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Abstract. In the present study, a persistent heavy haze
episode from 13 to 20 January 2014 in Beijing–Tianjin–
Hebei (BTH) is simulated using the WRF-CHEM model
through ensemble simulations to investigate impacts of me-
teorological uncertainties on the haze formation. Model re-
sults show that uncertainties in meteorological conditions
substantially influence the aerosol constituent simulations at
an observation site in Beijing, and the ratio of the ensem-
ble spread to the ensemble mean (RESM) exceeds 50 %. The
ensemble mean generally preforms well in reproducing the
fine particles’ (PM2.5) temporal variations and spatial dis-
tributions against measurements in BTH. The meteorologi-
cal uncertainties do not alter the PM2.5 distribution pattern
in BTH principally or dominate the haze formation and de-
velopment, but remarkably affect the simulated PM2.5 level,
and the RESM for the simulated PM2.5 concentrations can be
up to 30 % at the regional scale. In addition, the rather large
RESM in PM2.5 simulations at the city scale also causes dif-
ficulties in evaluation of the control strategies. Therefore, our
results suggest that the ensemble simulation is imperative to
take into account the impact of the meteorological uncertain-
ties on the haze prediction.

1 Introduction

Over the past 3 decades, rapid industrialization and urban-
ization have caused severe air pollution in China, particu-
larly during wintertime heavy haze, with extremely high lev-
els of fine particles (PM2.5) frequently engulfing the north of
China (e.g., Chan and Yao, 2008; Fang et al., 2009; Zhao
et al., 2013; Huang et al., 2014; Guo et al., 2014; Wu et
al., 2017; Li et al., 2017a). Elevated atmospheric aerosols
or PM2.5 not only influence the Earth’s climate system, but
also remarkably impair visibility and potentially cause severe
health defects (e.g., Penner et al., 2001; Pope and Dockery,
2006; Zhang et al., 2007).

Meteorological condition is critical for understanding the
formation, transformation, diffusion, transport, and removal
of the pollutants in the atmosphere. Dabberdt et al. (2004)
have listed the meteorological research needs for improving
air quality forecasting, one of which is to provide the model
uncertainty information through ensemble prediction capa-
bilities and quantify uncertainties and feedbacks between
meteorological and air quality modeling components. Nu-
merous studies have been performed in China to explore the
role of meteorological conditions in the air pollution forma-
tion (e.g., Gao et al., 2011; Zhang et al., 2012, 2015; Wu et
al., 2013; Wang et al., 2014; Bei et al., 2016a, b). Most re-
cently, Liu et al. (2017) have investigated the meteorological
impacts on the PM2.5 concentrations over Beijing–Tianjin–
Hebei (BTH) in December 2015. Their results have demon-
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strated that the unfavorable meteorological conditions are the
main reason for deterioration of the air quality in BTH, while
the undertaken emission control measures have only miti-
gated the air pollution slightly.

Previous studies on the air quality forecasting sensitivity
to meteorological uncertainties mainly include Monte Carlo
simulations (e.g., Dabberdt and Miller, 2000; Beekmann and
Derognat, 2003) and adjoint sensitivity studies (e.g., Menut,
2003). The ensemble approach has also been applied to pho-
tochemical and secondary organic aerosol (SOA) simulations
in various numerical models (e.g., Galmarini et al., 2004;
McKeen et al., 2005), photo-chemical reactions (e.g., Delle
Monache and Stull, 2003), emission scenarios (e.g., Delle
Monache et al., 2006), physical parameterizations (e.g., Mal-
let and Sportisse, 2006), and meteorological initial condi-
tions (e.g., Zhang et al., 2007; Bei et al., 2012). The en-
semble means have generally performed better than most of
the individual models. Uncertainties in meteorological initial
conditions have been shown to substantially influence both
ozone (O3) and SOA simulations, including the peak time
concentrations, the horizontal distributions, and the tempo-
ral variations (Zhang et al., 2007; Bei et al., 2012). Recently,
Sharma et al. (2016) have evaluated uncertainties in surface
O3 simulations over the South Asian region during the pre-
monsoon season due to different emission inventories and
different chemical mechanisms. They have suggested that the
assessment of the tropospheric O3 budget and its implica-
tions for public health and agricultural output should be con-
ducted prudently considering the huge uncertainties caused
by emission inventories and chemical mechanisms. Solazzo
et al. (2017) have emphasized the high interdependencies
among meteorological and chemical variables and the related
errors, indicating that the evaluation of the air quality model
performance needs to be confirmed by more complementary
analysis of meteorological fields and chemical precursors.

The purpose of the present study is to explore impacts of
the uncertainties in meteorological conditions on the PM2.5
simulations or forecasts in BTH through ensemble simula-
tions using the WRF-CHEM model. The methodology and
model are presented in Sect. 2. The analyses, results, and
discussions are included in Sect. 3. The summary and con-
clusions are given in Sect. 4.

2 Model and methodology

2.1 WRF-CHEM model

A specific version of the WRF-CHEM model is used to ex-
amine impacts of the uncertainties in meteorological condi-
tions on the PM2.5 simulations or the haze formation in BTH,
which is developed by Li et al. (2010, 2011a, b, 2012) at the
Molina Center for Energy and the Environment. The model
includes a new flexible gas-phase chemical module and the
CMAQ/Models-3 aerosol module developed by the US EPA

Figure 1. WRF-CHEM simulation domain. The filled red (in BTH)
and blue (outside of BTH) circles represent centers of cities with
ambient monitoring sites. The size of the circle denotes the number
of ambient monitoring sites of cities. The filled black triangle and
rectangle denote the deployment location of the HR-ToF-AMS and
the surface meteorological site in Beijing, respectively.

(Binkowski and Roselle, 2003). The inorganic aerosols are
predicted using ISORROPIA version 1.7 (Nenes et al., 1998).
The SOA formation is simulated using a non-traditional SOA
module, including the volatility basis set (VBS) modeling
method and the SOA contributions from glyoxal and methyl-
glyoxal. A detailed description of the WRF-CHEM model
can be found in Li et al. (2010, 2011a, b, 2012). A persistent
heavy haze pollution episode from 13 to 20 January 2014 in
BTH is simulated. The model simulation domain is shown
in Fig. 1, and detailed model configurations can be found in
Table 1.

2.2 Ensemble initialization method

The ensemble initialization method used in the present study
is called the “climatological ensemble initialization method”
(Zhang et al., 2007; Bei et al., 2012). In the approach, dy-
namically consistent initial and boundary conditions are sta-
tistically sampled from a seasonal meteorological data set.
In order to represent the wintertime climatological statis-
tics, a data set during the period from 1 November 2013 to
28 February 2014 is generated using NCEP-FNL 1◦

× 1◦ re-
analysis data. The perturbed variables include the horizontal
wind components, potential temperature, perturbation pres-
sure, and mixing ratio of water vapor. Other prognostic vari-
ables such as vertical velocity and mixing ratios of hydrom-
eteors are not perturbed. In general, the perturbation in hor-
izontal wind components constitutes the most important un-
certainty in those variables (Bei et al., 2008, 2010). Thirty
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Table 1. WRF-CHEM model configurations.

Regions Beijing–Tianjin–Hebei (BTH)

Simulation period 13 to 21 January 2014
Domain size 200 × 200
Domain center 39◦ N, 117◦ E
Horizontal resolution 6 km × 6 km
Vertical resolution 35 vertical levels with a stretched vertical grid with spacing ranging from 30 m

near the surface, to 500 m at 2.5 km and 1 km above 14 km
Microphysics scheme WSM six-class graupel scheme (Hong and Lim, 2006)
Boundary layer scheme MYJ TKE scheme (Janjić, 2002)
Surface layer scheme MYJ surface scheme (Janjić, 2002)
Land-surface scheme Unified Noah land-surface model (Chen and Dudhia, 2001)
Longwave radiation scheme Goddard longwave scheme (Chou and Suarez, 2001)
Shortwave radiation scheme Goddard shortwave scheme (Chou and Suarez, 1999)
Meteorological boundary and initial conditions NCEP 1◦

× 1◦ reanalysis data
Chemical initial and boundary conditions MOZART 6-hourly output (Horowitz et al., 2003)
Anthropogenic emission inventory Developed by Zhang et al. (2009)
Biogenic emission inventory MEGAN model developed by Guenther et al. (2006)

ensemble members are randomly chosen from this climato-
logical data set. Similarly, boundary conditions for each en-
semble member are generated from the same data set begin-
ning at the randomly selected initial time of the given mem-
ber, and extended for the same length of time as the sim-
ulated episode. Deviations of the initial and boundary con-
dition data for each member from the climatological mean
for the entire period are then scaled down to 20 % to re-
duce the ensemble spread to less than typical observation er-
ror magnitudes (Nielsen-Gammon et al., 2007) and added to
the unperturbed initial and boundary conditions derived di-
rectly from the NCEP-FNL analyses valid at 12:00 UTC on
12 January 2014, which are used for the 6 km domain en-
semble simulation. Figures 2a–d show the vertical distribu-
tion of the average initial ensemble spread which is calcu-
lated as the standard deviation of the perturbations imposed
on each ensemble member’s initial field. The average spread
is 0.5–3.0 m s−1 for horizontal winds (U and V components),
0.5–1.1 K for temperature, 0.02–0.48 hPa for pressure, and
0–0.15 g kg−1 for the water vapor mass mixing ratio. The ini-
tial ensemble spreads of meteorological variables are gener-
ally less than their typical observation error magnitudes. It is
worth noting that all the ensemble simulations used the same
initial and boundary conditions for chemical fields, as well
as the same anthropogenic emission inventory.

2.3 Pollutant measurements

The hourly near-surface CO, SO2, NO2, O3, and PM2.5 mass
concentrations in BTH are released by the China Ministry of
Environmental Protection (China MEP) and can be down-
loaded from the website at http://www.aqistudy.cn/. The
Aerodyne High Resolution Time-of-Flight Aerosol Mass
Spectrometer (HR-ToF-AMS) with a novel PM2.5 lens is
used to measure the sulfate, nitrate, ammonium, and or-

ganic aerosols (OA) from 9 to 26 January 2014 at the In-
stitute of Remote Sensing and Digital Earth (IRSDE), Chi-
nese Academy of Sciences (40.00◦ N, 116.38◦ E) in Beijing
(Fig. 1) (Williams et al., 2013). The positive matrix factor-
ization (PMF) technique is utilized with constraints imple-
mented in SoFi (Canonaco et al., 2013) to analyze the sources
of OA and five components are separated by their mass spec-
tra and time series. The components include hydrocarbon-
like OA (HOA), cooking OA (COA), biomass burning OA
(BBOA), coal combustion OA (CCOA), and oxygenated
OA (OOA). HOA, COA, BBOA, and CCOA are interpreted
for surrogates of primary OA (POA), and OOA is a surro-
gate for SOA. Detailed information about the HR-ToF-AMS
measurements and data analysis can be found in Elser et
al. (2016). A lidar has also been deployed at IRSDE and the
aerosol backscatter signal is used to retrieve the planetary
boundary layer (PBL) height.

3 Results and discussions

3.1 Synoptic overview

Figure 3 shows temporal evolutions of the observed PM2.5
mass concentrations averaged over 13 cities (see Fig. 1) in
BTH during the severe haze episode from 13 to 21 Jan-
uary 2014. The observed PM2.5 mass concentrations are fre-
quently higher than 250 µg m−3 in the 13 cities during the
episode, exceeding the standard of severe pollution (hourly
PM2.5 mass concentration exceeding 250 µg m−3, Feng et al.,
2016). The haze in BTH was in the stage of development
from 13 to 15 January, with the gradual increase in the PM2.5
concentration. BTH was most polluted when the haze was
in the maturity stage on 16 January, with the PM2.5 concen-
tration exceeding 400 µg m−3 in most of the cities. From 17
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Figure 2. Vertical distribution of the mean of initial ensemble spreads and the standard deviation for (a) horizontal winds (U and V compo-
nents), (b) temperature, (c) pressure, and (d) water vapor mixing ratio.

to 19 January, the PM2.5 concentrations fluctuated consider-
ably, which was primarily caused by the transition between
different synoptic situations. During nighttime on 19 January,
the haze in BTH rapidly dissipated, with the PM2.5 concen-
tration decrease of several hundreds of µg m−3 in 2 or 3 h.
In addition, the diurnal cycles of the observed PM2.5 mass
concentrations were not clear, demonstrating the obvious re-
gional pollution characteristics in BTH. For the four mega-
cities in BTH, the PM2.5 levels in Shijiazhuang and Baoding
were much higher than Beijing and Tianjin, which is caused
by the massive local emissions in Shijiazhuang and Baoding.

NCEP-FNL reanalysis data are used to examine the effect
of synoptic conditions on the air pollution during the haze
episode in BTH. Figures S1–S3 in the Supplement show the
synoptic conditions at the surface level, 850 and 500 hPa,
respectively. On 13 January, BTH is to the north of a high
pressure at the surface level, causing the southerly wind in
the east of BTH, and sandwiched between the trough in the
northeast of BTH and the high pressure in the southwest of
BTH at 850 hPa, inducing the westerly surface wind in the
west of BTH. At 500 hPa, BTH is situated in the rear of the
trough, and the westerly airflow is dominant. The air pollu-
tants in BTH are subject to transport to the east but hindered
by the southerly wind, causing accumulation of air pollu-
tants. On 14 January, the high-pressure system begins to con-
trol BTH at the surface level and 850 hPa, and the wind is var-
ied and weak, favorable for the accumulation of air pollutants
in BTH. On 15 January, BTH is still controlled by the high
pressure at the surface level and 850 hPa, and the westerly
wind prevails at 500 hPa. The weak surface wind, together

with the stable stratification, further facilitates accumulation
of air pollutants in BTH. On 16 January, a trough develops
over BTH at 850 and 500 hPa, and BTH is situated near the
trough line, in which the northerly and southerly winds oc-
cur at the same time. At the surface level, the northerly wind
prevails in the north of BTH and the southerly wind prevails
in the south of BTH, leading to evacuation of air pollutants
in the north of BTH and the high level of air pollutants in
the south of BTH. On 17 January, the trough at 850 hPa com-
mences weakening and the controlling region of the trough
at 500 hPa becomes narrow. The northwesterly wind is dom-
inant over BTH, leading to divergence of the air pollutants
in BTH. On 18 January, BTH is located near the ridgeline
at 850 hPa and at the verge of the high pressure at the sur-
face level. The controlling scope of the high-pressure system
at the surface level is wide, inducing the varied wind over
BTH, and is not conducive to the evacuation of air pollutants
in BTH. On 19 January, the prevailing southerly wind in the
south of BTH and the strong westerly wind in the west of
BTH lead to the convergence of air pollutants at the surface
level. At 850 and 500 hPa, BTH is situated in the southeast of
the trough and southwesterly wind is prevalent. On 20 Jan-
uary, BTH is located in the southwest of the trough at 500
and 850 hPa, and the strong northwesterly wind prevails over
BTH. At the surface level, BTH is situated between the high
pressure in the west and the low pressure in the east, induc-
ing the strong northwesterly wind over BTH. The cold clean
air sweeps BTH and efficiently decreases the air pollutant
concentrations in BTH.
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Figure 3. Observed hourly PM2.5 concentrations averaged in (a) four mega-cities (Beijing, Tianjin, Baoding, and Shijiazhuang) and (b) nine
non-mega-cities of BTH during the period from 13 to 20 January 2014.

3.2 Uncertainties in meteorological simulations

Figures 4a–d provide the temporal profiles of the ensemble
simulations of the surface meteorological fields and the cor-
responding observations at the meteorological site in Bei-
jing from 13 to 20 January 2014. The U component exhibits
larger ensemble spread than the V component (Fig. S4), but
the ensemble mean (ENSM) of the U component generally
yields the observed diurnal variations. The ensemble pre-
diction of the V component fails to reproduce the observed
intensified southerly or northerly winds. The meteorologi-
cal site is located in the north of the Yanshan Mountains,
substantially influenced by the mountain–valley circulation
(MVC). Apparently, the WRF-CHEM model lacks the ability
to simulate the occurrence and development of MVC well,
causing the considerable biases of the ensemble prediction
of the V component. The ensemble prediction performs well
in producing the diurnal variation of the surface temperature,
but the underestimation or overestimation is still large when
the V component prediction is biased. The relative humidity
(RH) shows a rather large ensemble spread (Fig. S4d), and
the ENSM reasonably tracks the observed diurnal variation,
with high nighttime and low afternoon simulated RH. The
RH simulation is sensitive to the simulated surface tempera-
ture. Generally, the overestimation of the surface temperature
corresponds well to the underestimation of the RH, or vice
versa. The ENSM considerably overestimates the PBL height

during daytime on 13 and 14 January, and underestimates it
on 15 January (Fig. 4e). In addition, most of the ensemble
members frequently underestimate the observed PBL height
during nighttime, and all ensemble members fail to produce
the peak PBL height on 17 and 20 January. The PBL height
is principally determined by the vertical shear of horizontal
winds and the ground thermal condition. Therefore, uncer-
tainties of wind and temperature field simulations cause large
biases of the PBL height simulation.

3.3 Uncertainties in aerosol species simulations

Figure 5 shows the temporal profiles of the ensemble simula-
tions of the aerosol species and the observations at IRSDE
in Beijing. The ENSM reasonably produces the observed
variations of the POA concentrations. However, all ensem-
ble members fail to capture the peaks in the morning on
16 January and in the evening on 17 January, indicating
that the underestimation might not be caused by the mete-
orological uncertainties, but by emission biases. The POA
in the atmosphere is from multiple sources, including the
direct emissions from vehicles, cooking, biomass, and coal
combustion. Diurnal variations of those sources might con-
stitute one of the major reasons for the biases of the POA
simulations. The ENSM generally performs reasonably well
in simulating the SOA concentration against the measured
OOA. The ratio of the ensemble spread to the ensemble mean
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Figure 4. Temporal evolution of the surface (a) U component, (b) V

component, (c) temperature, and (d) relative humidity at the mete-
orological site, and (e) the PBL height at IRSDE in Beijing from
each ensemble member (thin green lines), the ensemble mean (bold
black line), and observations (black dots) from 13 to 20 January
2014.

(RESM) for the SOA prediction is large compared to that of
POA (Fig. S5a, b). Four SOA formation pathways are in-
cluded in simulations: oxidations of anthropogenic and bio-
genic volatile organic compounds (VOCs), oxidation HOA
semi-volatile vapors, and irreversible uptake of glyoxal and
methylglyoxal on aerosol surfaces. Therefore, uncertainties
in meteorological fields influence not only the transport of
the SOA precursors, but also the SOA formation processes
in the atmosphere, causing the rather large RESM of SOA
simulations. The ENSM generally reproduces the observed
variations of sulfate, nitrate, and ammonium (SNA), but the
RESM of SNA is also considerably large (Fig. S5c–d). Dur-
ing haze days, sulfate is primarily formed through heteroge-
neous reactions of SO2 on aerosol surfaces, which is highly
dependent on the relative humidity (Li et al., 2017b). Nitrate
formation is determined by the HNO3 and N2O5 that orig-
inated from the NO2 oxidation, is sensitive to the tempera-
ture and relative humidity, and is also influenced by the level
of sulfate in the particle phase and ammonia in the atmo-
sphere. The ammonium aerosol is formed through neutral-
ization of sulfate and nitrate aerosols by NH3. Additionally,

Figure 5. Temporal evolution of the (a) POA, (b) SOA, (c) sul-
fate, (d) nitrate, and (e) ammonium mass concentrations at IRSDE
in Beijing from each ensemble member (thin green lines), the
ensemble mean (bold black line), and observations (black dots)
from 13 to 20 January 2014.

in the present study, ISORROPIA (version 1.7) is used to cal-
culate the thermodynamic equilibrium between the sulfate–
nitrate–ammonium–water aerosols and their gas-phase pre-
cursors H2SO4–HNO3–NH3–water vapor. Therefore, uncer-
tainties in meteorological fields propagate to the transport, at-
mospheric oxidation, and thermal dynamic processes, which
all have contributions to the large RESM of the SNA simula-
tions. Apparently, uncertainties in meteorological conditions
substantially affect the aerosol species simulations at a single
observation site, which is consistent with the previous studies
(Bei et al., 2012).

3.4 Uncertainties in PM2.5 simulations in BTH

Heavy haze with high levels of PM2.5 frequently constitutes
a regional pollution event. Figure 6 shows the temporal pro-
files of the ensemble simulations and observations of air pol-
lutants averaged at the monitoring sites in BTH from 13 to
20 January 2014. The RESM of the average air pollutants
is much less than those of aerosol species at the single ob-
servation site (Fig. S6). For the primary air pollutants, SO2
and CO, the ENSM generally tracks reasonably the observed
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Figure 6. Temporal evolution of the (a) PM2.5, (b) O3, (c) NO2,
(d) SO2, and (e) CO mass concentrations averaged over monitor-
ing sites in BTH from each ensemble member (thin green lines),
the ensemble mean (bold black line), and observations (black dots)
from 13 to 20 January 2014.

variations. However, sometimes all the ensemble members
underestimate or overestimate the observation. There are
two possible reasons for the biases of ensemble simulations
of SO2 and CO: uncertainties of emissions and systematic
errors of meteorological fields. In the evening on 15 Jan-
uary, the ensemble prediction substantially overestimates the
observed SO2 concentration, but CO overestimation is not
large. In contrast, in the morning on 16 January, the ensemble
prediction slightly underestimates the SO2 observation but
noticeably underestimates the CO concentration. Therefore,
the overestimation of SO2 on 15 January and underestima-
tion of CO on 16 January might be primarily contributed by
the emission uncertainties. In the morning on 18 January, the
ensemble prediction significantly underestimates both SO2
and CO observations, indicating the plausible uncertainties
caused by the systematic errors of meteorological fields.

The ENSM of the average surface O3 and NO2 over the
monitoring sites in BTH is in good agreement with obser-
vations. The ensemble prediction is prone to underestimat-
ing the O3 observation during nighttime, but is very consis-
tent with the NO2 observation. Considering the massive NOx

Figure 7. ENSM of the daily average surface PM2.5 concentration
distributions (color contour) along with the ENSM of the daily av-
erage surface winds (black arrows) from 13 to 20 January 2014. The
colored circles denote the PM2.5 measurements in cities.

emission and the titration of NO, the nighttime O3 concentra-
tions are generally very low, particularly during wintertime
when the daytime O3 concentrations are not high. Hence,
the underestimation of nighttime O3 concentrations is per-
haps caused by the observation uncertainties, such as the set-
ting of a lower detection limit. In addition, the ENSM does
not reproduce the high O3 level during nighttime on 19 Jan-
uary when the northwesterly wind is intensified to evacuate
the air pollutants in BTH. Rapid increase in the observed O3
concentrations during nighttime shows the substantial contri-
bution of the background O3 transport. Therefore, the back-
ground O3 uncertainties constitute the major reason for the
O3 underestimation on 19 January.

www.atmos-chem-phys.net/17/14579/2017/ Atmos. Chem. Phys., 17, 14579–14591, 2017
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The ENSM also performs well in replicating the observed
PM2.5 observation, except for the underestimation on 16 and
18 January. However, the RESM of the PM2.5 simulations is
larger than those of O3, NO2, SO2, and CO (Fig. S6). The av-
erage ENSM of the PM2.5 concentration over the monitoring
sites during the simulation period is 189.5 µg m−3, close to
the observed 197.6 µg m−3. In addition, the ensemble mem-
ber of 16 and 30 (EN-16 and EN-30, respectively) produces
the highest and lowest PM2.5 levels, with average PM2.5
concentrations of 231.5 and 167.3 µg m−3, respectively. The
PM2.5 mainly includes the primary aerosols which are deter-
mined by direct emissions, and the secondary aerosols which
are determined by their precursor emissions and the homo-
geneous and heterogeneous oxidation process in the atmo-
sphere. Therefore, the large RESM of SOA and SNA simula-
tions enhances the ensemble spread of the PM2.5 simulations.

Figure 7 presents the spatial distributions of ENSM and
observations of the daily average near-surface PM2.5 mass
concentrations during the haze episode, along with the sim-
ulated wind fields. The ENSM predicted PM2.5 spatial pat-
terns are generally in good agreement with the observations
at the ambient monitoring sites in BTH. The ENSM success-
fully reproduces the haze development and maturity stages
from 13 to 16 January 2014. From 17 to 18 January, the
northeasterly wind develops and decreases the PM2.5 level
in BTH, but not strongly enough to evacuate the air pollu-
tants. The PM2.5 pattern of ENSM is very consistent with
observations, but on 18 January, the PM2.5 concentrations are
remarkably underestimated in four cities in BTH. On 19 Jan-
uary, the westerly wind prevails in BTH, causing the diver-
gence of the PM2.5. On 20 January, the intensified northwest-
erly wind begins to empty the PM2.5 in BTH. However, ap-
parently, the occurrence of the intensification of the north-
westerly wind is early, causing considerable underestimation
of the PM2.5 concentration in the ENSM.

The uncertainties in meteorological fields are generally
less than observational and analysis errors, but the ensem-
ble simulations still exhibit considerable spreads. In order to
contrast the PM2.5 simulations of different ensemble mem-
bers, we have selected two members: EN-16 and EN-30, rep-
resenting the highest and lowest PM2.5 simulations in BTH,
respectively. Figures 8 and 9 provide the horizontal distri-
butions of the daily average surface PM2.5 concentrations
along with surface winds during the episode in EN-16 and
EN-30, respectively. Similar PM2.5 distribution patterns are
simulated in EN-16 and EN-30, showing that the meteoro-
logical uncertainties do not dominate the haze formation and
development principally. The PM2.5 level in EN-16 is much
higher than that in EN-30 in BTH, which is mainly caused by
the considerable discrepancies in the surface winds between
the two members. The simulated southerly wind in EN-16 is
generally more intense than that in EN-30, but the northerly
wind in EN-16 is weak compared to EN-30, which is more
favorable for the air pollutant accumulation in EN-16 than
in EN-30. On 13 and 14 January, the winds in EN-30 are

Figure 8. Same as Fig. 7 but for the ensemble member of 16 with
the highest simulated PM2.5 concentration.

weak or calm in BTH and the PM2.5 is mainly attributed
to the local production. However, in EN-16, the prevailing
southerly winds also deliver the air pollutants from the south-
ern areas to BTH, substantially enhancing the PM2.5 level.
On 15 January, although EN-16 and EN-30 both produce the
prevailing southerly wind in BTH, the westerly wind in EN-
30 is intense compared to EN-16, considerably decreasing
the PM2.5 level in EN-30. On 16 January, the northeasterly
wind in EN-30 is intensified and evacuates the PM2.5 in the
north of BTH. However, in EN-16, the simulated northeast-
erly wind is weak and the PM2.5 level in the north of BTH
still remains high. On 17 January, the simulated northerly
wind in EN-16 is weak compared to that in EN-30, causing
a higher PM2.5 concentration in EN-16 than EN-30 in BTH.
On 18 January, the intensified southerly wind in EN-16 con-
siderably increases the PM2.5 level in BTH compared to EN-
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Figure 9. Same as Fig. 7 but for the ensemble member of 30 with
the lowest simulated PM2.5 concentration.

30. On 19 January, the westerly wind is prevalent in EN-30
and the PM2.5 level begins to decrease, but in EN-16, the
southwesterly wind still causes high PM2.5 concentrations in
BTH. On 20 January, the stronger northeasterly wind in EN-
30 more efficiently evacuates the PM2.5 than that in EN-16.

3.5 Uncertainties in PM2.5 simulations in mega-cities

EN-16 and EN-30 both predict the haze occurrence and de-
velopment in BTH during the episode, although the differ-
ence in the PM2.5 level between those two members is con-
siderable, showing that the meteorological uncertainties do
not dominate the regional haze formation. Previous studies
have shown that the meteorological uncertainties substan-
tially impact the air quality simulations at the city scale (Bei
et al., 2012). Figure 10 presents the temporal variation of

Figure 10. Temporal evolution of the PM2.5 mass concentrations
averaged in (a) Beijing, (b) Tianjin, (c) Baoding, and (d) Shiji-
azhuang from each ensemble member (thin green lines), the ensem-
ble mean (bold black line), and observations (black dots) during the
period from 13 to 20 January 2014. The red and blue lines represent
the simulations in the members with the highest and lowest PM2.5
concentrations, respectively.

the ensemble simulations and observations averaged at four
mega-cities in BTH during the episode. The ENSM of the
PM2.5 concentrations in Beijing, Tianjin, and Baoding is in
good agreement with the observation. However, the ENSM
remarkably underestimates the observed PM2.5 concentra-
tion in Shijiazhuang from 16 to 19 January, which is hardly
interpreted by the emission biases. The ENSM performs well
in simulating the PM2.5 variations from 13 to 15 January, and
overestimates the observation on 20 January in Shijiazhuang.
One of the possible reasons for the underestimation in Shiji-
azhuang is that the westerly wind is systematically overesti-
mated from 16 to 19 January along the foothills of the Tai-
hang Mountains, causing the haze plume to move eastward.

Although the ENSM produces reasonably well the PM2.5
variations in the four mega-cities against the measurement,
the meteorological uncertainties still cause large uncertain-
ties in the PM2.5 concentration (Fig. S7). During the first 3
days of the episode, the ENSM is very consistent with the
observations in the four mega-cities, but the PM2.5 level dis-
crepancy between the members with the highest and lowest
PM2.5 concentrations is rather large, causing troubles for the
assessment of the control strategies. For example, in Shiji-
azhuang, the average PM2.5 concentrations during the first
3 days in the members with the highest and lowest PM2.5
concentrations are 403.5 and 213.8 µg m−3, respectively, and
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the difference is about 190 µg m−3. In Beijing, the average
PM2.5 concentrations in the two members are 103.9 and
196.3 µg m−3. It is worth noting that, according to the Chi-
nese air quality standard released in 2012, the PM2.5 concen-
tration of 103.9 µg m−3 is defined as a “lightly polluted con-
dition”, but that 196.3 µg m−3 is defined as a “heavily pol-
luted condition”. If the heavy air pollution occurs, the control
strategies will be implemented. Therefore, it is necessary to
use the ensemble simulation to avoid the impact of the mete-
orological uncertainties on the haze prediction.

4 Summary and conclusions

In the present study, the uncertainties in simulating haze for-
mation due to meteorological uncertainties are investigated
using the WRF-CHEM model through ensemble simulations.
A persistent heavy haze episode that occurred in BTH from
13 to 20 January 2014 is simulated. A climatological en-
semble initialization approach is used to produce initial and
boundary conditions for each ensemble member.

The ENSMs of the aerosol constituents are generally in
good agreement with the observations at an observation site
in Beijing, including the sharp buildup of the aerosol con-
stituents in the evening on 15 January and rapid falloff in
the morning on 20 January. However, the ENSM consid-
erably underestimates the observed primary aerosols in the
evening on 17 January. The ensemble spread is rather large
for the aerosol constituent simulations, and the RESM ex-
ceeds 50 %, respectively.

The ENSM performs well in simulating the temporal vari-
ations of the average surface CO, SO2, NO2, O3, and PM2.5
mass concentrations over the monitoring sites in BTH, and
the RESM of the air pollutants is generally less than 30 %.
The RESM of PM2.5 simulations is larger than the other air
pollutants, which is due to the complicated composition of
PM2.5, including the contributions of primary and secondary
aerosols. The meteorological uncertainties do not principally
dominate the haze formation and development, but consider-
ably alter the simulated PM2.5 level. The average PM2.5 dif-
ference during the episode exceeds 60 µg m−3 between the
two members with the highest and lowest PM2.5 simulations.

Although the meteorological uncertainties do not domi-
nate the regional haze formation, they still substantially in-
fluence the PM2.5 simulations at city scale. The ENSM pre-
dicts the PM2.5 variations in the four mega-cities against the
measurements reasonably well, including Beijing, Tianjin,
Baoding, and Shijiazhuang, but the RESM of the PM2.5 sim-
ulations is rather large, causing troubles for the evaluation of
the control strategies. Therefore, the ensemble simulation is
needed to take into consideration the impact of the meteoro-
logical uncertainties on the haze prediction. It is worth noting
that aside from meteorological fields, uncertainties in emis-
sions or various chemistry/aerosol schemes also considerably
influence the WRF-CHEM model simulations. The extended

response surface modeling (ERSM) technique can be used to
quantify the relative importance of each uncertainty source
in the WRF-CHEM model (Zhao et al., 2017).
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