



## Supplement of

## Field characterization of the $PM_{2.5}$ Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

Y. Zhang et al.

Correspondence to: Lili Tang (lily3258@163.com) and Yele Sun (sunyele@mail.iap.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.



**Figure S1.** Time series and mass spectral profiles for the 2-factor PMF solution of the  $PM_1$  ACSM dataset at three different fpeak values.



Figure S2. Time series and mass spectral profiles for the 2-factor PMF solution of the  $PM_{2.5}$  ACSM dataset at three different fpeak values.



**Figure S3.** Summary of key diagnostic plots of the PM<sub>1</sub>-ACSM PMF results for the 2-factor solution: (a)  $Q/Q_{exp}$  as a function of the number of factors, (b) mass fraction of OOA and HOA as a function of FPEAK, (c) box and whiskers plot showing the distributions of the scaled residuals for each m/z, (d) comparison of the measured mass with the PMF reconstructed mass, (e) time series of the residual diagnostics and  $Q/Q_{exp}$  for each point in time.



**Figure S4.** Summary of key diagnostic plots of the PM<sub>2.5</sub>-ACSM PMF results for the 2-factor solution: (a)  $Q/Q_{exp}$  as a function of the number of factors, (b) mass fraction of OOA and HOA as a function of FPEAK, (c) box and whiskers plot showing the distributions of the scaled residuals for each m/z, (d) comparison of the measured mass with the PMF reconstructed mass, (e) time series of the residual diagnostics and  $Q/Q_{exp}$  for each point in time.



**Figure S5.** Comparison of measured NH<sub>3</sub> and predicted NH<sub>3</sub> with inputs of PM<sub>1</sub>-ACSM (without MARGA's Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>), PM<sub>2.5</sub>-ACSM (with MARGA's Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>), and PM<sub>2.5</sub>-MARGA (with Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>) data, respectively, and same gas-phase HNO<sub>3</sub> and NH<sub>3</sub>, ambient RH, T for all predictions.



**Figure S6.** Comparisons of ISORROPIA-II-predicted aerosol pH for the data from different instruments (i.e., PM<sub>1</sub>-ACSM, PM<sub>2.5</sub>-ACSM, and PM<sub>2.5</sub>-MARGA), respectively. The  $SO_4^{2^-} - NO_3^{-1} - NH_4^+ - Cl^- - Na^+ - Ca^{2+} - K^+ - Mg^{2+} - HNO_3 - NH_3 - H_2O$  system and the  $SO_4^{2^-} - NO_3^{-1} - NH_4^+ - HNO_3 - NH_3 - H_2O$  system were used for the prediction, respectively.



**Figure S7.** Time series of fine particle pH predicted with the MARGA data sets for different model systems, i.e., with and without Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, and the mass concentrations of Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup>, and Mg<sup>2+</sup>.



**Figure S8.** Comparisons of ISORROPIA-II-predicted fine aerosol pH with and without sea salts influence for the PM<sub>2.5</sub> MARGA (a) and Q-ACSM (b), respectively.



**Figure S9.** Time series of chemical-dependent dry density of  $PM_1$  and  $PM_{2.5}$  particles. The calculated density (g cm<sup>-3</sup>) varies from 1.01 (1.09) to 1.57 (1.75) with the mean value being 1.39 (1.44) for  $PM_1$ -Q-ACSM ( $PM_{2.5}$ -Q-ACSM).



**Figure S10.** Correlations between the PM<sub>1</sub>-ACSM, PM<sub>2.5</sub>-ACSM, PM<sub>1</sub>-BAM, PM<sub>2.5</sub>-BAM and the volume-dependent mass (TDMPS and APS) with the particle density being calculated from the chemical species of the PM<sub>1</sub>-ACSM and PM<sub>2.5</sub>-ACSM, respectively. On average, the PM<sub>1</sub> and PM<sub>2.5</sub> Q-ACSM total dry mass accounts for respectively 89 % and 93 % of the PM<sub>1</sub> and PM<sub>2.5</sub> volume-dependent mass concentrations. As reported by Xu et al. (2017a), the PM<sub>2.5</sub> lens system showed a significant particle loss at below around 200 nm, with a lower transmission efficiency of 45 % on average. Considering this, we estimated that the lost of small particles at size ~13 – 201 nm might account for around 3 % of the total volume-dependent PM<sub>2.5</sub> mass (Fig. S10d).



**Figure S11.** Relationship between the measured NH<sub>4</sub> and predicted NH<sub>4</sub> for both the PM<sub>2.5</sub> and PM<sub>1</sub> ACSMs, respectively. The points in the plots are colored by the ratio of  $[SO_4] / [SO_4/NO_3]$ . Note that the predicted NH<sub>4</sub> is estimated by  $18 \times (2 \times [SO_4/96] + [NO_3/62] + [Cl/35.5])$ .



**Figure S12.** Ion balance of the water-soluble ions measured by the PM<sub>2.5</sub> MARGA. Note that: anion equivalents =  $[NH_4^+/18] + [Na^+/23] + [K^+/39] + [Mg^{2+}/12] + [Ca^{2+}/20]$ , and cation equivalents =  $[SO_4^{2-}/48] + [NO_3^{-}/62] + [Cl^{-}/35.5]$ , in which the chemical ions are in the unit of µg m<sup>-3</sup>.



**Figure S13.** Relationship between the measured nitrate and chloride difference values (i.e.,  $PM_{2.5}$ -Marga –  $PM_{2.5}$ -ACSM) and the estimated maximum chloride by mass balance from  $Na^+$ ,  $Ca^{2+}$ ,  $K^+$ , and  $Mg^{2+}$ .



**Figure S14.** Relationships between (a) the  $PM_1$  (measured by Met one BAM1020) and total  $PM_{2.5}$  (measured by TEOM-FDMS and Met one BAM1020 respectively) mass loadings; and (b) the non-refractory NR-PM<sub>1</sub> (measured by the PM<sub>1</sub> ACSM) and PM<sub>2.5</sub> (NR-PM<sub>2.5</sub> measured by the PM<sub>2.5</sub>-ACSM) for the entire study.



**Figure S15.** Time series (a-b) and correlation (a'-b') of the mass concentration m/z 60 and m/z 73 from the PM<sub>2.5</sub>-ACSM and PM<sub>1</sub>-ACSM, respectively.



Figure S16. Sized-segregated diurnal variations of the fine aerosol species and organic components.



**Figure S17.** Averaged mass spectra (MS) of OA for the  $PM_1$  and  $PM_{2.5}$  ACSM during the new particle formation (NPF, Episode 2) and the fog event (Fog, Episode 5) periods, respectively.

| Gas               | Hold time (s) | Temperature (°C) |
|-------------------|---------------|------------------|
| He                | 10            | 1                |
| He                | 95            | 600              |
| He                | 95            | 840              |
| He                | 30            | Oven off         |
| He                | 5             | 550              |
| He/O <sub>2</sub> | 10            | 550              |
| He/O <sub>2</sub> | 25            | 550              |
| He/O <sub>2</sub> | 45            | 650              |
| He/O <sub>2</sub> | 115           | 870              |

Table S1. Thermal protocol used in this study within the Sunset Lab. Semi-Continuous OC/EC Analyzer