

Supplement of

Potential sources and processes affecting speciated atmospheric mercury at Kejimkujik National Park, Canada: comparison of receptor models and data treatment methods

Xiaohong Xu et al.

Correspondence to: Xiaohong Xu (xxu@uwindsor.ca) and Leiming Zhang (leiming.zhang@canada.ca)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Supplement

Contents

Section 1. Selection of the number of PMF factors

Section 2. Stability of PMF model runs

- **Table S1.** Point Source emissions of Hg and other pollutants reported in NPRI in the
province of Nova Scotia (Data source: Environmental Canada, 2016). Bold
facilities are shown in Figure 1.
- **Table S2**. Coefficients of cross-correlation among all variables in 2009 (bold numbers are significant at p < 0.05).
- **Table S3**. Coefficients of cross-correlation among all variables in 2010 (bold numbers are significant at p < 0.05).
- **Table S4.** PMF factor contributions to speciated Hg and ratios of reproduced to observed annual Hg concentrations in 2009.
- **Table S5.** PMF factor contributions to speciated Hg and ratios of reproduced to observed annual Hg concentrations in 2010.
- **Table S6.** Pearson correlation coefficients between Hg forms and other compounds in Case 2009, Case 09+mean, and Case 09+median (bold numbers are significant at p < 0.05).
- **Table S7**. Pearson correlation coefficients between Hg forms and other compounds in Case 2010, Case 10+mean, and Case 10+median (bold numbers are significant at p < 0.05).
- Figure S1. IM and IS vs number of PMF factors in 2009.
- Figure S2. Q(Robust) and Q(true) vs number of PMF factors in 2009.
- Figure S3. IM and IS vs number of PMF factors in 2010.
- Figure S4. Q(Robust) and Q(true) vs number of PMF factors in 2010.
- Figure S5. Observation-prediction scatter plot in 2009. a) Case 2009, b) Case 09+mean, c) Case 09+median, d) Case 09+RM, e) Case 09-RM, and f) Case 09ScaleRM, observed GOM and PBM have been scaled.
- Figure S6. Observation-prediction scatter plot in 2010. a) Case 2010, b) Case 10+mean, c) Case 10+median, d) Case 10+RM, e) Case 10-RM, and f) Case 10ScaleRM, observed GOM and PBM have been scaled.

- Figure S7. Observation-prediction time series in 2009. a) Case 2009, b) Case 09+mean, c) Case 09+median, d) Case 09+RM, e) Case 09-RM, and f) Case 09ScaleRM, observed GOM and PBM have been scaled.
- Figure S8. Observation-prediction time series in 2010. a) Case 2010, b) Case 10+mean, c) Case 10+median, d) Case 10+RM, e) Case 10-RM, and f) Case 10ScaleRM, observed GOM and PBM have been scaled.

Section 1. Selection of the member of PMF factors

The number of PMF factors needs to be chosen according to the understanding of the sources impacting the samples utilized. When the background information is not enough to determine the number of factors, several methods could be used to determine the range of the number of the factors. The maximum individual column mean (IM) and the maximum individual column standard deviation (IS) of the scaled residual matrix can be used to identify the range of the number of factors. IM and IS will show a drastic drop when the number of factors increase up to a critical value (Lee et al., 1999). The optimal number of factors should be no less than the critical value. The trend of dQ also provides useful information on deciding the number of factors. When dQ becomes small as the number of factor increases, there might be too many factors (Hopke, 2000; Brown et al., 2015). Runs with different numbers of factors in the range determined by IM, IS, and dQ should be conducted. The model performance and the interpretability of factors in each run should be evaluated. The optimal PMF solution should be a compromise of those indexes and the interpretability of the factor profiles and their comparability with those from the literature (Belis et al, 2015a, 2015b; Cesari et al., 2016).

In this study, the IM and IS were calculated to determine the number of factors. The IM and IS dropped dramatically in 2009 when the number of factor increased to 3 (Figure S1). In the line plot of Q(Robust) and Q(true) vs. the number of factors (Figure S2), no significant decreases were found when the number of factors is larger than 5 in 2009. Therefore, the PMF was run using the number of factors from 3 to 5 in 2009. In 2010, the decrease of IS value was gradual while the IM value experienced a drastic drop when the number of factors increased to 3 (Figure S3). The trend of the Q (Robust) and Q (True) in 2010 is similar to 2009 (Figure S4). Therefore, the PMF runs with the number of factors from 3 to 5 were also conducted in 2010. The number of the factors selected (4) is a compromise of the trends of these indexes and the physical meanings of the factors obtained following Cesari et al. (2016). A detailed comparison of the physical meanings of solutions with different number of factors can be found in Liao (2016).

Figure S1. IM and IS vs number of PMF factors in 2009.

Figure S2. Q(Robust) and Q(true) vs number of PMF factors in 2009.

Figure S3. IM and IS vs number of PMF factors in 2010.

Figure S4. Q(Robust) and Q(true) vs number of PMF factors in 2010.

References

- Belis, C. A., Pernigotti, D., Karagulian, F., Pirovano, G., Larsen, B. R., Gerboles, M., and Hopke, P. K.: A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises, Atmos. Environ., 119, 35-44, 10.1016/j.atmosenv.2015.08.002, 2015a.
- Belis, C. A., Karagulian, F., Amato, F., Almeida, M., Artaxo, P., Beddows, D. C. S., Bernardoni, V., Bove, M. C., Carbone, S., Cesari, D., Contini, D., Cuccia, E., Diapouli, E., Eleftheriadis, K., Favez, O., El-Haddad, I., Harrison, R. M., Hellebust, S., Hovorka, J., Jang, E., Jorquera, H., Kammermeier, T., Karl, M., Lucarelli, F., Mooibroek, D., Nava, S., Nøjgaard, J. K., Paatero, P., Pandolfi,

M., Perrone, M. G., Petit, J. E., Pietrodangelo, A., Pokorná, P., Prati, P., Prevot, A. S. H., Quass, U., Querol, X., Saraga, D., Sciare, J., Sfetsos, A., Valli, G., Vecchi, R., Vestenius, M., Yubero, E., and Hopke, P. K.: A New Methodology to Assess the Performance and Uncertainty of Source Apportionment Models II: The Results of Two European Intercomparison Exercises, Atmos. Environ., 123, 240-250, 10.1016/j.atmosenv.2015.10.068, 2015b.

- Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.: Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results, Sci. Total Environ., 518-519, 626-635, dx.doi.org/10.1016/j.scitotenv.2015.01.022, 2015.
- Cesari, D., Amato, F., Pandolfi, M., Alastuey, A., Querol, X., and Contini, D.: An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites, Environment Science and Pollution Research, 23, 15133-15148, 10.1007/s11356-016-6599-z, 2016.
- Hopke, P. K.: A guide to positive matrix factorization, available at: <u>https://www3.epa.gov/ttnamti1/files/ambient/pm25/workshop/laymen.pdf</u> (last access: May 30, 2016), 2000.
- Lee, E., Chan, C. K., & Paatero, P.: Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos. Environ., 33(19), 3201-3212, 10.1016/S1352-2310(99)00113-2, 1999.
- Liao, Y.: Analysis of potential sources and processes affecting ambient speciated mercury concentrations at Kejimkujik National Park, Nova Scotia, Master's thesis, University of Windsor, Windsor, Ontria, Canada, 2016.

Section 2. Stability of PMF model runs

As pointed out in the PMF User's Guide (US EPA, 2014), when the Q (robust) values over several runs are highly variable, the stability of the result is poor. In this study, the differences of the Q (Robust) value between different runs were all smaller than 5 indicating that the results were quite stable in 2009 and 2010. More information can be found in Liao (2016).

References

- Liao, Y.: Analysis of potential sources and processes affecting ambient speciated mercury concentrations at Kejimkujik National Park, Nova Scotia, Master's thesis, University of Windsor, Windsor, Ontria, Canada, 2016.
- US Environmental Protection Agency (US EPA): EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, available at: <u>https://www.epa.gov/sites/production/files/2015-</u>02/documents/pmf_5.0_user_guide.pdf (last access: May 30, 2016), 2014.

Equility	Location (lat long)	Distance to	Hg	(Kg)	SO ₂ (T	onnes)	NO ₂ (T	onnes)	NH ₃ (T	onnes)
Facility	Location (lat, long)	KEJ/direction	2009	2010	2009	2010	2009	2010	2009	2010
Brooklyn Power	Brooklyn (44.05°N, 64.70°W)	50 Km southeast	0	0	9.9	26	309	259	0	0
Michelin North America (Canada)- Bridgewater Plant	Bridgewater (44.39°N, 64.54°W)	53 Km east	0	0	195	184	68	63	0	0
High Liner Foods Inc.	Lunenburg (44.37°N,64.30°W)	72 Km east	0	0	27	27	0	0	0	0
Department of National Defence – 14 Wing Greenwood	Greenwood (44.98°N, 64.91°W)	75 Km north	0	0	55	68	19	18	0	0
Louisana Pacific Canada Ltd.	East River (44.58°N, 64.16°W)	88 Km northeast	0	0	122	102	100	99	0	0
Maple Leaf Foods – Larsen Packers Limited	Berwick (45.05°N, 64.75°W)	89 Km northeast	0	0	51	38	0	0	0	0
Michelin North America (Canada) - Waterville Plant	Waterville (45.05°N, 64.65°W)	92 Km northeast	0	0	162	182	57	62	0	0
Acadia University – Acadia Campus	Wolfville (45.08°N, 64.37°W)	108 Km northeast	0	0	77	73	27	26	0	0
CKF. Inc.	Hantsport (45.06°N, 64.17°W)	116 Km northeast	0	0	66	57	21	72	0	0
Minas Basin Pulp and Power	Hantsport (45.07°N, 64.17°W)	116 Km northeast	0	0	225	260	66	76	0	0
Mount Saint Vincent University	Halifax (44.67°N, 63.65°W)	129 Km northeast	0	0	27	13	7.2	3.9	0	0
Department of National Defence – Canadian Forces Ammunition Depot	Bedford (44.71°N, 63.63°W)	131 Km northeast	0	0	56	50	0	0	0	0

Table S1. Point source emissions of Hg and other pollutants reported in NPRI in the province of Nova Scotia (Data source: Environmental Canada, 2016). Bold
facilities are shown in Figure 1.

Facility	Location (lat long)	Distance to	Hg	(Kg)	SO ₂ (1	Connes)	NO ₂ (T	onnes)	NH ₃ (T	onnes)
Facility	Location (lat, long)	KEJ/direction	2009	2010	2009	2010	2009	2010	2009	2010
Department of National Defence -	Halifax	132 Km	0	0	59	44	36	30	0	0
Windsor Park	(44.66°N, 63.61°W)	northeast	0	U	57		50	50	0	0
Department of National Defence	Halifax	133 Km	0	0	211	177	58	51	0	0
– Stadacona/Dockyard	(44.66°N, 63.58°W)	northeast	0	0	211	1//	58	51	0	0
Capital Health – Camp Hill Site	Halifax	133 Km	0	0	15	12	14	20	0	0
Heating Plant	(44.64°N, 63.59°W)	northeast	0	0	15	12	14	20	0	0
Delleusie University	Halifax	133 Km	0.18	0.15	253	260	80	72	0	0
Daniousie University	(44.64°N, 63.59°W)	northeast	0.18	0.15	233	200	89	12	0	0
Saint Mary's University	Halifax	133 Km	0	0	1.2	0	3	0	0	0
Samt Mary's Oniversity	(44.63°N, 63.58°W)	northeast	0	0	1.2	0	5	0	0	0
Oland Brewery	Halifax	133 Km	0	0	31	0	0	0	0	0
Ofand Drewery	(44.66°N, 63.60°W)	Northeast	0	0	51	0	0	0	0	0
Nova Scotia Power – Tufts Cove	Dartmouth	134 Km	0	0	2 205	2 205	3 054	3 054	0	0
Generating Station	(44.67°N, 63.60°W)	northeast	0	0	2,203	2,203	5,054	3,034	0	0
Capital Health-Victoria General	Halifax	134 Km	0	0	215	7.6	60	10	0	0
Hospital Central Heating Plant	(44.64°N, 63.58°W)	northeast	0	0	213	7.0	00	19	0	0
Maritima Papar Products I td	Dartmouth	134 Km	0	0	7 2	0.868	3 1	2.1	0	0
Maritime I aper I foducts Etd.	(44.70°N, 63.60°W)	northeast	0	0	1.2	0.808	5.1	2.1	0	0
Nova Scotia Power –Burnside	Dartmouth	134 Km	0	0	0	0	60	40	0	0
Combustion Turbines	(44.71°N, 63.61°W)	northeast	0	0	0	0	00	40	0	0
Capital Health – Nova Scotia	Dartmouth	136 Km	0	0	2.2	1 1	0.2	87	0	0
Hospital Central Heating Plant	(44.65°N, 63.55°W)	northeast	0	0	5.5	1.1	9.5	0.7	0	0
Imperial Oil – Dartmouth	Dartmouth	137 Km	26	2.0	1 221	2 072	1 5 4 2	1 251	0.502	2.2
Refinery	(44.64°N, 63.54°W)	northeast	2.0	2.9	4,231	3,073	1,343	1,231	0.393	2.2
Department of National Defence	Shearwater	138 Km	0	0	150	127	13	38	0	0
– 12 Wing Shearwater	(44.63°N, 63.51°W)	northeast	0	0	150	127	45	50	0	0
Martells Contracting	Elmsdale	154 Km	0	0	28	17	4.5	28	0	0
Wartens Contracting	(44.96°N, 63.48°W)	northeast	U	0	20	1/	4.5	2.0	U	U

Table S1 – Continued 1

Table S1 -	- Continued 2
------------	---------------

Facility	Logation (lat long)	Distance to	Hg	(Kg)	SO ₂ (1	Connes)	NO ₂ (T	onnes)	NH ₃ (T	onnes)
Facility	Location (lat, long)	KEJ/direction	2009	2010	2009	2010	2009	2010	2009	2010
The Shaw Group Ltd.	Hardwoodlands (45.07°N, 63.52°W)	160 Km northeast	0	0	0	0	27	19	0	0
Lafarge Canada Inc. – Brookfield Cement Plant	Brookfield (45.24°N, 63.33°W)	180 Km northeast	5	5.9	562	667	498	591	0	0
Polycello	Amherst (45.82°N, 64.23°W)	183 Km northeast	0	0	0.003	0.002	0.462	0.335	0	0
Enligna Canada Inc.	Middle Musquodoboit (45.13°N, 62.95°W)	188 Km northeast	0	0	2.8	2.9	25	26	0	0
Oxford Frozen Foods	Oxford (45.73°N, 63.85°W)	188 Km northeast	0	0	66	59	0	0	0.9	0
Municipality of the county of Colchester – Wastewater Treatment Facility	Truro (45.37°N, 63.34°W)	188 Km northeast	0	0	0	0	0	0	2	0.08
Crossley Carpet Mills Limited	Truro (45.35°N, 63.29°W)	189 Km northeast	0	0	40	32	12	11	0	0
Rothsay	Truro (45.36°N, 63.31°W)	189 Km northeast	0	0	77	60	0	0	0	0
Stanfield's Ltd.	Truro (45.37°N, 63.28°W)	191 Km northeast	0	0	21	21	0	0	0	0
Stella-Jones Inc.	Truro (45.38°N, 63.27°W)	192 Km northeast	0	0	12	19	2.9	4.2	0	0
The Canadian Salt Company Limited – Pugwash Mine and Refinery	Pugwash (45.84°N, 63.66°W)	209 Km northeast	0	0	168	153	32	31	0	0
Michelin North America (Canada) – Pictou County Plant	New Glasgow (45.62°N, 62.74°W)	245 Km northeast	0	0	209	229	72	78	0	0
Maritime Steel and Foundries Limited	New Glasgow (45.58°N, 62.64°W)	245 Km northeast	0	0	0.25	0	0.875	0	0	0

Table S1 – Continued 3	Table	S1 –	Continued 3
------------------------	-------	-------------	-------------

Facility	Location (lat long)	Distance to	Hg	(Kg)	SO ₂ (T	onnes)	NO ₂ (T	onnes)	NH ₃ (T	onnes)
Facility	Location (lat, long)	KEJ/direction	2009	2010	2009	2010	2009	2010	2009	2010
Nova Scotia Power – Trenton	Trenton	248 Km	33	10	30 / 20	10 257	5 126	5 577	0	0
Generating Station	(45.62°N, 62.64°W)	northeast	55	17	50,427	17,237	5,120	5,577	0	0
Nova Forge Corporation	Trenton	248 Km	0	0	31	0	0	0	0	0
	(45.62°N, 62.64°W)	northeast	0	Ŭ	5.1	0	0	0	0	0
Northern Pulp Nova Scotia	New Glasgow	266 Km	0	0	246	80	688	676	12	46
Corporation	(45.65°N, 62.72°W)	northeast	0	0	240	89	088	070	42	40
St. Francis Vavier University	Antigonish	291 Km	0	0	41	36	25	17	0	0
St. Francis Zavier University	(45.62°N, 61.99°W)	northwast	0	0	41	50	23	1 /	0	0
Exxonmobil Canada Properties –	Goldboro	300 Km	0	0	0	0	521	415	0	0
Goldboro Gas Plant	(45.17°N, 61.61°W)	northeast	0	0	0	0	321	415	0	0
Nova Scotia Power – Point	Port Hawkesbury	335 Km	12	0.5	0 204	5 721	1.052	1.052	0	0
Tupper Generating Station	(45.58°N, 61.35°W)	northeast	12	9.5	9,394	3,721	1,932	1,932	0	0
Newpage Port Hawkesbury	Port Hawkesbury	355 Km	0	0	204	95	404	206	0.22	0.22
Corp.	(45.60°N, 61.36°W)	northeast	0	0	294	63	404	500	0.25	0.25
Exxonmobil Canada Properties -	Port Hawkesbury	335 Km	0	0	0	0	18	22	0	0
Point Tupper Fractionation Plant	(45.58°N, 61.34°W)	northeast	0	0	0	0	40	23	0	0
Exxonmobil Canada Properties –	Offshore	402 Km	0	0	0	0	125	126	0	0
Thebaud Platform	(43.01°N, 59.98°W)	east	0	0	0	0	155	120	0	0
Exyonmobil Canada Proportion	North Triumph	122 Km								
North Triumph Distform	Platform	455 Kill	0	0	0	0	26	29	0	0
	(43.01°N, 58.98°W)	east								
Nova Scotia Power – Point Aconi	Point Aconi	442 Km	27	28	2 6 2 7	2 265	1 750	1 747	0	0
Generating Station	(46.32°N, 60.30°W)	northeast	2.1	2.0	5,027	5,305	1,739	1,/4/	0	0
Exxonmobil Canada Properties -	Venture Platform	450 Km	0	0	18	0	54	51	0	0
Venture Platform	(44.06°N, 59.58°W)	east	0	0	10	0	54	51	0	0

Table S1 – Continued 4	ontinued 4
------------------------	------------

Facility	Location (lat long)	Distance to	Hg	Hg (Kg)		Connes)	NO ₂ (T	onnes)	NH ₃ (Tonnes)	
racinty	Location (lat, long)	KEJ/direction	2009	2010	2009	2010	2009	2010	2009	2010
Cape Breton University	Sydney (46.17°N, 60.09°W)	450 Km northeast	0	0	60	57	0	0	0	0
Nova Scotia Power – Lingan Generating Station	Lingan (46.23°N, 60.04°W)	457 Km northeast	92	50	55,208	33,479	5,106	5,219	0	0
Provincial t	otal emission		147.5	90.3	108,961	70,336	22,165	22,166	45.7	48.5

	GOM	PBM	PM	02	SO ₂	HNO ₂	Ca ²⁺	K^+	Na^+	Mg ²⁺	Cl-	NO ₂ -	NH4 ⁺	SQ4 ²⁻	Temperature	Relative	Wind	Precipitation
				- 5	2					0	-				r r	humidity	speed	· · · ·
GEM	0.37	0.28	0.15	0.48	0.11	0.18	0.13	0.01	0.06	0.07	-0.01	0.14	0.18	0.24	0.03	0.06	0.24	0.17
GOM		0.10	0.31	0.27	0.21	0.45	0.39	0.17	-0.09	-0.02	-0.18	0.17	0.28	0.27	0.46	-0.38	-0.01	-0.09
PBM			0.47	0.56	0.63	0.42	0.28	0.11	0.20	0.23	0.06	0.50	0.53	0.54	-0.43	-0.38	-0.09	-0.15
PM				0.52	0.64	0.70	0.68	0.43	0.37	0.44	0.19	0.66	0.80	0.79	0.17	-0.36	-0.05	-0.18
O_3					0.49	0.52	0.51	0.05	0.21	0.26	0.09	0.36	0.50	0.58	-0.17	-0.49	0.20	-0.09
SO_2						0.80	0.52	0.29	0.29	0.34	0.09	0.71	0.74	0.70	-0.21	-0.31	-0.10	-0.19
HNO ₃							0.67	0.33	0.16	0.23	-0.05	0.61	0.80	0.77	0.16	-0.37	-0.13	-0.16
Ca ²⁺								0.47	0.44	0.53	0.31	0.59	0.57	0.58	0.23	-0.37	0.05	-0.09
K^+									0.64	0.66	0.57	0.53	0.34	0.41	0.37	-0.04	0.14	0.03
Na^+										0.99	0.96	0.61	0.24	0.39	-0.10	0.00	0.25	-0.10
Mg^{2+}											0.93	0.64	0.30	0.45	-0.06	-0.06	0.25	-0.11
Cl												0.38	0.02	0.18	-0.12	0.07	0.29	-0.07
NO ₃ -													0.72	0.68	-0.02	-0.17	-0.01	-0.13
$\mathrm{NH_4}^+$														0.94	0.12	-0.31	-0.09	-0.13
SO4 ²⁻															0.08	-0.31	0.01	-0.13
Temperature																-0.11	0.11	0.09
Relative																	0.26	0.20
humidity																	0.26	0.39
Wind speed																		0.39

Table S2. Coefficients of cross-correlation among all variables in 2009 (bold numbers are significant at p < 0.05).

	COM	DDM	0	50		Ca^{2+}	V^+	No^+	Ma^{2+}	CI	NO -	NILI ⁺	SO ²⁻	Tomporatura	Relative	Wind	Draginitation
	UOM	L DIM	03	50_{2}	HNO ₃	Ca	к	Ina	Ivig	CI	NO ₃	INIT ₄	304	Temperature	humidity	speed	riccipitation
GEM	0.31	0.11	0.70	0.02	-0.11	-0.01	-0.13	0.09	0.08	0.10	-0.01	-0.10	-0.11	-0.48	-0.02	0.38	0.18
GOM		0.29	0.55	0.30	0.24	0.07	0.07	-0.03	-0.01	-0.10	0.18	0.06	0.06	-0.04	-0.66	-0.06	-0.18
PBM			0.32	0.06	0.04	-0.02	-0.03	-0.07	-0.07	-0.08	0.03	0.01	0.00	-0.16	-0.39	-0.15	-0.22
O_3				0.18	0.11	0.02	-0.07	0.05	0.05	0.01	0.06	0.00	0.02	-0.29	-0.39	0.31	0.01
SO_2					0.63	0.13	0.16	0.05	0.09	-0.04	0.25	0.26	0.31	-0.03	-0.31	-0.10	-0.13
HNO ₃						0.25	0.34	-0.11	0.00	-0.24	0.28	0.48	0.53	0.33	-0.25	-0.23	-0.13
Ca ²⁺							0.57	0.01	0.38	0.00	0.70	0.78	0.71	0.19	-0.10	-0.05	-0.02
K^+								0.09	0.33	0.06	0.55	0.68	0.67	0.32	-0.16	-0.08	-0.07
Na ⁺									0.92	0.96	0.21	-0.09	0.02	-0.16	0.08	0.28	-0.01
Mg^{2+}										0.89	0.45	0.21	0.28	-0.08	0.04	0.24	-0.01
Cl											0.08	-0.13	-0.06	-0.20	0.15	0.32	0.03
NO ₃ ⁻												0.68	0.64	0.10	-0.23	-0.05	-0.11
$\mathrm{NH_4}^+$													0.97	0.28	-0.15	-0.14	-0.09
SO4 ²⁻														0.29	-0.15	-0.13	-0.10
Temperature															-0.10	-0.19	0.03
Relative																	A 44
humidity																0.24	0.41
Wind speed																	0.47

Table S3. Coefficients of cross-correlation among all variables in 2010 (bold numbers are significant at p < 0.05).

F	Factor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	20	56	97	97
(%)	Average	4	6	77	14
	Median	2	3	83	9
Ratio of	reproduced to	o observed annua	al mean:		0.97
	Min	0	0	0	0
GOM	Max	100	0	100	0
(%)	Average	26	0	73	0
	Median	21	0	79	0
Ratio of	reproduced to	o observed annua	al mean:		0.86
	Min	0	0	0	0
PBM	Max	0	93	100	92
(%)	Average	0	22	69	9
	Median	0	14	74	5
Dotin of	1 14	o observed annus	al mean.		1.03
) Case ()9+mean	Combustion	Industrial	Photoshamistry	
) Case (99+mean	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
) Case (Peproduced to 09+mean Pactor Min	Combustion emission 0	Industrial sulfur 0	Photochemistry & re-emission 0	Sea salt
Case () Case (F GEM	Preproduced to 99+mean Factor Min Max	Combustion emission 0 79	Industrial sulfur 0 34	Photochemistry & re-emission 0 98	Sea salt 0 99
Case () Case (F GEM (%)	Peproduced to 09+mean Factor Min Max Average	Combustion emission 0 79 5	Industrial sulfur 0 34 4	Photochemistry & re-emission 0 98 78	Sea salt 0 99 13
Case () Case (F GEM (%)	Peproduced to 09+mean Factor Min Max Average Median	Combustion emission 0 79 5 3	Industrial sulfur 0 34 4 2	Photochemistry & re-emission 0 98 78 83	Sea salt 0 99 13 7
GEM (%) Ratio of	Peproduced to 99+mean Factor Min Max Average Median reproduced to	Combustion emission 0 79 5 3 20 observed annua	Industrial sulfur 0 34 4 2 al mean:	Photochemistry & re-emission 0 98 78 83	Sea salt 0 99 13 7 0.94
GEM (%) Ratio of	Peproduced to 9+mean Factor Min Max Average Median reproduced to Min	Combustion emission 0 79 5 3 0 observed annua 0	Industrial sulfur 0 34 4 2 al mean: 0	Photochemistry & re-emission 0 98 78 83 0	Sea salt 0 99 13 7 0.94 0
GEM (%) Ratio of GOM	Factor Min Max Average Median reproduced to Min Max	Combustion emission 0 79 5 3 0 observed annua 0 97	Industrial sulfur 0 34 4 2 al mean: 0 0	Photochemistry & re-emission 0 98 78 83 0 100	Sea salt 0 99 13 7 0.94 0 0
GEM (%) Ratio of GOM (%)	Peproduced to 9+mean Factor Min Max Average Median reproduced to Min Max Average	Combustion emission 0 79 5 3 0 observed annua 0 97 17	Industrial sulfur 0 34 4 2 al mean: 0 0 0	Photochemistry & re-emission 0 98 78 83 0 100 83	Sea salt 0 99 13 7 0.94 0 0 0 0
GEM (%) Ratio of GOM (%)	Peproduced to 9+mean Factor Min Max Average Median reproduced to Min Max Average Min Max Average Min	Combustion emission 0 79 5 3 0 observed annua 0 97 17 12	Industrial sulfur 0 34 4 2 al mean: 0 0 0 0 0	Photochemistry & re-emission 0 98 78 83 0 100 83 88	Sea salt 0 99 13 7 0.94 0 0 0 0 0 0
Case () Case (F GEM (%) Ratio of (%) Ratio of	Peproduced to 9+mean Factor Min Max Average Median reproduced to Min Max Average Median reproduced to Median	Combustion emission 0 79 5 3 0 observed annua 0 97 17 12 0 observed annua	Industrial sulfur 0 34 4 2 al mean: 0 0 0 0 al mean:	Photochemistry & re-emission 0 98 78 83 0 100 83 88	Sea salt 0 99 13 7 0.94 0 0 0 0 0 1.19
Case () Case (F GEM (%) Ratio of GOM (%) Ratio of	reproduced to 09+mean Factor Min Max Average Median reproduced to Max Average Median reproduced to Min	Combustion emission 0 79 5 3 0 observed annua 0 97 17 12 0 observed annua 0 97	Industrial sulfur 0 34 4 2 al mean: 0 0 0 0 0 al mean: 0	Photochemistry & re-emission 0 98 78 83 0 100 83 88 88	Sea salt 0 99 13 7 0.94 0 0 0 0 0 1.19 0
Case (Case (F GEM (%) Ratio of GOM (%) Ratio of PBM	reproduced to 09+mean Factor Min Max Average Median reproduced to Min Max Average Median reproduced to Min Max	Combustion emission 0 79 5 3 0 observed annua 0 97 17 12 0 observed annua 0 97 0 0 0	Industrial sulfur 0 34 4 2 al mean: 0 0 0 0 al mean: 0 87	Photochemistry & re-emission 0 98 78 83 0 100 83 88 0 100	Sea salt 0 99 13 7 0.94 0 0 0 0 0 1.19 0 94
Case (Case (F GEM (%) Ratio of GOM (%) Ratio of PBM (%)	reproduced to 09+mean Factor Min Max Average Median reproduced to Min Max Average Median reproduced to Min Max Average	Combustion emission 0 79 5 3 0 observed annua 0 97 17 12 0 observed annua 0 97 17 12 0 0 0 0 0	Industrial sulfur 0 34 4 2 al mean: 0 0 0 0 al mean: 0 87 23	Photochemistry & re-emission 0 98 78 83 83 0 100 83 88 0 100 67	Sea salt 0 99 13 7 0.94 0 0 0 0 0 0 0 1.19 0 94 10
Case (F GEM (%) Ratio of GOM (%) Ratio of PBM (%)	reproduced to 09+mean Factor Min Max Average Median reproduced to Min Max Average Median reproduced to Min Max Average Median	Combustion emission 0 79 5 3 0 observed annua 0 97 17 12 0 observed annua 0 97 17 12 0 observed annua 0 97 0 0 0 0 0 0 0 0 0 97	Industrial sulfur 0 34 4 2 al mean: 0 0 0 0 al mean: 0 87 23 19	Photochemistry & re-emission 0 98 78 83 0 100 83 88 0 100 67 71	Sea salt 0 99 13 7 0.94 0 0 0 0 0 0 1.19 0 94 10 5

 Table S4. PMF factor contributions to speciated Hg and ratios of reproduced to observed annual Hg concentrations in 2009.
 a)

 a)
 Case 2009

14
sait
)
;
3

Ratio of	reproduced to	observed annu	al mean:		0.93
	Min	0	0	0	0
GOM	Max	95	100	100	0
(%)	Average	14	1	85	0
	Median	10	0	90	0
Ratio of	reproduced to	observed annu	al mean:		1.20
	Min	0	0	0	0
PBM	Max	0	86	100	96
(%)	Average	0	20	70	10
	Median	0	15	75	6
Ratio of	reproduced to	observed annu	al mean:		1.14

d) Case 09+RM

F	actor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	16	54	98	97
(%)	Average	3	5	78	13
_	Median	2	2	83	9
Ratio of	reproduced to	observed annua	ıl mean:		0.97
	Min	0	0	0	0
RM	Max	37	83	100	18
(%)	Average	10	16	73	1
_	Median	7	11	78	0
Ratio of	reproduced to	o observed annua	ll mean:		1.04

e) Case 09-RM

F	actor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	34	15	98	96
(%)	Average	7	1	79	13
	Median	4	1	84	9
Ratio of	reproduced to	o observed annua	al mean:		0.97

f) Case 09ScaleRM

Fact	or name	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	0	65	100	99
(%)	Average	0	7	78	15
_	Median	0	4	83	10
Ratio of	reproduced to	observed annua	al mean:		0.97
	Min	0	0	0	0
GOM	Max	97	0	100	67
(%)	Average	23	0	75	2
	Median	18	0	81	1
Ratio of	reproduced to	observed annua	al mean:		0.75

	Min	0	0	0	0
PBM	Max	0	88	100	96
(%)	Average	0	16	74	10
	Median	0	10	80	6
Ratio of	reproduced to o	bserved annu	al mean:	80	

) Case 2	2010				
F	Factor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	100	9	99	100
(%)	Average	11	1	79	9
	Median	7	1	85	4
Ratio of	reproduced to	o observed annua	al mean:		0.98
	Min	0	0	0	0
GOM	Max	100	100	100	0
(%)	Average	5	29	67	0
	Median	2	28	68	0
Ratio of	reproduced to	o observed annua	al mean:		1.34
	Min	0	0	0	0
PBM	Max	100	28	98	99
(%)	Average	11	4	80	5
	Median	6	3	86	2
Ratio of	reproduced to	o observed annua	al mean:		1.00
b) Case 1	0+mean				
<u> </u>	actor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	29	70	99	100
(%)	Average	3	6	83	8
	Median	2	3	89	4
Ratio of	reproduced to	o observed annua	al mean:		0.96
	Min	0	0	0	0
GOM	Max	32	99	100	0
(%)	Average	2	27	70	0
	Median	2	21	76	0
Ratio of	reproduced to	o observed annua	al mean:		1.35
	Min	0	0	0	0
PBM	Max	0	84	100	98
(%)	Average	0	4	93	2
	Median	0	2	97	1
-					

Table S5. PMF factor contributions to speciated Hg and ratios of reproduced to observedannual Hg concentrations in 2010.a)Case 2010

c) Case 10+median

	10 · Illealall				
F	Factor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	39	1	100	100
(%)	Average	3	0	88	8
	Median	2	0	93	4

Ratio of	Ratio of reproduced to observed annual mean:				
	Min	0	0	0	0
GOM	Max	5	100	100	0
(%)	Average	0	36	64	0
	Median	0	36	63	0
Ratio of	reproduced to a	bserved annu	ual mean:		1.32
	Min	0	0	0	0
PBM	Max	0	0	100	100
(%)	Average	0	0	97	3
	Median	0	0	99	1
Ratio of	reproduced to o	observed annu	ual mean:		0.88

d) Case 10+RM

F	actor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	100	9	99	100
(%)	Average	11	1	79	9
	Median	7	1	85	4
Ratio of	reproduced to	observed annua	l mean:		0.98
	Min	0	0	0	0
RM	Max	100	47	98	96
(%)	Average	9	8	80	3
_	Median	5	6	86	1
Ratio of	reproduced to	o observed annua	ıl mean:		1.16

e) Case 10-RM

F	actor	Combustion emission	Industrial sulfur	Photochemistry & re-emission	Sea salt
	Min	0	0	0	0
GEM	Max	100	10	99	100
(%)	Average	11	1	78	9
_	Median	7	1	85	4
Ratio of	reproduced to	o observed annua	al mean:		0.98

f) Case 10ScaleRM

F	actor	Combustion	Industrial sulfur	Photochemistry & re-emission	Sea salt	
	Min	0	0	0	0	
GEM	Max	100	10	99	100	
(%)	Average	11	1	78	9	
	Median	7	1	85	4	
Ratio of	reproduced to	o observed annua	al mean:		0.98	
	Min	0	0	0	0	
GOM	Max	100	69	99	75	
(%)	Average	8	14	77	1	
	Median	4	11	80	0	
Ratio of	Ratio of reproduced to observed annual mean:					

	Min	0	0	0	0
PBM	Max	100	40	97	98
(%)	Average	12	6	76	6
	Median	7	4	82	2
Ratio of	reproduced to o	observed annu	al mean:		0.88

	GEM200	GEM09+	GEM09+	GOM200	GOM09+	GOM09+	PBM200	PBM09+	PBM09+
	9	mean	medain	9	mean	median	9	mean	median
GEM	1.00	1.00	1.00	0.37	0.37	0.35	0.28	0.35	0.35
GOM	0.37	0.37	0.35	1.00	1.00	1.00	0.11	0.20	0.19
PBM	0.28	0.35	0.35	0.11	0.20	0.19	1.00	1.00	1.00
PM	0.15	0.11	0.12	0.31	0.19	0.18	0.48	0.30	0.31
O ₃	0.48	0.52	0.50	0.28	0.24	0.25	0.56	0.44	0.45
SO_2	0.11	0.16	0.16	0.21	0.19	0.19	0.63	0.51	0.52
HNO ₃	0.18	0.14	0.16	0.45	0.27	0.27	0.42	0.27	0.29
Ca ²⁺	0.13	0.10	0.09	0.39	0.36	0.36	0.28	0.26	0.26
\mathbf{K}^+	0.01	0.03	0.02	0.17	0.17	0.17	0.11	0.14	0.13
Na^+	0.06	0.12	0.10	-0.09	-0.03	-0.02	0.20	0.22	0.21
Mg^{2+}	0.07	0.12	0.10	-0.01	0.03	0.04	0.23	0.24	0.23
Cl	-0.01	0.06	0.04	-0.18	-0.09	-0.08	0.06	0.11	0.10
NO ₃	0.14	0.15	0.13	0.17	0.15	0.15	0.49	0.41	0.41
$\mathrm{NH_4}^+$	0.18	0.12	0.14	0.28	0.10	0.09	0.53	0.22	0.24
SO_4^{2-}	0.24	0.13	0.15	0.27	0.06	0.05	0.53	0.17	0.19

Table S6. Pearson correlation coefficients between Hg forms and other compounds in Case 2009, Case 09+mean, and Case 09+median (bold numbers are significant at p<0.05).

	GEM201	GEM10+	GEM10+	GOM201	GOM10+	GOM10+	PBM201	PBM10+	PBM10+
	0	mean	median	0	mean	median	0	mean	median
GEM	1.00	1.00	1.00	0.32	0.29	0.29	0.11	0.19	0.19
GOM	0.32	0.29	0.29	1.00	1.00	1.00	0.29	0.15	0.15
PBM	0.11	0.19	0.19	0.29	0.15	0.15	1.00	1.00	1.00
O_3	0.70	0.68	0.68	0.56	0.51	0.51	0.32	0.29	0.29
SO_2	0.01	0.00	0.00	0.29	0.29	0.29	0.05	-0.04	-0.03
HNO ₃	-0.12	-0.11	-0.11	0.23	0.24	0.24	0.04	-0.04	-0.04
Ca ²⁺	-0.01	-0.02	-0.02	0.07	0.08	0.09	-0.02	-0.05	-0.05
K^+	-0.13	-0.12	-0.13	0.07	0.09	0.10	-0.03	-0.07	-0.08
Na^+	0.08	0.07	0.06	-0.03	0.00	-0.01	-0.07	-0.10	-0.09
Mg^{2+}	0.07	0.06	0.06	-0.01	0.02	0.02	-0.07	-0.10	-0.09
Cl	0.09	0.07	0.07	-0.10	-0.07	-0.07	-0.07	-0.11	-0.11
NO ₃ ⁻	-0.02	-0.02	-0.03	0.18	0.19	0.20	0.03	-0.03	-0.04
$\mathrm{NH_4}^+$	-0.11	-0.10	-0.10	0.06	0.08	0.08	0.01	-0.04	-0.04
$\mathrm{SO_4}^{2-}$	-0.11	-0.10	-0.11	0.06	0.08	0.08	0.00	-0.05	-0.05

Table S7. Pearson correlation coefficients between Hg forms and other compounds in Case 2010, Case 10+mean, and Case 10+median (bold numbers are significant at p<0.05).

Figure S5. Observation–prediction scatter plot in 2009. a) Case 2009, b) Case 09+mean, c) Case 09+median, d) Case 09+RM, e) Case 09-RM, and f) Case 09ScaleRM, observed GOM and PBM have been scaled.

Figure S8. Observation–prediction time series in 2010. a) Case 2010, b) Case 10+mean, c) Case 10+median, d) Case 10+RM, e) Case 10-RM, and f) Case 10ScaleRM, observed GOM and PBM have been scaled.