distribution of particles 85 
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ranged between 10-1000 nm in 48 size bins, with a detection limit of ~1 cm-3, and an 86 

accuracy of ±10%. Grimm SMPS (https://www.mspcorp.com) can measure the number-87 

based size distribution of particles ranged between 10-1100 nm in 44 size bins, with a 88 

detection limit of ~1 cm-3, and an accuracy of ±5%.89 
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 90 

Figure S2. Statistic analysis on the RPA ratio of OC to BC (left), and the average mass 91 

spectra (right) for the BC types. Markers were selected as m/z 27, 43, 50, 51, 61, 63, -26 92 

for OC, and carbon ion clusters (Cn
+/-, n ≤ 5) for BC, the same as those in Fig. 3. More 93 

intense sulfate (RPA = ~0.3) was found for BC-sul2 and BC-OC-sul, relative to that 94 
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(RPA = ~0.15) for BC-sul1 type. More abundance of OC was found for BC-OC-sul, the 95 

mean peak area ratio OC/BC of which is ~1, higher than those (< 0.3) for other BC types.   96 
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 97 

Figure S3. The number-based digitized mass spectrum of cloud-free BC-containing 98 

particles at the remote high-altitude site. Y-axis indicates the number fraction of total 99 

particles that had detectable amounts of these individual ion peaks. 100 
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 101 

Figure S4. RPA ratio of ammonium (m/z 18), sulfate (m/z -97), nitrate (m/z -62), 102 

oxidized organics (m/z 43), and other organics (m/z 27, 50, 51, 61, 63, -26) to BC, and 103 

RPA of BC (carbon ion clusters (Cn
+/-, n ≤ 5)) at the high elevation site, urban 104 

(Guangzhou), and suburban sites (Heshan) during winter in southern China. The particles 105 

in Guangzhou and Heshan were similarly measured by SPAMS during winter. Despite of 106 

matrix effects due to the laser desorption/ionization for SPAMS, advances have been 107 

made in semi-quantifying individual chemical species, either through multivariate 108 

analysis or by applying peak intensities for specific ions (e.g., Jeong et al., 2011; Xing et 109 

al., 2011; Healy et al., 2013). RPA, defined as the peak area of each m/z divided by the 110 
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total dual ion mass spectral peak area, is related to the relative amount of a species on a 111 

particle. Compared to absolute peak area, RPA was commonly applied because it is less 112 

sensitive to the variability in ion intensities associated with particle-laser interactions. It 113 

is also noted that matrix effects might be lower when calculation was performed for 114 

similar particle type, i.e., BC-containing particles. 115 
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 116 

Figure S5. Correlation analysis of hourly average RPA for ammonium and sulfate 117 

associated with BC-containing particles. The correlation coefficient is a bit lower than 118 

expected might partly due to matrix effect in single particle mass spectrometry (e.g., 119 

Jeong et al., 2011; Xing et al., 2011; Healy et al., 2013). 120 



 
 

14 
 

 121 

Figure S6. Size-resolved Nfact estimated for three particle types of BC-containing 122 

particles. Note that this data only collected during Cloud III event when both cloud RES 123 

and INT particles were collected, however, not simultaneously but intermittently. It is 124 

noted that although the Nfact for BC-OC-sul type is lower than BC-sul types, the Nfact for 125 

all the BC-containing particles is similar to that of all the detected particles. We attributed 126 

it to two reasons: (1) BC-OC-sul particles only accounted for ~20% of BC-containing 127 

particles, and (2) the other particles also contained OC-dominated particles (~10%). 128 
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 129 

Figure S7. A representative comparison between the size distributions measured by the 130 

SPAMS and the SMPS within 12 hours measurements. It should be noted that the 131 

diameter is represented as dva by SPAMS, while the diameter measured by the SMPS is 132 

represented as electrical mobility diameter (dm). Herein, the dm was first converted to the 133 

dva for the comparison. The conversion could be simplified to dm = dva*ρeff/ρ0 (DeCarlo et 134 

al., 2004), where ρeff refers to the effective density, ρ0 is the unit density 1.0 g cm-3. The 135 

ρeff is assumed to be 1.5 g cm-3 for the calculation (Hu et al., 2012). 136 
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 137 

Figure S8. RPA of each secondary species associated with BC-containing particles in 138 

cloud-free, INT, and RES particles as a function of particle sizes. 139 
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 140 

Figure S9. Correlation between time series of Num. of BC-containing particles and 141 

concentration of EBC. The volume equivalent diameter of BC particles cores measured in 142 

southern China was typically around 200 nm (Huang et al., 2011; Huang et al., 2012). 143 

Huang et al. (2011) showed that a large fraction (> 60%) of BC particles are internally 144 

mixed with a significant amount of non-refractory materials (coating thickness > 70 nm) 145 

at a rural site in southern China. Furthermore, Yu et al. (2010) showed that over 50% of 146 

BC are above 500 nm, also indicating internally mixed of BC, with regard that majority of 147 

BC particles cores have volume equivalent diameter less than 500 nm (Huang et al., 2011; 148 

Huang et al., 2012). As also discussed in section 3.1, BC-containing particles were already 149 

heavily mixed with secondary species arriving at our site, and therefore they should be 150 

larger enough for the detection by SPAMS.  151 
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 152 

Figure S10. Correlation analysis of EBC measured by AE31 and AE33. They measured 153 

the same aerosol for out-of-cloud (including cloud INT and cloud-free) particles. However, 154 

during cloud events, AE33 measured cloud RES particles or cloud INT particles for some 155 

periods, while AE31 measured cloud INT particles. Therefore, the EBC were compared 156 

when the same aerosol were measured, as shown in green dots. The result indicates that 157 

they are highly correlated, with EBC measured by AE31 only slightly lower than those by 158 

AE33. 159 
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 160 

Figure S11. Box and whisker plot of Mfscav,EBC for each cloud event. In a box and whisker 161 

plot, the lower, median and upper lines of the box denote the 25th, 50th, and 75th 162 

percentiles, respectively, and the lower and upper edges of the whisker denote the 10th 163 

and 90th percentiles, respectively. 164 
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