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Abstract. The combined record of total and profile ozone
measurements from the solar backscatter ultraviolet (SBUV)
and SBUV/2 series of instruments, known as the SBUV
Merged Ozone Data (MOD) product, constitutes the longest
satellite-based ozone time series from a single instrument
type and as such plays a key role in ozone trend analyses.
Following the approach documented in Frith et al. (2014)
to analyze the merging uncertainties in the MOD total ozone
record, we use Monte Carlo simulations to estimate the po-
tential for uncertainties in the calibration and drift of indi-
vidual instruments in the profile ozone merged data set. We
focus our discussion on the trends and associated merging
uncertainty since 2001 in an effort to verify the start of ozone
recovery as predicted by chemistry climate models. We find
that merging uncertainty dominates the overall estimated un-
certainty when considering only the 15 years of data since
2001. We derive trends versus pressure level for the MOD
data set that are positive in the upper stratosphere as expected
for ozone recovery. These trends appear to be significant
when only statistical uncertainties are included but become
not significant at the 20 level when instrument uncertainties
are accounted for. However, when we use the entire data set
from 1979 through 2015 and fit to the EESC (equivalent ef-
fective stratospheric chlorine) we find statistically significant
fits throughout the upper stratosphere at all latitudes. This
implies that the ozone profile data remain consistent with our
expectation that chlorine is the dominant ozone forcing term.

1 Introduction

The solar backscatter ultraviolet (SBUV) series of instru-
ments provides a 40+-year data record of broadly resolved
vertical ozone profiles on a global scale. We recently reported
on our updated Merged Ozone Data (MOD) record of inte-
grated total column SBUV measurements (Frith et al., 2014).
Here we extend the record by considering the ozone profile
measurements in layers from 25 to 1 hPa, where SBUV pro-
vides the best vertical resolution (Kramarova et al., 2013a;
Bhartia et al., 2013). The SBUV record comprises data from
nine instruments (Nimbus 4 backscatter ultraviolet (BUV),
Nimbus 7 SBUV and SBUV/2s on NOAA 9, 11, 14, 16, 17,
18, 19), providing ozone measurements over an era of chang-
ing chlorine levels and changing stratospheric climate. In or-
der to isolate these signals from natural ozone variability, a
single coherent data set is required. To this end, instruments
in the series were cross-calibrated at the wavelength level us-
ing overlapping measurements collected within defined spa-
tial and temporal limits (DeLand et al., 2012). Ozone was
then derived for each instrument using the Version 8.6 re-
trieval algorithm to produce the measurement time series
used to create the MOD data set (McPeters et al., 2013).
While this approach minimized differences among instru-
ments, Frith et al. (2014) showed that small remaining off-
sets and drifts between measurements contributed to the un-
certainty in the total ozone SBUV MOD record.

Profile ozone measurements are inherently noisier than
column ozone measurements and generally show larger vari-
ations between measurements (e.g., Kramarova et al., 2013b;
Hassler et al., 2014; Tummon et al., 2015; Hubert et al.,
2016). For the SBUV profile measurements, different wave-
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lengths are sensitive to the ozone concentration at differ-
ent pressure levels and wavelength is being used to “scan”
the profile. Wavelength-dependent calibration errors tend to
cause ozone errors that oscillate in the vertical. Thus, profile
ozone measurements are much more sensitive to wavelength
calibration and instrument issues, while these errors tend to
cancel in total ozone.

Although profile measurements have an inherently larger
uncertainty than total ozone measurements (at least for
SBUYV), these data are critical in the search for indicators
of the recovery of ozone. Model studies indicate that the ex-
pected recovery of ozone from the impacts of chlorine and
bromine compounds will be latitude- and altitude-dependent
(e.g., Li et al., 2009). To that end, a number of recent studies
have indicated statistically significant ozone increases since
the late 1990s based on merged ozone profile records, sug-
gesting recovery from the earlier ozone decline attributed to
ozone-depleting substances (ODSs; e.g., WMO, 2014; Tum-
mon et al., 2015; Harris et al., 2015; Steinbrecht et al., 2017).
However, a full characterization of the uncertainties asso-
ciated with the merging process of data from multiple in-
struments is not generally available. It is important that not
only the individual instrument uncertainties be taken into ac-
count, but uncertainties arising from the merging process it-
self must also be accounted for before the merged data can be
properly interpreted. Such uncertainties result from individ-
ual instrument uncertainties (absolute calibration, drift, other
systematic errors) but also from differences in measurement
technique, spatial and temporal resolution, and native verti-
cal coordinate systems of the merged records (e.g., Damadeo
et al., 2014; Hassler et al., 2014; Sofieva et al., 2015). How
to propagate such uncertainties and assess their impact on
derived trends and other long-term signals is an outstanding
question within the community (e.g., WMO, 2014; Harris et
al., 2015).

In this work we estimate the merging uncertainty in the
SBUYV profile MOD record using a Monte Carlo approach
similar to that presented in Frith et al. (2014) for total ozone.
In the following sections we describe the SBUV measure-
ments and analyze the consistency between the individual in-
strument data sets. We then describe the merged data product
and summarize our approach to estimating potential long-
term drifts in the data set. Using a multiple linear regres-
sion model, we compute profile ozone trends, focusing on
the ozone changes since 2000, a period when models project
ozone beginning to recover and the SBUV/2 data are most re-
liable. We evaluate two sources of uncertainty: the statistical
uncertainty resulting from real atmospheric variability and an
imperfect regression model fit to the data and the uncertainty
in merging the data from multiple instruments because of
possible offsets or drifts in calibration. Finally, we compare
our results with trends derived from an independent merged
record based on the same SBUYV instrument data, known as
the NOAA Cohesive data set (Wild and Long, 2017). The
NOAA Cohesive data set represents a different but reason-
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able approach to merging the same raw data, and as such,
our estimates of merging uncertainty should encompass dif-
ferences in the derived trends between the data sets.

2 Data

The SBUV instrument series and most recent Version 8.6
data processing have been described in detail in a series of
publications (DeLand et al., 2012; McPeters et al., 2013;
Bhartia et al., 2013). The data have been assessed and com-
pared to independent measurements by Labow et al. (2013)
and Kramarova et al. (2013b). Here we focus on the most
recent updates, including data from NOAA 19 that were not
included in the aforementioned studies. Figure 1 shows an
update of the SBUV instrument orbit drift history. Here we
plot the local time at which each satellite crosses the equa-
tor as a function of time. SBUV instruments ideally oper-
ate in late morning—early afternoon sun synchronous orbits
such that measurements are made at small solar zenith an-
gles and at the same local time each orbit. NOAA satellites
are launched into orbits that slowly drift toward the termina-
tor, and several satellites have drifted through the terminator,
thus making both afternoon and morning measurements (see
Fig. 1). The afternoon and morning orbital segments are de-
noted by the suffix “pm” and “am” in the following discus-
sion (for example, NOAA 16_pm and NOAA 16_am). The
first NOAA instruments (NOAAs 9, 11 and 14) underwent
more pronounced orbital drift, and the associated data quality
during portions of these records is notably reduced (DeLand
et al., 2012; Kramarova et al., 2013b; McPeters et al., 2013).

We follow the same data selection criteria as used in Frith
et al. (2014) based on prior data quality assessments. That is,
we only use measurements made when the satellite equator-
crossing time is between 08:00 and 16:00 to avoid issues with
drifting orbits, with the exception of NOAA 11_pm to avoid
a data gap. We do not include NOAA 9 data due to quality
issues. Otherwise we retain the Tier 1 and Tier 2 instrument
quality designations, with the aforementioned instruments in
drifting orbits generally assigned as Tier 2. Tier 2 instruments
are of lesser quality than Tier 1 but are still considered useful
within the record and include NOAA 11_am, NOAA 14_pm,
NOAA 14_am and NOAA 16_am. While we include Tier
2 data when creating the long-term MOD data record, we
account for the varying data quality in our uncertainty es-
timates. Additionally for the profile data set, measurements
are removed for a year after the El Chichén volcanic erup-
tion and for 18 months after the eruption of Mt. Pinatubo to
avoid periods when volcanic aerosols likely interfered with
the algorithm (Bhartia et al., 2013). We identified these pe-
riods using internal algorithm parameters and external data
comparisons but caution that small volcanic effects may per-
sist beyond the period of missing data. No NOAA 9 profile
data are used in the profile MOD (limited NOAA 9 data were
used in the total ozone MOD to fill data gaps).
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BUV instrument orbit drift history
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Figure 1. Times series of equatorial crossing time (ECT) for the se-
ries of SBUV instruments. The terminator (06:00 and 18:00) ECTs
are denoted by black dashed lines, and the 08:00 and 16:00 ECTs
are denoted by black dash—dot lines. Thick colored solid lines show
segments of data included in MOD; dashed colored lines show the
full extent of the instrument record. S-NPP/OMPS is denoted by a
solid line with dash overlay to indicate data that will be included in
future MOD versions.

Data from the next generation Ozone Mapping and Pro-
filer Suite (OMPS) nadir profiler (NP) instrument, launched
in October 2011 on the Suomi-NPP satellite, and subsequent
planned missions on the JPSS (Joint Polar Satellite Sys-
tem) series will continue the nadir profiler measurements for
decades to come. The Suomi-NPP is in a stable early after-
noon orbit, while the NOAA 19 satellite has begun to drift
towards the terminator. The current merged data set does
not include OMPS NP measurements, but we anticipate that
these data will be added soon, as the orbit for NOAA 19 ap-
proaches the 16:00 ECT cutoff and the OMPS data are re-
processed with an improved long-term calibration (Version
2).

Kramarova et al. (2013b) presented a complete valida-
tion of the individual SBUV instrument measurements rel-
ative to satellite and ground-based independent data sources.
Figure 2 shows updated mean bias comparisons between
Aura Microwave Limb Sounder (MLS; daytime measure-
ments only) and SBUV NOAAs 16, 17, 18 and 19 averaged
in three broad latitude bands. The MLS profile data are in-
tegrated to get column ozone in SBUV pressure layers and
then smoothed using the SBUV averaging kernel to match
the SBUV vertical resolution (e.g., Kramarova et al., 2013a).
Here we use V4.2 MLS data and include NOAA 19 SBUV/2
data (through February 2017) as well as updated revisions of
version 8.6 for NOAAs 16, 17 and 18 SBUV/2 data, but the
conclusions remain the same as in Kramarova et al. (2013b).
Relative to Aura MLS, SBUYV biases are largely within 5 %.
The SBUYV instruments in afternoon orbits (NOAAs 16_pm,
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Figure 2. Mean bias of SBUV instruments (N16-N19) relative to
Aura MLS in percent computed over respective overlap periods for
each instrument. Results shown are averaged in three broad latitude
bands: 35-50° S, 20° S—20° N and 35-50° N. Shaded areas indicate
20 deviations computed from the monthly means.

18 and 19) show a distinct pattern with SBUV lower than
MLS in the upper stratosphere, higher than MLS in the
middle stratosphere and then lower than MLS in the lower
stratosphere. The two SBUV instruments in morning orbits
(NOAA 16_am and NOAA 17) show a qualitatively simi-
lar but less pronounced pattern with respect to MLS. Using
MLS as a transfer standard, the morning orbit SBUV mea-
surements are smaller in the middle stratosphere and greater
in the upper stratosphere than the afternoon orbit measure-
ments. This pattern is generally consistent with diurnal varia-
tions in ozone observed from ground-based microwave mea-
surements at Mauna Loa (Parrish et al., 2014).

Figure 3 shows the drifts of the SBUV instruments rel-
ative to Aura MLS over the time period when both instru-
ments are making measurements, computed after removing
the respective seasonal cycles from each data record. The
drifts are generally within 5 % decade ™! (hereafter % dec™!).
The largest drifts (>5 % dec™! in some cases) are those for
NOAA 16 in both the morning and afternoon orbits. Both
of these records overlap MLS by only 30-35 months. The
longer overlaps for NOAAs 17, 18 and 19 (804 months)
show significantly less drift with respect to Aura MLS. The
20 uncertainty bounds in Fig. 3 are scaled to approximate the
effects of autocorrelation and show that in many cases the
larger drifts are not significant. However, significant drifts
remain in the southern midlatitudes and upper levels in the
tropics. Though these drifts are real, larger variations at the
beginning or end of the overlap have an exaggerated effect
on the drift amplitude computed over shorter time periods.
Kramarova et al. (2013b; Fig. S19) use NOAA 17 data to
test the effects of short overlaps when comparing to ground-
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Figure 3. Drift of the NOAA SBUYV instruments relative to Aura
MLS over the time period of their overlap in % yr_l as a function
of pressure level. Shaded areas indicate 20 uncertainties scaled to
account for autocorrelation.

based microwave data from Mauna Loa by varying the length
of overlap from 18 to 114 months. The relative drift does not
stabilize until the overlap is ~ 70 months or longer.

Thus far, we have focused on the SBUV data since 2000.
In Fig. 4 we examine inter-instrument consistency over the
entire MOD record, starting in 1970. Here we show examples
of the full time series of the individual SBUV instruments at
three pressure levels for the latitude band from 35 to 50° N.
The data are plotted as the anomalies from the N7 SBUV
1979-1981 seasonal cycle.

The records from the various satellite SBUV instruments
present a consistent picture of ozone variation over time. In
the 2.5 to 1.6 hPa layer we see a rapid decline of about 15 %
between 1980 and about 2000 with a leveling off after 2000
and perhaps a slight increase. In the 6.4 to 4 hPa layer we
see a smaller decrease before 2000 with a subsequent in-
crease back to the 1979—-1981 mean level. In the lower 16 to
10 hPa layer we see a similar small decrease and subsequent
increase, with a strong deviation in the seasonal cycle com-
pared to the reference period of 1979 to 1981. This deviation
in seasonal cycle was present in the higher layers, but it was
not as pronounced. These seasonal differences may in part be
a real response to long-term chlorine changes (e.g., Stolarski
et al., 2012, and references therein), though differences in
the amplitude of the seasonal variations among instruments
over the same time period also suggest that instrument issues
account for some of the seasonality.

Despite the overall coherence among the individual instru-
ment records, offsets and drifts between the instruments are
apparent. The largest differences occur in the mid- to late
1990s and again in the mid-2000s associated with the Tier 2
NOAA 11_am, N14_pm and N14_am data. Smaller differ-
ences can be seen among the Tier 1 instruments as well.
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3 Analysis

In this section we focus on the quantitative analysis of the
SBUYV time series with an emphasis on how the uncertainties
in the measurements feed into the overall uncertainty in the
merged ozone record. We use the same approach described
by Frith et al. (2014), in which uncertainties have been con-
structed for the merged total ozone data record. Profile ozone
differences among the individual SBUV instrument measure-
ments are larger than was the case for total ozone, but the un-
certainty issues are quite similar. That is, there are two major
sources of uncertainty in combining the measurements from
multiple satellite instruments. The first source of uncertainty
is related to absolute calibration offsets between instruments,
while the second stems from possible calibration drift over
the lifetime of the instruments. We attempt to quantify these
uncertainties and then model their time dependence using a
Monte Carlo approach to estimate their impact on the long-
term variability in the ozone profile measurements.

3.1 Monte Carlo uncertainty model parameters

Figures 2, 3 and 4 show ozone profile measurements from
individual SBUV instruments that are generally similar dur-
ing periods of overlap but include a range of inter-instrument
offsets and drifts. The individual instrument data sets were
produced by the SBUV processing team after considering all
of the known issues with respect to the calibration of each
instrument (DeLand et al., 2012). Despite the best efforts of
this team to obtain the most accurate possible calibration of
each instrument, differences remain that depend on latitude
and altitude. To construct the MOD data set, we average the
individual data records during periods of overlap of two or
more instruments within the 08:00 to 16:00 ECT boundary.
One could argue that we could simply adjust offset differ-
ences at each latitude and altitude so that we had one continu-
ous data set with little or no relative offset uncertainty. How-
ever, the existing data from each instrument had what the
processing team deemed the best possible calibration. The
remaining differences in ozone measurement during overlap
periods are due to factors that are not understood at this time.
This means that it is not clear how to adjust data to remove
these offsets. An offset between two instruments during their
period of overlap could result from the calibrations being dif-
ferent, but it could also result from a drift over time of one
or both of the instruments from its initial calibration. The
issues of offset and drift are thus inextricably linked. There-
fore, instead of arbitrarily adjusting differences between two
instruments during their period of overlap, we have chosen
to consider the offsets and drifts as part of the uncertainty in
“stitching” together the results from the individual satellite
instruments to form our merged data set. In the absence of a
standardized reference calibration source, we are in essence
using the collection of SBUV inter-instrument offsets and
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Figure 4. Time series of ozone anomalies from individual SBUV records for three pressure levels. Anomalies are calculated from the 3-
year 1979-1981 Nimbus 7 SBUV seasonal cycle. Data are averaged over the 35-50° N latitude band for (a) 2.5-1.6 hPa, (b) 6.4—4 hPa and
(¢) 16.1-10.1 hPa. The colors indicate the individual instrument records as indicated at the bottom of the figure.

drifts to define an SBUV system uncertainty, in an effort to
account for both relative and absolute uncertainties.

To estimate offset and drift uncertainty for the SBUV pro-
file data records, we use the same approach as described in
Frith et al. (2014). We compute the mean bias and drift for
the overlap pairs in each 5° latitude bin and use the collec-
tion of these values to determine the distribution of offsets
and drifts for Tier 1 and Tier 2 instruments (see Frith et al.,
2014, Figs. 5 and 6 for a detailed explanation of Tier 1 and
Tier 2 instruments). We scale the offsets and drifts by the
square root of 2 to distribute the relative offset/drift between
instrument pairs.

Figure 5 shows the distribution of the absolute value of
the biases for each instrument pair and latitude zone and the
root mean square of the distribution to be used in the Monte
Carlo simulations. As before, we compute the inverse error-
weighted root mean square of the individual biases. The in-
verse weighting allows us to account for the length of over-
lap and autocorrelation in the differences for each instrument
pair. That is, biases and drifts computed from longer overpass
periods have greater weighting, while comparatively high au-
tocorrelation reduces the weight. However, we do not ac-
count for correlation in latitude, treating each band as an in-
dependent measure of the bias. In addition, with the larger
differences in the profile data, we found that the resulting
distributions were more skewed than in total ozone. Relevant
weighting and scaling is applied to the biases in the plot-
ted distribution. Figure 6 shows the distribution of drifts be-
tween overlapping measurements. To avoid aliasing of sea-
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sonal differences into our drift computation, we first remove
any seasonal signal in the differences. We thus require at least
24 months of overlap to account for seasonal variability and
compute drift, leaving only two Tier 2 instrument pairs with
sufficient overlap: NOAA 11_am-NOAA 14_pm and NOAA
16_am-NOAA 19 (in our total ozone analysis only one Tier
2 instrument pair was used). In this case, the distribution of
drifts is sufficiently different for the two pairs for us to treat
them individually. That is, the NOAA 16_am drift is assigned
based on the NOAA 16_am-NOAA 19 overlap (solid blue
line in Fig. 6), while the NOAAs 11_am, 14_pm and 14_am
drifts are based on the relative drift between NOAA 11_am
and NOAA 14_pm (dashed blue line in Fig. 6). Again rele-
vant weighting and scaling is applied to the drifts in the plot-
ted distribution.

The root mean square of the bias is less than 2 % for the
Tier 1 instruments and less than 3 % for Tier 2. In gen-
eral, high-quality satellite-based profile ozone observations
agree to within ~ 5 % (Fig. 2; Kramarova et al., 2013b; Tum-
mon et al., 2015; Hubert et al., 2016). Similarly, Kramarova
et al. (2013b) found the drift of the higher-quality SBUV
records (our Tier 1) to be within 0.5 % yr~! when compared
to independent measurements, and we see similar size drifts
between the individual Tier 1 SBUV measurements, with
slightly larger drifts indicated for the NOAA 16_am data at
most layers. Hubert et al. (2016) analyzed data from 14 limb
and occultation sounders relative to ground-based reference
data sets and also found that most instruments were stable to
within 0.5 % yr~! against the ground reference in the mid-
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Figure 5. Mean offset parameters as a function of pressure level
derived from Tier 1 (Nimbus 7, NOAAs 11_pm, 16_pm, 17, 18
and 19) and Tier 2 (NOAAs 11_am, 14_pm, 14_am and 16_am)
instrument overlaps used in Monte Carlo simulations to evaluate
the uncertainty of potential offsets and drifts on final merged ozone
record. The parameters are the weighted root mean square of the
collection of mean offsets computed in each 5° latitude bin and
each overlapping instrument pair. The probability distribution for
the Tier 1 instruments is shown by the red shaded histogram at each
pressure level, while the probability distribution for the Tier 2 in-
struments is shown by the blue shaded histogram (shown upside
down to separate it from the Tier 1 distribution).

dle and upper stratosphere, though the satellite-to-satellite
drifts might be larger. Overall, with the exception of the large
drift between NOAA 11_am and NOAA 14_pm, offset and
drift between individual SBUV instruments are comparable
to those found in other satellite-based profile ozone measure-
ments.

3.2 Monte Carlo model structure

The offset and drift parameters derived in the previous sec-
tion form the basis for our Monte Carlo simulation of how
these uncertainties lead to uncertainties in trend determina-
tion. We start under the assumption that the data from each
satellite have a calibration that is unbiased with respect to the
other satellites and, to the best of our knowledge, the calibra-
tion does not drift in time. We are thus assuming that any
uncertainty could go in either direction. For each instrument
used in the MOD, we then randomly prescribe offset and
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simulations to evaluate the uncertainty of potential offsets and drifts
on final merged ozone record. For Tier 2 instruments, the NOAA
11_am to NOAA 14_pm relative drift is shown separately from that
for NOAA 16_am to NOAA 19.

drift uncertainty from assumed Gaussian distributions with
lo widths equal to the root mean square values shown in
Figs. 5 and 6. Simulated Tier 1 instrument uncertainties are
drawn from the Tier 1 distributions and Tier 2 uncertainties
from the Tier 2 distributions, thereby explicitly representing
the varying uncertainty in the individual records.

We follow closely, though not exactly, the approach illus-
trated in Fig. 7 of Frith et al. (2014). The difference here is
that we treat the drift and offset separately, rather than apply-
ing a drift and offset simultaneously, as was done in Frith et
al. (2014), Fig. 7a.

Specifically, we went through the following consecutive
steps:

— Step 1: apply a drift uncertainty to each instrument.
This step results in traces similar to Fig. 7a of Frith et
al. (2014) but each trace starts on the zero line.

— Step 2: inter-calibrate the drifting records from indi-
vidual instruments using two reference instruments —
NOAA 11_pm and NOAA 17. In this step we repeat
the instrument calibration process used in the algo-
rithm (DeLand et al., 2012; Frith et al., 2014, Fig. 7b).
Through this adjustment we induce the time dependence
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NOAA 11 in the early 1990s and NOAA 17 in the mid-2000s. In both cases, periodic reductions in the error spread occur during periods
when two or more instruments are averaged. In these examples only data included in MOD are considered.

we expect from the internal calibration process but re-
move instrument to instrument offset that is solely due
to drift in one or more instruments because this offset is
also a component of the offset distribution and we want
to avoid double-counting uncertainties.

— Step 3: add a bias uncertainty to each instrument. By
adding the bias uncertainty after the calibration (Step
2) we avoid removing the offset through calibration and
thus more realistically reflect the offsets that exist after
the internal calibration process.

— Step 4: average time series from individual instruments
into a single simulated time series.

The steps described above are repeated 10 000 times to form
the distribution of potential error due to the merging process.
We note that in our total ozone analysis, we used Dobson
ground-based data to estimate the precision of the calibration
between the beginning and the end of the record (Frith et
al., 2014, Fig. 7d), but we eliminate this step in the profile
analysis because we do not have a comparable correlative
profile ozone record that we believe is stable over the full
time period.

Figure 7 shows two examples of Monte Carlo simulations
based on the same bias and drift parameters described above
at 10—-16hPa. Panel (a) represents a sequential merging pro-
cess, with each new instrument adjusted to match the pre-
vious instrument. In this case the errors accumulate as each
new record is added. Panel (b) shows the shape of the sim-
ulations from the Monte Carlo model used to represent the
SBUV MOD record outlined above. Here the Monte Carlo
model is structured to reflect the timing of the V8.6 inter-
nal calibration, which is based on two reference calibration
periods: NOAA 11_pm in the early 1990s and NOAA 17 in
the mid-2000s (DeLand et al., 2012). Nimbus 7 is calibrated
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to NOAA 11_pm, while all later instruments are calibrated
using NOAA 17 as the reference. This means that the uncer-
tainties in the SBUV records do not accumulate sequentially
from one instrument to the next, but grow forward and back-
ward in time away from the two reference data sets. Note that
if the data set were constructed by referencing the records to
an early single-base calibration, such as Nimbus 7 SBUV,
the modeled uncertainties would then follow the first exam-
ple in Fig. 7a. In this case the data at the end of the record
would have a relatively large uncertainty with respect to the
data at the beginning of the record because the calibration
would have been transferred through the Tier 2 instruments
(NOAAs 11 and 14) in the middle of the record.

3.3 Multiple linear regression model

Having established a merging uncertainty distribution as a
function of time, we now must convert this uncertainty to
an uncertainty in derived trends from the merged data set.
To analyze long-term variability we use a standard multiple
linear regression model including terms for the seasonal cy-
cle, quasi-biennial oscillation, 11-year solar cycle, volcanic
aerosols from the eruptions of El Chich6én and Mt. Pinatubo,
El Nifio—Southern Oscillation, and either a fit to equivalent
effective stratospheric chlorine (EESC) using the full record
or linear fits to segments of the data after long-term solar
and volcanic variations have been removed. The regression
model and proxy data sources are described in detail in Frith
et al. (2014), and data sources are given in the “Data avail-
ability” section of this paper.

We first fit the original MOD time series to the regression
model. The statistical uncertainty, defined as the uncertainty
associated with the imperfect ability of the proxies to capture
all variability in the data, is computed using a bootstrap anal-
ysis of the residual time series. We run 400 iterations, and
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correlation in the residual is accounted for through 1-year
segment resampling (Efron, 1979). We then compute the
merging uncertainty by similarly running each of the Monte
Carlo uncertainty simulations (shown in Fig. 7b) through the
regression model and calculating the standard deviation of
the resulting regression coefficients. The total uncertainty is
the combination of the statistical and merging uncertainty,
computed as the root mean square of the individual uncer-
tainties.

For this analysis, as in Frith et al. (2014), we use a simpli-
fied regression model fitting only the EESC and solar terms
to the uncertainty simulations over the full time period or a
simple linear trend when fitting to 1979-1994 or 2001-2015
time segments. However, we compared these results with fits
to the full model and found negligible differences in the final
uncertainty estimates. Table 1 gives the derived merging un-
certainty as a function of layer for the EESC fit, converted to
drift units based on the slope of the EESC curve from 2001
to 2015 and for the linear segment fit over the same period.
The larger uncertainty associated with the linear trend pa-
rameter reflects the larger potential for merging uncertain-
ties to alias into trends over the relatively short 2001-2015
period compared to lower potential aliasing onto the EESC
functional form over the full time period. The linear trend
parameter uncertainty is less than the 6 % dec™' (20) error
used in the most conservative approach presented by Harris
et al. (2015) but greater than the uncertainty derived by Stein-
brecht et al. (2017) based on the spread of individual trends
reported from a set of six merged ozone records.

Figure 8 shows the derived trend since 2001 estimated
from EESC and from a linear fit as a function of latitude
for the upper-stratospheric 1.6—1.0 hPa layer. The statistical
uncertainty and total uncertainty are shown separately. The
trend derived by either method is positive and nearly inde-
pendent of latitude at a value of about 2 % dec™!. Both are
statistically significant at the 20 level if uncertainty in the
merging process is not included. After adding the merging
process uncertainty, the trend obtained using the EESC fit to
the entire data set still yields a statistically significant trend
after 2001 at the 20 level. However, the trend obtained by
fitting a linear function to the data after 2001 is now not sta-
tistically significant at the 20 level (although it is close).

Figure 9 shows results at 10.1-6.4 hPa. The trend post-
2001 for the EESC fit is small at all latitudes and not statisti-
cally significant except at the most southerly latitudes shown.
When the merging uncertainty is added, the results are not
significant at any latitude. For a linear fit to the data since
2001, somewhat larger trends are obtained that are signifi-
cant at higher latitudes in both hemispheres if the merging
uncertainty is excluded. However, when merging uncertainty
is included, these trends are no longer statistically significant.
Smaller trends at this pressure level are consistent with the
vertical trend structure observed across different satellite and
ground-based systems reflecting smaller ozone losses rela-
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Figure 8. Trend versus latitude for layer 8 (1.6—1.0 hPa) from 2001
to 2015 obtained by two methods. Red line and shading were ob-
tained by fitting to EESC over the entire time period of 1979 to 2015
and converting to the slope of the EESC curve from 2001 to 2015.
Solid vertical lines indicate 20 uncertainty due to data variability.
Red shading indicates uncertainty including the impact of merging
uncertainty. Blue line shows the trend obtained by fitting the data
from 2001 to 2015 by a linear trend. Solid vertical bars are the 20
uncertainty due to data variability, while larger dashed vertical bars
indicate the addition of merging uncertainty. The points on the far
right side are the values obtained for the 50° S-50° N average.

Table 1. 20 uncertainty associated with EESC and linear trend
proxy terms based on the standard deviation of fits to 10000 Monte
Carlo simulations. The total uncertainty is the root mean square of
these values and the statistical uncertainty derived from the good-
ness of the regression model fit.

SBUV layer EESCj001-2015 Linear
pressure (% dec™1) trend001-2015
(hPa) (% dec™ 1)
1.6-1 0.8 2.3
2.5-1.6 1.4 3.6
425 1.8 4.7
6—4 1.3 3.8
10-6 1.4 4.0
16-10 1.3 3.4
25-16 0.7 1.9

tive to layers above and below (e.g., Randel et al., 1999; Har-
ris et al., 2015).

3.4 Comparison with NOAA Cohesive data set

The NOAA Cohesive data set is an independently con-
structed merged ozone record based on the SBUV series of
instruments (Wild and Long, 2017). NOAA Cohesive takes
an alternative approach to account for the offsets between
SBUYV instruments. Only one instrument is included at any
given time, and additional external offsets are applied to
improve consistency over the record. This version of the
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Figure 9. Same as Fig. 8 for 10.1-6.4 hPa.

NOAA Cohesive record is an update from that reported in
the SPARC/IO3C/IGACO-0O3/NDACC (SI’N) Past Changes
in the Vertical Distribution of Ozone Initiative (Hassler et al.,
2014; Harris et al., 2015). Comparisons done within SI2N in-
dicated the potential for unphysical trends when a successive
head to tail adjustment scheme was applied, as a result of
the lower-quality NOAA 9 (NOAA Cohesive uses NOAA 9
rather than NOAA 14 in its construction) and NOAA 11 data
(Tummon et al., 2015; Wild and Long, 2017; also Fig. 7a).
NOAA Cohesive was revised to not include offsets to Nim-
bus 7 and NOAA 11 data in the early portion of the record.
The long overlap periods from NOAA 16 to NOAA 19 are
used to make adjustments in the latter period of the record
using NOAA 18 as the reference instrument, but these adjust-
ments are not linked back to the beginning of the record. The
resulting data set no longer shows unrealistic trends (Stein-
brecht et al., 2017; Wild and Long, 2017).

For our purposes, we can consider the NOAA Cohesive
data set as another realistic rendition of the MOD with varia-
tions that are defined by the intra-instrument differences (via
adjustments applied in NOAA Cohesive). Figure 10 shows
the time series of the differences between the MOD data set
and the NOAA Cohesive data set for two pressure layers as a
function of time. Differences, shown as blue dots, are plotted
for all latitude bands to show the range of variations for each
month. Also shown are the differences between MOD and
the individual SBUV instrument monthly zonal means (black
dots), which by definition are non-zero when more than one
SBUYV instrument contributes to MOD. The 2o uncertainty
limits defined from the variability of the Monte Carlo sim-
ulations are denoted by the red lines (Fig. 7). To the extent
that the MOD and NOAA Cohesive data sets are two realiza-
tions of reasonably constructed time series from the SBUV
data, we would expect these differences to fall within our es-
timated uncertainty bounds for most or all of the time series.
The only exception is in the mid-1990s, but this is simply
a matter of timing. NOAA Cohesive uses NOAA 9 data in

www.atmos-chem-phys.net/17/14695/2017/

14703

1994, while we continue with NOAA 11_pm until the NOAA
14 data start in early 1995. The uncertainty estimate reflects
the timing of data used in the MOD record, but the magnitude
of increased error with the introduction of a Tier 2 instrument
is sufficient to cover the range of differences with NOAA 9
(also Tier 2). In the early portion of the record both merged
data sets are based on Nimbus 7 SBUV. Minor random vari-
ations in this period can result from differences in the exact
procedure used to compute the monthly zonal means, such as
slightly different filtering criteria. The first significant varia-
tion comes in 1989, when MOD uses the average of Nim-
bus 7 and NOAA 11_pm, while the NOAA Cohesive data
set switches to NOAA 11_pm. Starting in mid-1990s, dif-
ferences increase as more instruments come online, and po-
tential for the data sets to diverge increases. Throughout the
period both individual SBUV and NOAA Cohesive measure-
ments are generally contained within the MOD 2¢ variabil-
1ty.

Figure 11 shows the trends calculated from the MOD and
the NOAA Cohesive data sets for the latitude bands of 35—
50°S and 35-50° N as a function of pressure. The trends
were derived from both merged records using a linear fit to
data after 2001, computed after long-term variations in so-
lar cycle are removed based on an initial full fit to the data.
The shaded areas show the statistical uncertainty from both
fits, while the errors bars show the combined merged and sta-
tistical uncertainty for the trend. Note that the merging un-
certainty was calculated specifically for the MOD merging
process, but for comparison purposes we assume the same
merging uncertainty for NOAA Cohesive in the figure. The
vertical structure of the derived trends is notably different be-
tween MOD and NOAA Cohesive, though in most cases the
statistical errors do overlap, if just barely. However, when the
MOD merging uncertainty is added, the combined errors en-
compass both results. The reasons for these trend differences
are apparent in Fig. 10, where the MOD data drifted down-
ward compared to NOAA Cohesive in the 4-2.5 hPa, leading
to a smaller upward trend. The opposite is true for the 16—
10 hPa layer where MOD drifted upward compared to NOAA
Cohesive resulting in more positive trends. Although we are
fitting to 15 years of post-2000 data, end effects can still lead
to differences in the trend.

On the other hand, we can examine the fits to EESC using
the entire data set from 1979 through 2015. Figure 12 shows
the trends derived for the time period 2001 to 2015 from both
the MOD and NOAA Cohesive data sets using EESC to fit
the entire data sets. We can see here that the trends derived
from the two merged data sets are nearly identical when the
entire data set is used to determine the fits. We also see that
the trends in the top two layers are statistically significant
including the merging uncertainties.
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Figure 10. Time series showing MOD/NOAA Cohesive data set differences at two pressure levels (4-2.5hPa in a and 16-10hPa in b). Black
dots are MOD minus individual SBUV monthly mean differences, defined during times when more than one SBUV instrument contributes
to MOD; blue dots are MOD minus NOAA Cohesive monthly mean differences. Both are generally contained within the 20 variability.
Differences in all latitude bands from 50° S to 50° N are included. The red lines indicate 20 variability of 10000 Monte Carlo simulations.
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Figure 11. Linear trends fit from 2001 to 2015 using MOD (red) and NOAA Cohesive (blue) merged ozone records. Trends are in percent
per decade and plotted as a function of pressure layers at 35-50° S (a) and 35-50° N (b).
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Figure 12. Linear trends for the period 2001 to 2015 for the latitude
bin from 35-50° N obtained by fitting EESC over the entire time
period from 1979 to 2015. Shading and uncertainties same as in
Fig. 11.

4 Summary and conclusions

We have presented an analysis of the uncertainties in con-
structing a merged ozone data set for profile measurements
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of ozone from the SBUYV instruments. The analysis is simi-
lar to our previous work on total ozone measurements from
SBUYV (Stolarski and Frith, 2006; Frith et al., 2014). How-
ever, the profile measurements are inherently noisier and the
inter-calibration of instruments on different satellites is more
uncertain. We find that the inclusion of uncertainty in con-
structing the instrumental record has a great impact on de-
termining the statistical significance of trend results derived
from time-series regression models. For instance, fitting a
linear trend to the data since 2001 results in trends that are
not statistically significant at the 2o level at nearly all lati-
tudes and altitudes when uncertainties related to the merging
procedure are included.

Despite the insignificance of the derived trends from a lin-
ear fit to data from 2001, a fit to EESC over the entire record
is statistically significant at all latitudes. This significance
comes mainly from the fitting to the downward trend prior
to 2000. EESC is a modeled representation of the amount
of chlorine and bromine in the atmosphere available to de-
stroy stratospheric ozone at a given time and location, based
on measurements of ozone-depleting substances in the tropo-
sphere, age of air, and the fractional release rates of chlorine
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and bromine from various chemical constituents (Newman et
al., 2007). Our best current understanding, as represented in
chemistry climate models, predicts that stratospheric ozone
varies linearly with EESC (e.g., Newman et al., 2009). There-
fore, when we fit a data record using the EESC as a regres-
sion parameter, we are testing the degree to which the data
are following the model predictions. A fit to a linear trend on
the other hand is a test of whether the data are increasing or
decreasing as a result of any forcing not explicitly included in
the regression model. Ideally a fit to linear trend can be used
to verify that ozone is recovering as expected from chemistry
climate models (i.e., following the EESC functional form),
or alternatively, to indicate that other factors, such as strato-
spheric cooling or other unexplained long-term variations,
may also be affecting the data. However, the merging un-
certainty on trends over the relatively short 15-year time pe-
riod do not yet allow us to independently verify the ozone
recovery rate predicted by the model. Nevertheless, the con-
tinued goodness of fit of the data to the EESC curve extended
through 2015 provides strong evidence that chlorine is the
major driver of the long-term changes in the ozone concen-
tration.

Significant efforts are underway within the ozone trend
community to properly characterize the errors associated
with merged ozone records. Approaches based on compar-
ing individual data sets directly (Hubert et al., 2016; Har-
ris et al., 2015; this work) indicate larger uncertainties than
are suggested based on the spread of the derived trends from
multiple merged records (Steinbrecht et al., 2017). While our
Monte Carlo approach worked well for total column ozone,
the larger differences in the profile warrant investigation of
a more complex means of distributing the uncertainties; the
use of wide Gaussian distributions to represent the actual dis-
tributions shown in Figs. 5 and 6 likely lead to overly conser-
vative error estimates. We know for example that the biases
and drifts tend to be correlated from layer to layer and largely
cancel in the total, putting a constraint on the potential off-
sets and drifts. We are also testing the sensitivity of the de-
rived uncertainty to treating each instrument separately (as is
done here for the two pairs of Tier 2 instruments) rather than
combining multiple instrument pairs into a single distribu-
tion. Nevertheless, the differences with the NOAA Cohesive
data set suggest the uncertainties modeled here are not overly
exaggerated and that we still need more data to resolve these
issues.

Data availability. The most recent version of the Merged Ozone
Dataset (MOD) is available at https://acd-ext.gsfc.nasa.gov/Data_
services/merged/index.html. Included on this website are links to
the individual SBUV instrument monthly zonal mean records,
which are the input records used to construct MOD. The merged Co-
hesive data set is available for download at ftp://ftp.cpc.ncep.noaa.
gov/SBUV_CDR/. Long-term variability in the ozone profile record
is represented by various proxy time series: (1) EESC data are from
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http://acdb-ext.gsfc.nasa.gov/Data_services/automailer/ (Newman
et al., 2007); (2) solar cycle data are from the Penticton/Ottawa
10.7 cm solar radio flux measurement record available at http://
www.ngdc.noaa.gov/stp/solar/flux.html; (3) QBO data are available
at http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.
html#access (Naujokat, 1986); (4) Multivariate ENSO Index (MEI)
data are found at http://www.esrl.noaa.gov/psd/enso/mei/ (Wolter
and Timlin, 1993, 1998); (5) Volcanic aerosols are from 2-D model
simulations as described in Frith et al. (2014) and Stolarski et
al. (2000).
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