
Atmos. Chem. Phys., 17, 14919–14936, 2017
https://doi.org/10.5194/acp-17-14919-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Measurements and modeling of surface–atmosphere exchange of
microorganisms in Mediterranean grassland
Federico Carotenuto1,2, Teodoro Georgiadis2, Beniamino Gioli2, Christel Leyronas3, Cindy E. Morris3,
Marianna Nardino2, Georg Wohlfahrt1, and Franco Miglietta2,4,5

1Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, Innsbruck, 6020, Austria
2Institute of Biometeorology (IBIMET), Consiglio Nazionale delle Ricerche (CNR), Via G. Caproni 8, 50145, Florence, Italy
3Plant Pathology Research Unit, French National Institute for Agricultural Research (INRA),
Allée des Chênes 67, Montfavet, 84143, France
4FoxLab, Joint Research Unit Fondazione Edmund Mach – CNR IBIMET, Via E. Mach 1,
San Michele all’Adige, 38010, Italy
5IMèRA, Universitè Aix-Marseille 2, Place le Verrier, Marseille, 13004, France

Correspondence: Federico Carotenuto (f.carotenuto@ibimet.cnr.it)

Received: 6 June 2017 – Discussion started: 14 June 2017
Revised: 5 October 2017 – Accepted: 7 November 2017 – Published: 18 December 2017

Abstract. Microbial aerosols (mainly composed of bacte-
rial and fungal cells) may constitute up to 74 % of the total
aerosol volume. These biological aerosols are not only rele-
vant to the dispersion of pathogens, but they also have geo-
chemical implications. Some bacteria and fungi may, in fact,
serve as cloud condensation or ice nuclei, potentially affect-
ing cloud formation and precipitation and are active at higher
temperatures compared to their inorganic counterparts. Sim-
ulations of the impact of microbial aerosols on climate are
still hindered by the lack of information regarding their emis-
sions from ground sources. This present work tackles this
knowledge gap by (i) applying a rigorous micrometeorolog-
ical approach to the estimation of microbial net fluxes above
a Mediterranean grassland and (ii) developing a determinis-
tic model (the PLAnET model) to estimate these emissions
on the basis of a few meteorological parameters that are easy
to obtain. The grassland is characterized by an abundance
of positive net microbial fluxes and the model proves to be
a promising tool capable of capturing the day-to-day vari-
ability in microbial fluxes with a relatively small bias and
sufficient accuracy. PLAnET is still in its infancy and will
benefit from future campaigns extending the available train-
ing dataset as well as the inclusion of ever more complex
and critical phenomena triggering the emission of microbial
aerosol (such as rainfall). The model itself is also adaptable
as an emission module for dispersion and chemical transport

models, allowing further exploration of the impact of land-
cover-driven microbial aerosols on the atmosphere and cli-
mate.

1 Introduction

Vegetated land surfaces, and plant leaves in particular, harbor
a large number of microorganisms that can be transported by
wind. It has been estimated that the planetary phyllosphere
harbors about 1024 to 1026 bacterial cells (Morris et al., 2002)
of the 1030 that live on Earth (Whitman et al., 1998). Up to
107 bacteria per square centimeter are present on leaf sur-
faces (Morris et al., 2004), and plant materials are considered
the largest source of fungal spores in the atmosphere (Burge,
2002). All of these organisms can be transported into the at-
mosphere by wind (Delort et al., 2010), as was shown ex-
perimentally in an artificial wind gust chamber (Lighthart et
al., 1993). Atmospheric transport can involve both multiple
short-distance events (Brown and Hovmøller, 2002), as well
as single long-range movements. The latter are well known
to transport desert dust (Rosselli et al., 2015; Peter et al.,
2014; Kellogg and Griffin, 2006; Griffin, 2007; Weil et al.,
2017), while long-range transport of epiphytic organisms liv-
ing in plant canopies is much less documented. Nevertheless,
living and dead microorganisms are part of primary biolog-
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ical aerosols (PBAs) that contribute 13 to 74 % of the entire
aerosol volume globally (Graham et al., 2003). Furthermore,
microorganisms can be found in cloud water droplets. Wa-
ter sampled from clouds over alpine regions in France and
Austria contained about 2× 104 mL−1 of bacteria (Amato et
al., 2007; Bauer et al., 2003), while fungi were at least an
order of magnitude lower. Different bacterial species were
also found in fog droplets of the Po Plain in Italy (Fuzzi et
al., 1997), as well as in clouds over Scotland (Ahern et al.,
2007).

The presence of microorganisms in the atmosphere may
be relevant to climate processes given that some of these
microorganisms can serve as cloud condensation or ice nu-
clei (Möhler et al., 2007; Morris et al., 2004; Szyrmer and
Zawadzki, 1997; Hoose et al., 2010), potentially affecting
cloud formation and climate (Amato et al., 2007). Some mi-
crobial species, in fact, are able to freeze water at tempera-
tures significantly warmer than those induced by nonbiolog-
ical ice nucleators (−2 to −7 ◦C versus <−10 or −15 ◦C)
(Morris et al., 2004). In the past, only a few attempts were
made to directly measure the flux of bacteria from plant
canopies (Lindemann et al., 1982; Lindemann and Upper,
1985; Lighthart and Shaffer, 1994; Crawford et al., 2014).
Direct eddy covariance measurements of aerosol exchange
in tropical forests, where PBAs represent a significant frac-
tion of the airborne particulate matter (Graham et al., 2003),
were also performed by Ahlm et al. (2010) and Whitehead et
al. (2010), potentially giving a proxy for microbial emission
in tropical ecosystems. The mass of PBAs that is actually
released by different land use types under different condi-
tions and, more importantly, the specific composition of such
fluxes and their quantification remains so far mostly unre-
solved. As a consequence, numerical quantification of micro-
bial emissions, as well as investigations of the effects of liv-
ing biological particles on the atmosphere and the water cy-
cle have been limited to highly idealized scenarios. Lighthart
and Kirilenko (1998) attempted to simulate summertime di-
urnal emission dynamics, but in their work net upward fluxes
were a function of time and solar-radiation-dependent mi-
crobial death only. Population dynamics in the phyllosphere
and atmospheric turbulence were not accounted for. In their
attempt to simulate global impacts of microbial particles on
the water cycle, Hoose et al. (2010) and Sesartic et al. (2012)
used fixed values of bacterial emission fluxes from different
ecosystems, while Heald and Spracklen (2009) used man-
nitol as a proxy to evaluate fungal contributions to PBAs.
Burrows et al. (2009a) modeled global emissions using data
about airborne concentrations of microbes reported in the lit-
erature and derived fluxes from such proxies.

The aim of this paper is twofold: (i) to increase knowl-
edge of microbial emissions by quantifying fluxes by means
of a more complex micrometeorological method compared
to earlier attempts and (ii) to propose a deterministic model
to estimate both on-ground population dynamics and the as-
sociated atmospheric exchange processes.

The latter model was calibrated with microbial flux mea-
surements made episodically over 3 years (between 2008 and
2010), while a second measurement campaign (2015) was
used to validate its performance.

2 Materials and methods

2.1 Flux measurements

Microbial fluxes were measured during two field cam-
paigns in a pasture in Montfavet, France (43.95◦ N, 4.88◦ E,
32 m a.s.l.). Measurements were made between 7 and
11 July 2015 and again between 26 September and 1 Oc-
tober 2015. The pasture was a typical Mediterranean grass-
land dominated by grasses in an area surrounded by similar
land uses and with no significant orographic features. The
vegetation status was different during the two campaigns:
in July the grassland showed visible signs of water stress,
but no more than 20 % of the leaves were chlorotic and dry.
In September the grassland was instead well developed and
mostly green. The mean height of the canopy was approx-
imately 20 cm for both campaigns. The field was mainly
covered with clover (Trifolium spp.) and ryegrass (Lolium
perenne), was not intensively grazed, and was not actively
managed during the measurement campaigns, with no mow-
ing or irrigation.

Profiles of wind speed, air temperature and viable aerosols
were made at two heights (≈ 70 and≈ 250 cm), while a sonic
anemometer (USA-1, Metek, Elmshorn, Germany; located
at ≈ 300 cm) measured 3-D wind components and the sonic
temperature at 20 Hz frequency. In September, an open-path
infrared gas analyzer (Li-7500, LI-COR, Lincoln, Nebraska,
USA) along with a differential infrared gas analyzer (Li-
7000, LI-COR, Lincoln, Nebraska, USA) were added to the
setup in order to concurrently measure the CO2 and H2O
gas exchange using the eddy covariance and flux-gradient
methods (Baldocchi et al., 1988). This setup (Fig. 1) al-
lowed the assessment of the performance of the flux-gradient
method of estimating water vapor fluxes vs. the respective
fluxes directly measured by the eddy covariance method. Vi-
able bioaerosols were sampled with Burkard jet samplers
(Burkard Manufacturing Co. Ltd., Rickmansworth, UK). The
samplers operated at a flow rate of 500 L min−1 and particles
were collected on petri dishes containing 10 % tryptic soja
agar (1.7 g of tryptone, 0.3 g of peptone soja, 0.25 g of glu-
cose, 0.5 g of NaCl, 0.25 g of K2HPO4, 15 g agar L−1). After
sampling, the dishes were incubated at 25 ◦C and microbial
colonies were counted after 24 h of incubation and for up to 3
days. Such a medium was nonselective, allowing the growth
of both bacteria and fungi.

Sampling with each Petri dish lasted for 14 min and for ev-
ery day a handling blank was incubated alongside the sam-
pled plates.
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Figure 1. Schematic representation of the sampling station: each
piece of equipment is represented by a number (in bold face) and
the position of the equipment; all values in this caption are ex-
pressed in centimeters above ground level. Cup anemometers (1;
80 and 210), thermocouples (2; 80 and 210), sonic anemometer and
Li-7500 open-path gas analyzer (3; 300), Burkard air samplers (4;
75 and 255; the bottom one is not in place in the figure, but the rect-
angle indicates its approximate position), Li-7000 differential gas
analyzer (5; with inlets at 55 A and 200 B), and wind vane (6; 250).

The design of the virtual impactor followed good design
practices with a direct alignment of the nozzle and the col-
lection probe (i.e., the still air chamber), and diameter of the
collection probe (0.08 m) was at least 40 % larger than the
nozzle diameter (Marple and Olson, 2011). Data from litera-
ture indicate a sampling efficiency ranging from 80 to 100 %
for mildew spores (Schwarzbach, 1979). Given the Burkard
sampler’s high flow rate, sampling happens at a super-iso-
mean-velocity compared with external wind speed. The sam-
pling efficiency is therefore expected to decrease for larger
particles proportionally with the ratio between external wind
speed and the Burkard’s sampling speed (Brockmann, 2011).

A series of 10 min samplings with the Burkard samplers
kept at the same height were performed to evaluate the min-
imum resolvable gradient (MRG) following Eq. (1) below
(Edwards et al., 2005; Fritsche et al., 2008). ANOVA was
used to verify the absence of significant difference in the

number of colonies counted between the two samplers.

MRG= (|(A−B)|)+ σ(A−B), (1)

where A indicates the sequence of the number of colonies in
the top sampler, B indicates the sequence of the number of
colonies in the bottom sampler and σ is the standard devia-
tion of the respective differences.

The flux-gradient method was used to estimate micro-
bial fluxes from concentrations measured with the Burkard
samplers. This methodology has been widely used to mea-
sure atmospheric fluxes of different scalars such as hydro-
gen (Meredith et al., 2014), nitrates and nitrogen compounds
(Beine et al., 2003; Griffith and Galle, 2000; Taylor et al.,
1999), mercury (Edwards et al., 2005; Fritsche et al., 2008;
Lindberg et al., 1995), and particulate matter (Bonifacio et
al., 2013; Kjelgaard et al., 2004; Park et al., 2011; Sow et al.,
2009). The method follows the Monin–Obukhov similarity
theory (Monin and Obukhov, 1954) and therefore assumes
that in the atmospheric surface layer the flux of a certain
scalar is a function of the gradient of the scalar measured
at different heights, the heights themselves (zi), and a trans-
port velocity that is dependent on atmospheric turbulence and
stability (a more detailed description of the methodology is
provided in the Supplement).

The measurement setup was chosen to avoid sampling in
the roughness sub-layer, where the scaling principles do not
hold and a conservative roughness length (z0= 0.15 m) was
chosen (Businger, 1986). This length was adequate to obtain
a z/z0 > 1 (Businger, 1986) at both the low and high sampling
heights, thus offsetting the presence of upwind obstacles that
were within the range of the required horizontal surface uni-
formity (≈ 25 times z meters; Irvine et al., 1997). In keeping
with the cited literature, fluxes are reported from the perspec-
tive of the atmosphere as positive when upward (i.e., emis-
sions) and negative when downward (i.e., sinks).

A similar setup was employed between 2008 and 2010 to
measure PBAs in an area very close by (43.91◦ N, 4.87◦ E
and roughly 30 m a.s.l.). The Burkard samplers were de-
ployed in a gradient configuration (at 50 and 250 cm above
ground) along with a nearby sonic anemometer stationed at
roughly 230 cm above the ground. No trace gas measure-
ments were made during this period. The experimental field
for these previous campaigns was covered with herbaceous
species with similar habitus such as cocksfoot (Dactylis
glomerata), ryegrass, tall fescue (Festuca arundinacea) and
alfalfa (Medicago sativa). In the 2008–2010 campaigns a dif-
ferent methodology was used to assess the sampling differ-
ences between the two Burkard samplers. The two samplers
were put together and a serial dilution of P. syringae was
aerosolized. Three replicate samples were taken per each di-
lution (102, 103 and 104 live bacteria per mL) and no sta-
tistical differences were detected in the colony-forming units
(CFUs) sampled by the Burkard samplers, with the single ex-
ception of one replicate at the 103 dilution. All the tests were

www.atmos-chem-phys.net/17/14919/2017/ Atmos. Chem. Phys., 17, 14919–14936, 2017



14922 Federico Carotenuto et al.: Measurements and modeling of surface–atmosphere exchange of microorganisms

Wind

Vegetation

Leaf

kmax

kmin

Growth, 
immigration, 
deposition

Po
p

u
la

ti
o

n

Leaf

Wind

Po
p

u
latio

n

kmax

kmin

Sheltered
areas Leaf

kmax

kmin

Growth, 
immigration, 
deposition

Po
p

u
la

ti
o

n

Microbes

Wind
Saltation

Soil/sand

Saltation bombardment

Dust flux

Turbulent uplift 

Microbial flux

3
1 2

3

Figure 2. Schematics of the differences between Aeolian dust flux and microbial flux on which the PLAnET model is founded. Box 1 (top
left) shows the typical dust saltation mechanism. The action of wind (blue arrow) on soil makes dust particles (orange dots) “jump” for
short distances, ejecting smaller dust particles in the atmosphere. Turbulent uplift is shown in box 2 (upper right) where wind acts on the
phyllosphere. What happens in the small red box 3 is indicated in more detail in the lower part of the figure (as indicated by the red arrow).
The phyllosphere harbors a given number of microbial particles (black stars) up to a maximum (carrying capacity, kmax in the figure). Wind
can remove a certain fraction of “available” microorganisms up to the limit of a sheltered fraction of the population (kmin in the figure). While
the action of wind decreases the number of particles on the leaf, the population keeps experiencing phenomena such as growth, immigration
from other leaves and deposition of airborne particles, all contributing to an increase in population. The balance between population dynamics
and uplift is what contributes to the net flux simulated by the PLAnET model.

conducted with an open petri dish used to verify the deposi-
tion of the aerosolized spray.

2.2 The Plant–Atmosphere Epiphytic Transport
(PLAnET) model

The model estimates microbial fluxes from the phyllosphere
via a set of meteorological variables (air temperature, friction
velocity and wind speed), the leaf area index (LAI) and atmo-
spheric pressure. The model assumes that soil is an insignifi-
cant source of microorganisms for the atmosphere compared
to the plant canopy. Other studies have considered that plant
materials are the largest source of fungal spores in the atmo-
sphere (Burge, 2002) and have shown that bacterial fluxes are
higher over plants, except in cases of relatively rare events
such as dust storms (Lindemann et al., 1982; Lindemann
and Upper, 1985). This is in agreement with the finding that
higher wind speeds are necessary to free a particle from soil
rather than from the plant canopy (Jones and Harrison, 2004).

The model is based on three fundamental modules:

1. Source. Microbial population dynamics are driven by
temperature, humidity, immigration–emigration phe-
nomena, and competition (both between the microbial
species and between plants and pathogens), and these
factors change throughout space and time. To reduce
the complexity of such interactions, the PLAnET model
limits the representation of the microbial source to its

main driver as a temperature-dependent growth func-
tion.

2. Removal. This is an energy-driven process. Wind shear
and buoyancy act on the microbial population making a
fraction of it airborne.

3. Deposition. Microbial deposition is computed as the
product of a settling velocity and an airborne concen-
tration estimated on LAI. The settling velocity itself
is a linear combination of gravitational settling (com-
puted following Kulkarni et al., 2011) and impaction–
interception (computed following Slinn, 1982).

The gross upward flux of microbes into the atmosphere was
simulated following a logistic equation (Eq. 2), assuming the
existence of a threshold friction velocity (Aylor et al., 1981;
Geagea et al., 1997). When simulating dust emissions it is
generally assumed that there is a linear (Raupach and Lu,
2004) or exponential (Gillette and Passi, 1988) relationship
between upward dust flux and friction velocity (u∗), due to
the existence of saltation bombardment (Raupach and Lu,
2004; Dupont et al., 2013). Phyllosphere microbial popula-
tions are far from comparable to the soil surface on which
such bombardment occurs and, therefore, a different mecha-
nism has been chosen in the present context. It is assumed
that no saltation mechanisms can intervene in amplifying
particle removal and thus the upward flux will saturate at a
certain u∗. The idea for this representation of the upward flux
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is summed up in Fig. 2.

Fe =

{[
m1exp

(
−m2exp(−m3u∗)

)]}
N

kmax
(2)

In Eq. (2) Fe is the gross upward flux (in CFU m−2 s−1);
m1, m2, and m3 are, respectively, 30 CFU m−2 s−1,
256.26 CFU m−2 s−1and 19 CFU m−2 s−1 and were derived
though a curve fitting to the Lighthart and Shaffer (1994) flux
data with FOOTPRINT92 u∗ data (Lighthart and Shaffer,
1994) and the model calibration procedure; N is the phyl-
losphere population in the model (in CFU m−2), and kmax is
the maximum allowed microbial population (carrying capac-
ity in CFU m−2).

If only wind speed, instead of wind speed and friction ve-
locity, is provided as an input, the model calculates u∗ using
Eq. (3):

u∗ =
k u

ln z
z0
. (3)

In Eq. (3) k = 0.4 and is the von Kármán constant, u is the
wind speed (in m s−1), z is the sampling height in meters and
z0 is the roughness length (= 0.15 m).

The gross downward flux (i.e., deposition) is modeled fol-
lowing Eq. (4):

Fd =
(
Vg+Vi

)
Ca. (4)

Fd is the deposition flux (CFU m−2 s−1), Vg the gravitational
settling velocity (m s−1), Vi (m s−1) the settling velocity due
to impaction–interception from roughness elements and Ca
the airborne concentrations of microorganisms (CFU m−3).
Vg is calculated following (Kulkarni et al., 2011) (Eq. 5):

Vg =
gρpd

2Cc

18η
, (5)

where g is the gravitational acceleration (9.81 m s−2), ρp is
the particle density (1100 kg m−3, Cox and Wathes, 1995),
d is the particle diameter (3.3× 10−6 m, Raisi et al. (2013)
and Schlesinger et al., 2006), Cc is the Cunningham slip cor-
rection factor, and η is the air viscosity (1.83× 10−5 Pa s,
Kulkarni et al., 2011).

The term Vi represents the effect of interception–
impaction on particle deposition and it has been computed
following Slinn (1982):

Vi = Cdur

(
1+

uh

ur

1− ε
ε+
√
ε tanhγ

√
ε

)−1

, (6)

where Cd is the ratio between u2
∗ and u2

r , ur represents
wind speed measured at a reference height (in m s−1), uh
is wind speed measured at canopy height (in m s−1) and ε
is the particle–canopy element collection efficiency (adimen-
sional). The latter has been computed following Slinn (1982),

but without accounting for diffusional effects (EB in the
cited paper) since they are not significant for particles > 1 µm
(Wiman and Ågren, 1985). Equation (6) has the form of a
velocity (being essentially a scaling factor for wind speed)
and, when combined with Vg (see Eqs. 4 and 5), determines
the actual particle deposition velocity. To solve Eq. (6), two
wind speeds are needed (measured at canopy height and at
a reference height above canopy), the ratio of which can be
expressed as

uh

ur
=
u∗

kur
ln
l

z0
, (7)

where l is a characteristic eddy size in the canopy (expressed
in meters), which, in the present simplified implementation
of the Slinn model, has been considered equal to canopy
height (h; Slinn, 1982). Following Slinn’s work, the pa-
rameter γ has been assumed to equal h1/2, while the other
constants were set as cv/cd = 1/3, Ă= 10 µm, Â= 1 mm,
f = 1 %, b = 2 and cStk = 1.

The term Ca has been calculated as a characteristic sea-
sonal airborne concentration for a Mediterranean grassland
via a linear relationship between LAI values and average
concentrations between the top and bottom sampler during
the 2008–2010 campaign following Eq. (8):

Ca = p1LAI+p2. (8)

In Eq. (8) p1= 26.99 CFU m−3 and p2= 115.9 CFU m−3.
LAI values used in this study were obtained from MODIS
data (Myneni et al., 2015). Four 500 m pixels were averaged
in space and interpolated in time to the half-hourly time se-
ries from the 4-day LAI time step of the satellite data. The
average between-pixel standard deviation was quite consis-
tent, varying slightly between ±0.32 and ±0.35 across all
the simulated years.

The actual net PBA flux at a given time (Fn, CFU m−2 s−1)
is computed following Eq. (9):

Fn = Fe−Fd . (9)

The phyllosphere microbial population (N ; see Eq. 2) is
modeled following Eq. (10):

N = rN − (Fnξ). (10)

The growth rate r of Eq. (10) is modeled as a temperature-
driven process in Eq. (11) (Yan and Hunt, 1999; Yin et al.,
1995; Magarey et al., 2005):

r =



0 if T < TMiN(
TMAX− T

TMAX− TOPT

)(
T − TMIN

TOPT− TMIN

)( TOPT−TMIN
TMAX−TOPT

)

c if TMIN ≤ T ≤ TMAX
0 if T > TMAX.

(11)

In Eq. (9) TMIN, TMAX and TOPT are, respectively, the min-
imum, maximum and optimal growth temperatures (in ◦C).
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Table 1. Estimates for model parameters. The parameters tagged with an asterisk (*) are those that entered the calibration as unknowns from
the initial guess, while the other parameters were fixed.

Parameter Range boundaries References for ranges Units

TMIN* 5–15 Standard mesophilic range ◦C
T ∗MAX 30–45 Standard mesophilic range ◦C
TOPT TMIN–TMAX Standard mesophilic range ◦C
c∗ 0.12 Inserted by the authors None
k∗min 4.7× 104–4.7× 105 Hirano and Upper (1986); Wilson and Lindow (1994) CFU m−2

k∗max 4.7× 105-4.7× 108 kmin and Hirano and Upper (1986) CFU m−2

m∗1 22.3–35 Derived by the authors from Lighthart and Shaffer (1994) CFU m−2 s−1

m∗2 250–260 Derived by the authors from Lighthart and Shaffer (1994) CFU m−2 s−1

m∗3 17–23.3 Derived by the authors from Lighthart and Shaffer (1994) None
ξ 1800 Eq. (10) Seconds
p1 26.99 Derived by the authors CFU m−3

p2 115.9 Derived by the authors CFU m−3

c is a calibration constant accounting for the unknown dou-
bling time of the microbes in the phyllosphere. For the pur-
pose of Eq. (10) the net flux is multiplied by the model time
step (ξ = 1800 s) making the units of the second right-hand
term coherent with the units of the first right-hand term (rN,
CFU m−2).

The model also includes two thresholds: a minimum (kmin,
a number of microorganisms sheltered by wind action fol-
lowing the concept of Waggoner, 1973) and a maximum pop-
ulation size (kmax or carrying capacity, which is the maxi-
mum population that an ecosystem can sustain indefinitely;
Verhulst, 1838). When the population falls below kmin no re-
moval can happen and if the population overshoots kmax, no
growth can happen. Since the model is focused on phyllo-
sphere dynamics, kmax is appropriately scaled with LAI in
order to represent plant senescence and therefore the reduced
availability of space and resources. The model starts from
an estimate of the initial population (N0), representing the
“boundary condition” for the modeled processes at the start
of the simulation and proceeds with half-hourly time steps
until the end of the simulation period.

2.3 Model calibration and sensitivity analysis

The model was run between 1 January 2008 and the 31 De-
cember 2010, assuming that the microbial population in the
phyllosphere at the beginning of the period was equal to kmin
due to low LAI and temperature. The error metric to evaluate
model performance is described by Eq. (12):

ε = |(1− |s|)| + |o| + |(1−
∣∣∣r2
∣∣∣)|. (12)

In Eq. (12), ε represents the error metric, s the
slope of the linear relationship between mea-
sured and modeled net fluxes, o the offset of this
relationship and r2 the correlation coefficient.
The function receiving the model parameters as input

and returning ε as an output was passed to MATLAB’s
fmincon interior-point algorithm (Byrd et al., 1999, 2000;
Waltz et al., 2006) as the objective function for minimiza-
tion. The algorithm was run iteratively through MATLAB’s
GlobalSearch function in order to avoid finding a set of
parameters satisfying only a local minimum. To avoid math-
ematically sound, but nonrealistic solutions, GlobalSearch
was looking for minima only within a bounded parameter
space. The upper and lower bounds of the parameter space
are shown in Table 1. The percentage of leaf area exposed
to turbulence was arbitrarily estimated to correspond to 5 %
of the average leaf area density of the grassland that was set
at 94 g m−2 (Sims and Singh, 1978). The latter assumption
was needed to scale the measurements of Hirano and Upper
(1986) and Wilson and Lindow (1994) in CFU per gram to
the units needed by the model (CFU m−2).

The calibrated model was then run on the data collected in
2015 in order to assess its performance on a dataset not used
for training. Optimal temperature was not entered as a cal-
ibration parameter but was assumed to be halfway between
the TMIN and TMAX chosen by the optimization algorithm.

Sensitivity of the model was analyzed by computing new
values of ε by varying each parameter by plus and minus
10 %. For each parameter, a mean ε was computed by aver-
aging the two errors resulting from the up and down modi-
fications. Finally, a sensitivity metric was obtained by sim-
ply subtracting the ε obtained by the optimization procedure
from the average error of each parameter.

3 Results

3.1 Field measurements

During the 2015 campaigns, temperature ranged between
13.4 and 34.1 ◦C (mean 25.2± 6 ◦C, right y axis Fig. 3a).
Wind speed fluctuated between 0.2 and 5.3 m s−1 (mean

Atmos. Chem. Phys., 17, 14919–14936, 2017 www.atmos-chem-phys.net/17/14919/2017/
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Figure 3. Dynamics of observed microbial fluxes, air temperature, wind speed and wind direction in the 2015 field campaigns. Panel
(a) shows the time series of air temperature and microbial fluxes for July and September–October 2015. Unreliable fluxes are those below
the MRG. Panel (b) shows the time series of wind speed and wind direction for the same periods.

Table 2. Results of the optimization procedure and the sensitivity analysis. The first row reports the value chosen by the optimization for the
parameters in the column headers, while the second row reports the sensitivity value for each parameter.

TMIN (◦C) TMAX (◦C) c kmin (CFU m−2) kmax (CFU m−2) m1 m2 m3

Value 12.96 30.16 0.13 5× 104 4.82× 106 30 256.26 19
Sensitivity 0.65 0.29 0.23 0.03 0.23 0.35 0.08 0.47

2.1± 1.2 m s−1, left y axis Fig. 3b) with a general northerly
wind direction (right y axis Fig. 3b). During the same cam-
paign, fungal colonies dominated the microbial colonies
growing on culture media, but bacterial-like colonies were
also present. Measured microbial fluxes varied both between
and within the days of the two field campaigns (July and
September, left y axis Fig. 3a), with individual flux mea-
surements being above the MRG in 60.6 % of all cases. Un-
reliable fluxes were unevenly distributed between July and
September and included all negative fluxes (i.e., deposition,
left y axis Fig. 3a). In 2015, the plant canopy was a net mi-
crobial emitter (left y axis Fig. 3a), with net fluxes ranging

between 0.2 and 28.5 CFU m−2 s−1. An overview of the rela-
tionship between counted CFUs, MRG and estimated fluxes
is presented in Fig. 4. In September 2015, fluxes of water
vapor directly measured using eddy covariance were com-
pared with the ones resulting from the application of the
flux-gradient method, yielding a high correlation between the
two (r2

= 0.70) and with minimal bias (y = 1.05x− 0.08;
RMSE= 0.79) (Fig. 5), thus showing the absence of diver-
gences between the two methods.

The measurements between 2008 and 2010 were made
in different seasons, resulting in a wider range of temper-
atures spanning from 7.9 to 28.1 ◦C (mean 18.5± 4.8 ◦C,

www.atmos-chem-phys.net/17/14919/2017/ Atmos. Chem. Phys., 17, 14919–14936, 2017



14926 Federico Carotenuto et al.: Measurements and modeling of surface–atmosphere exchange of microorganisms

Figure 4. Details of the relationship between counted CFUs from the Burkard samplers and the estimated fluxes for the campaigns of July (a)
and September (b) 2015.
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Figure 5. Water vapor fluxes measured via the eddy covariance
method (x axis) vs. those derived from the flux-gradient method
(y axis). The plotted linear regression has a slope of 1.05 and an
offset of −0.08 and explains 70 % of the data variability.

right y axis Fig. 6a). Wind speed was consistent with
the 2015 campaign, ranging from 0.4 to 5.8 m s−1 (mean
2.4± 1.4 m s−1, left y axis Fig. 6b) with a mainly northerly
wind direction (with the exception of 2009 for which no wind
direction data were available, right y axis Fig. 6b). Microbial

fluxes within these 3 years spanned a wider range of mag-
nitude, varying between −5.2 and 57.1 CFU m−2 s−1 (left
y axis Fig. 6a). The average flux between 2008 and 2010
was close to the 2015 average (8.3 CFU m−2 s−1 in 2008–
2010 versus 10.6 CFU m−2 s−1 in 2015), while the standard
deviation was higher (11.1 CFU m−2 s−1 in 2008–2010 ver-
sus 6.2 CFU m−2 s−1 in 2015). Few negative fluxes were reg-
istered in 2008–2010, which represented only 16.8 % of the
total, confirming that the sampling site tended to be a net mi-
crobial emitter, rather than a sink.

3.2 Model calibration

The results of the optimization are resumed in Table 2 in
which the chosen parameters are reported along with the re-
spective sensitivity value.

All the chosen values fell within the imposed boundaries
(see Table 1). The optimization procedure was able to find a
meaningful optimum as it is deducible by looking at the sen-
sitivity values reported in Table 2. Any variation in a param-
eter results in a worsening of the error metric (i.e., a positive
sensitivity value), even if the model is not equally sensitive
to all the parameters. More specifically, the minimum tem-
perature regulating the growth curve of the microorganisms
is the one with the highest impact on model performance,
while the minimum population size (kmin) seems to have the
least impact. The latter result also suggests that the approxi-
mation made concerning the percent of leaf area exposed to
turbulence (i.e., 5 %) is not critical.

Relationships between measured and modeled fluxes with
an optimal set of parameters are reported in Fig. 7 for both
the calibration set (2008–2010, Fig. 7a) and the validation
campaigns (2015, Fig. 7b). The model is consistent between
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Figure 6. Temporal dynamics of observed microbial fluxes, air temperature, wind speed and wind direction in the 2008, 2009 and 2010
field campaigns. Panel (a) shows time series of air temperature and microbial fluxes for the campaigns held between 2008 and 2010. Panel
(b) shows the time series of wind speed and wind direction for the same period. No wind direction data were available for the year 2009. For
both (a) and (b) morning and afternoon averages are reported with the relative standard error in the error bars.

the two campaigns, explaining roughly 55–70 % of the vari-
ance (r2 for 2008–2010 is 0.54 while r2 for 2015 is 0.68)
and it does it with a small offset (0.28 CFU m−2 s−1 in 2008–
2010 and −3.75 CFU m−2 s−1 for 2015). The model still has
a bias in the flux estimation: it tends to underestimate the
fluxes during the calibration campaign (slope of the regres-
sion of 0.70) and overestimate them during the 2015 field
campaigns (slope of the regression 1.31). The model has
an RMSE of 5.82 CFU m−2 s−1 in 2008–2010, while it is
2.78 CFU m−2 s−1 for 2015.

Interestingly, while a clear dependence of the measured
fluxes on atmospheric turbulence (u∗) was frequently ob-
served, u∗ was not always correlated with flux contrary to
what might be expected. On some occasions, the measured
microbial fluxes were much lower than predicted by Eq. (2),
which directly scales the effect of turbulence on the mi-
crobial fluxes. This observation is consistent with the as-
sumptions made in the PLAnET model, in which the ac-

tual microbial flux is indeed driven by turbulence but also
constrained by the rate at which microorganisms multiply
and by the size of the microbial population in the phyl-
losphere. This is represented graphically in Fig. 8a and b.
When the population is close to the minimum population
(kmin), even very high turbulence (mean u∗ for Fig. 8a is
0.49 m s−1) will not elicit significant upward net fluxes. Con-
versely, when the microbial population is large (in Fig. 8b
above 4.8× 105 CFU m−2), even low turbulence (mean u∗
for Fig. 8b is 0.39 m s−1) will generate significant upward net
fluxes. Accordingly, the model was able to capture the vari-
ability in the number of CFUs that can be instantaneously
transported into the atmosphere, thus predicting complex in-
teractions between weather conditions, microbial population
densities and the actual flux. This latter result suggests that
for organic particles the simple knowledge of the transport
field may not be enough: microbial populations have their
own inherent dynamics (growth, death, immigration and em-
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Figure 7. Relationship between measured and modeled daily averages of microbial flux. Figure 6a shows the regression between the daily
averages from the 2008–2010 campaigns and the optimized model (y = 0.70x+ 0.28; r2

= 0.54) and Fig. 6b shows the one from the 2015
campaigns and the model (y = 1.31x− 3.75; r2

= 0.68). The error bars are derived from the following equation: ±σ
(
mi−oi
mi ,oi

)
, where σ is

the standard deviation of the ratio between the difference between modeled and observed points (mi−oi) and the average of the same points
(mi ,oi).
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igration) that influence the number of microbial cells avail-
able for transport. This phenomenon is clearly absent in the
modeling of the dispersion of inorganic dust particles.

Simulated daily sums of PBA fluxes for the entire valida-
tion year are shown in Fig. 9. These are high from spring to
early autumn, when temperatures are favorable for microbial
and plant growth and sharply decrease during winter months
in response to a decrease in temperature and LAI, an increase

in the mean wind speed, and a decrease in the mean num-
ber of microorganisms populating the phyllosphere (Fig. 9).
The model also predicts episodes in which the daily fluxes
of microorganisms into the atmosphere are above and up to
roughly twice that of the seasonal average. These events are
often associated with persistent conditions of high wind and
turbulence (Fig. 10a, b) and clear skies (Fig. 10c, d), which
are typical of the synoptic weather conditions in southeast-
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Figure 10. High wind events in 2015 in Montfavet, France. Plots (a) and (b) show friction velocity (left y axis) and the daily sum of flux
(right y axis) for two high wind events (DOY 166–176 and 224–238 of 2015). Plots (c) and (d) show solar radiation (right y axis) and air
temperature (left y axis) for the same two events.

ern France, when high pressure in the Bay of Biscay and a
low around the Gulf of Genoa generate the wind that pre-
vails from the north (called the “mistral”). Under these fa-
vorable conditions microbial growth in the phyllosphere bal-
ances the high removal rates caused by turbulence, so that the
overall microbial population on leaves sustains high transport
(Fig. 10c).

4 Discussion

The results and tools we present here offer a new approach
for studying bioaerosols. Previous attempts to understand the
distribution of PBAs in the atmosphere tended to simplify
the surface–atmosphere transport both by deriving emissions
from airborne concentrations (Burrows et al., 2009a) and by
making ecosystem-wide assumptions about emissions (Bur-
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rows et al., 2009a; Hoose et al., 2010; Sesartic et al., 2012).
Airborne concentrations are, nevertheless, variable, being the
combined results of both emissive and depositional processes
as well as atmospheric transport (Wilkinson et al., 2012).
For this reason, we conceived the PLAnET model to es-
timate fluxes directly, while accounting for the underlying
emission–deposition processes. We sought to capture the dy-
namics underlying microbial emissions, thereby making the
airborne concentrations a direct consequence without further
assumptions. The model tries to generate fluxes from the in-
teractions of the phyllosphere population dynamics and the
local meteorological conditions instead of employing only a
regression framework from measured data (such as in a pre-
vious attempt to simulate microbial fluxes; Lighthart and Kir-
ilenko, 1998). While both gross upward and downward fluxes
in the PLAnET model are resolved separately, this does not
happen when employing a gradient method, and the pres-
ence of depositional effects could affect the observed gra-
dient. Following Gillette et al. (1974, 1997), depositional ef-
fects for particles < 10 µm are significant only when the ratio
between the deposition and friction velocity is greater than
0.1.The value of this ratio did not exceed the critical thresh-
olds either in the 2008–2010 campaigns or in 2015. This
guarantees the applicability of the gradient method for the
observations at the Montfavet site made in sufficiently turbu-
lent conditions. Depositional effects were also not relevant
in Park et al. (2011) when applying the gradient method to
PM10 fluxes. It has to be taken in account, though, that de-
position depends on the particle diameter, and the choice of
a fixed diameter for bioaerosols that was made here is a nec-
essary simplification due to the impossibility of knowing the
full size spectrum and its temporal variation. Seasonal varia-
tions in the size fraction containing most bioaerosols were in
fact detected by Raisi et al. (2013).

The PLAnET deterministic framework follows the ap-
proach of Fall et al. (2016), which employed data from the
literature on a specific pathogen, Bremia lactucae, to esti-
mate its airborne concentrations. From Table 2 it is clear that
the optimization procedure made a clear use of the imposed
bounds in order to obtain feasible parameters. Not imposing
feasible bounds would have posed a risk for the minimiza-
tion to wander into physically unrealistic but mathematically
sound parameter space (i.e., a set of parameters achieving a
very small ε by combining, for example, nonrealistic growth
temperatures). The optimal temperature chosen by the op-
timization algorithm for microbial growth, for example, is
21.6 ◦C. Considering that during summer days with higher
vapor pressure deficit the leaf surface temperature can reach
even a 5 ◦C difference from air temperature (Jackson et al.,
1981; Wiegand and Namken, 1966), this would mean that the
modeled optimal temperature is quite close to the incubation
temperature used in the laboratory (25 ◦C). It is worth noting
that, while a reasonable choice of growth temperature range
was made for the overall microbial population, specific mi-
croorganisms may have different temperature optima. Future

work can be done to fine-tune such a range of the species
composition of the microbial source. The reliability of the
optimization is backed up by the sensitivity analysis: any
variation in the chosen parameters results in a worsening of
the error statistic, as is clearly visible from Table 2.

Compared to the model by Fall et al. (2016), PLAnET falls
short in terms of validation statistics. These differences can
be explained by the different endpoints and scopes between
the models. Since the PLAnET model aims to simulate an
overall bioaerosol flux, instead of airborne concentrations of
a single species as does the model by Fall et al. (2016), there
are significantly higher uncertainties involved in the process.
Nevertheless, if the confidence intervals (CIs) for the slopes
in Fig. 7 are taken into account, it can be seen that in 2008–
2010 and in 2015, the 95 % CIs include 1 and exclude 0 (the
95% CIs are 0.36–1.05 and 0.41–2.21, respectively). This
suggests that the main weakness of the model would only
be the number of observations. Longer campaigns conducted
on different ecosystems would help in better assessing the re-
lationship between modeled and measured data as well as the
“portability” of the PLAnET model to different ecosystems.

While the results obtained are quite promising, there are
still some caveats to consider. One of the first improvements
that would benefit the PLAnET model would be validation
on microbial fluxes that are not based solely on cultivated
microorganisms. The ratio of culturable microorganisms to
total microorganisms may range from 0.01 to 75 % and is
generally below 10 % (see Burrows et al., 2009b, and refer-
ences therein), meaning that PLAnET output needs scaling
to be compared with the work, for example, of Burrows et
al. (2009a), Sesartic et al. (2012) and Sesartic et al. (2013).
A simple comparison can be made between PLAnET simu-
lated fluxes and fluxes reported in Burrows et al. (2009a) us-
ing the scaling factor for the ratio of culturable to total bac-
teria for grasslands (302, Burrows et al., 2009b). An aver-
age total microorganism flux of 750.5± 1976 cells m−2 s−1

was obtained for PLAnET that, although associated with a
high variability, is similar to the median value for grass-
land (roughly 1000 cells m−2 s−1) reported in Burrows et
al. (2009a). PLAnET can be used to predict microbial emis-
sions and, when proper scaling factors are selected, it can
potentially be used as a tool to link surface processes to
the spatial and temporal dynamics of atmospheric processes
since PBAs could represent an important component of the
atmospheric aerosol load (at least on regional scales; Hum-
mel et al., 2015). There are only a few quantitative, field-
deployable sampling methods that target all microbial cells
including non-culturable ones. One of the most reliable that
can be adopted for analyzing samples coming from differ-
ent kinds of collectors is epifluorescence staining, which is
able to discriminate biological versus nonbiological particles
in a sample independently from their culturability. Contrary
to plate incubation, epifluorescence is also able to detect vi-
able but non-culturable microbial cells, that is, organisms
that are not dead but are not in the condition of growing
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(see Oliver, 1993, and Burrows et al., 2009b, and references
therein). The key issue with the method is the need for a min-
imum number of particles per sample (104 L−1; Gandolfi et
al., 2013) and therefore an appropriate amount of sampled
air. At rural sites, Bowers et al. (2011) were able to employ
epifluorescence sampling at 30 L min−1 for 1.5 h, while Har-
rison et al. (2005) worked with high-volumetric sampling at
1000 L min−1 for 6 h at a time. Such timescales are not suit-
able for flux-gradient applications, for which fluctuations in
concentrations must be resolvable on a timescale appropri-
ate for the planetary boundary layer response time (≤ 1 h).
This is why in the present work Burkard samplers were cho-
sen: both for their high volumetric flow rate (500 L min−1)
and for their virtual impactor nature that is favorable for pre-
serving particle viability. Still, in future studies, epifluores-
cence sampling performed on “relatively long” time inter-
vals (e.g., 1.5 h or more) could be used alongside more fre-
quent (e.g., 15 min) cultivable samplings to scale cultivable
to total microorganisms, assuming that the culturability does
not change in the longer time span. Ultraviolet-induced laser
fluorescence (UV-LIF) is a very recent methodology that
measures PBA concentration from fluorescence emission and
particle characteristics, using statistical methods such as hi-
erarchical agglomerative cluster analysis to distinguish be-
tween different types of PBAs (Crawford et al., 2015). UV-
LIF has already been used to measure atmospheric PBAs
(Huffman et al., 2010; Gabey et al., 2010) and, given its rel-
atively fast response time, it has the potential to be used in
combination with micrometeorological methods to estimate
microbial fluxes. A first attempt in this sense has been made
in a pine forest by Crawford et al. (2014). This method is
very promising since it works independently from microbial
culturability, even if research is still ongoing on discriminat-
ing between different PBA classes and between PBAs and
nonbiological fluorescent compounds contaminating the sig-
nal (Gabey et al., 2013; Pöhlker et al., 2012; Toprak and
Schnaiter, 2013). Single-particle mass spectrometry (SPMS)
is also a technique that can be used to detect PBAs by re-
lying on the spectroscopic detection of specific compounds
that are assumed as a proxy of bioaerosols (Zawadowicz et
al., 2017). Similar to UV-LIF, this method does not rely on
PBA culturability and suffers from interference of nonbio-
logical particles with coincident spectral peaks (Zawadowicz
et al., 2017). It is important to consider, though, that even
if live and dead microorganisms would contribute to cloud-
related processes due to their chemical and physical compo-
sition, the latter would not matter from an evolutionary per-
spective. Live cells have a chance of further transmitting their
biological and chemical footprints to a wider microbial pop-
ulation. The latter would represent an ecological feedback
increasing the population of live particles with characteris-
tics that could favor survival and, eventually, physical inter-
action with atmospheric processes (i.e., increased expression
of given proteins). While it is true that estimating fluxes of
total biological particles is important from a biogeochemical

point of view (Burrows et al., 2009a), measuring the viable
fraction of fluxes would give information about the number
of microorganisms that can potentially survive transport. The
second critical improvement would be to validate and test the
model on data from a larger number of different ecosystems,
such as forests and agricultural crops.

Another caveat regards the parametrization of deposition.
The simplified version of the model of Slinn (1982) im-
plemented in PLAnET does not take into account the pres-
ence of potential negative gradients between atmosphere and
canopy, which were not possible to investigate during the
present sampling campaigns. This aspect needs further in-
vestigation for a better representation of particle deposition
in such conditions.

The prognostic capability of the model has been investi-
gated by running the model between 2001 and 2015. In the
years when meteorological data from Montfavet were not
available (2001–2006), we used the average of the closest
four points from the Climate Forecast System Reanalysis
hourly time series (Saha et al., 2010). Seasonally averaged
net fluxes showed small interannual variation in winter when
fluxes fluctuated around zero (−0.01 to 0.25 CFU m−2 s−1)
versus higher and more variable average fluxes in summer
ranging from 3 to 8.3 CFU m−2 s−1. The model was able to
represent the interplay of the different meteorological vari-
ables: summer 2003 was characterized by one of the lowest
average phyllosphere population sizes due to the exception-
ally high temperatures registered during that year hindering
microbial growth. In fact, in summer 2003 the average pop-
ulation size was 2.85× 105 CFU m−2 versus a seasonal av-
erage of 3.86× 105 CFU m−2 and an average temperature of
26 ◦C versus 23 ◦C. The lowest average summer population
size was simulated, instead, in 2006 (2.66× 105 CFU m−2),
when an unusually low LAI (0.8 versus 0.91 interannual
seasonal average) influenced the maximum number of mi-
croorganisms that were able to grow along with a high aver-
age friction velocity increasing microbial removal (0.33 ver-
sus 0.25 m s−1 interannual seasonal average). Still, there are
some potentially unresolved meteorological forcings that the
model does not take into account, such as rainfall. Huffman
et al. (2013) and Prenni et al. (2013) provided convincing
experimental evidence that bioaerosol and ice nucleator con-
centrations increased during and shortly after rainfall events.
Rainfall, in fact, may boost PBA emissions. On the one hand,
this may be due to the impact of raindrops that shake plants
generating a detaching force (McCartney, 1991; Robertson
and Alexander, 1994) and on the other hand it may be due
to a boost in growth and a subsequent increase in the con-
centration of PBAs on the plant. For example, for P. syringae
a 35-fold increase was seen after 48 h after a precipitation
event (Hirano et al., 1996). This would increase the popula-
tion of particles available for transport. This seems to con-
trast classical wet scavenging theory, in which falling hy-
drometeors deplete the atmosphere of suspended particles
(Seinfeld and Pandis, 2012), and, therefore, act as a sink
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for particulate matter (see, for example, Tai et al., 2010, or
Ouyang et al., 2015). Due to this complex interaction be-
tween PBAs and rainfall, precipitation and humidity were
not taken into account in this first version of the PLAnET
model. In fact, if a very rainy month (September 2010 with
an average of 0.13 mm of rain per hour) is compared against
a non-rainy month (September 2007 with an average rainfall
of 0.027 mm h−1), average net fluxes are very similar and
actually greater in the less rainy month (4.87 CFU m−2 s−1

in September 2007 versus 4.35 CFU m−2 s−1 in Septem-
ber 2010).

However, rainfall is not the only process that can influ-
ence net fluxes: intensive grazing, mowing and harvesting
are also activities that can impact bioaerosol emission from
a grassland. Such effects, however, are not straightforward
and not completely known. Intensive grazing, for example,
would damage the canopy, affecting LAI and the available
population. Conversely, by damaging plants and releasing
nutrients from plant tissue it could enhance microbial growth
on leaves. Furthermore, animals themselves are potential
bioaerosol sources (animal manure contains a large variety
of microorganisms; Cotta et al., 2003). Harvesting would
also contribute to the reduction of the source term (reduc-
ing LAI). However, along with many agricultural operations,
harvesting can generate a higher amount of suspended parti-
cles (see, for example, Hiscox et al., 2008), potentially con-
taining bioaerosols. All of these complex interactions can
therefore generate both transient and lagged effects, which
are still not taken into account by any model and should be
investigated in the future.

5 Conclusions

With multiple campaigns this study investigated the be-
havior of a Mediterranean grassland from the point of
view of microbial emissions. Across the campaigns, fluxes
of microorganisms have been estimated through a sound
micrometeorological method (flux-gradient methodology).
The applicability of the method was assessed by comparing
water vapor gradient fluxes with those measured directly
by eddy covariance: the lack of significant divergence
between the two suggests that the gradient methodology
was applicable in the experimental conditions, even if it
needs to be acknowledged that the good correspondence
in terms of water vapor fluxes does not necessarily apply
to bioaerosol flux measurements. Bacterial and fungal
colonies, in fact, behave as a passive tracer in the absence
of significant aerodynamic effects: such conditions were
therefore tested during field campaigns using literature re-
lationships between friction velocity and size of transported
particles. The grassland showed a majority of emission
fluxes, with a magnitude comparable to what was previously
seen on a desert scrubland (Lighthart and Shaffer, 1994).
The collected data were used to calibrate and validate a

deterministic model (PLAnET) for estimating emissions
of microorganisms from the surface. Even if there are still
some open issues in the model (namely the relationship
between flux, precipitation and the culturability of microor-
ganisms), PLAnET provides previously unavailable insights
into the dynamics of microbial fluxes and the underlying
driving forces. Hopefully its evolution within the scientific
community will be fostered not only by its ease of use
(few easily accessible meteorological parameters are needed
for its operation) but also by the robust framework for
estimation of microbial fluxes (the model code can be freely
downloaded at https://it.mathworks.com/matlabcentral/
fileexchange/63257-planet-microbial-model). Its compu-
tational simplicity also makes it an attractive addition to
larger-scale models aiming to simulate the dispersion of
PBAs on regional or global scales (such as CALPUFF, Scire
et al. (2000); WRF-CHEM, Grell et al. (2005); CHIMERE,
Menut et al. (2013); ECHAM-HAM, Stier et al. (2005); or
CAMx). The PLAnET model can in fact be an emission
module receiving the same meteorological forcing of the
dispersion model within which it is nested and generate
time-varying emission rates at surface level. PBAs could
be added as a chemical species with given characteristics,
in addition to all the aerosols coming from biogenic and
anthropogenic inventories. The larger-scale model would
then be able to simulate the dispersion of the PBAs across
the simulation domain, giving new insight in the potential of
PBAs to impact precipitation, as well as exploring different
scenarios about the potential pathways of transport of plant
pathogens from the phyllosphere. In fact, given that some
of the aforementioned models are able to simulate both
gas-phase and aerosol chemistry, it would be possible to
follow up the pioneering work of Burrows et al. (2009a) and
Sesartic et al. (2013) on different spatiotemporal scales and
investigate the changes in the outputs due to the insertion of
a realistic PBA emission module.

Data availability. The model used in this text is available in the
MathWorks repository as indicated in Sect. 5. All the other publicly
available data employed (such as MODIS and GFS data) are cor-
rectly referenced in the text. As for the authors’ microbial concen-
tration and flux data, they are still undergoing processes for future
publications and are therefore not eligible to be released publicly
just yet.
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