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Abstract. The SAFIRED (Savannah Fires in the Early Dry
Season) campaign took place from 29 May until 30 June
2014 at the Australian Tropical Atmospheric Research Sta-
tion (ATARS) in the Northern Territory, Australia. The pur-
pose of this campaign was to investigate emissions from
fires in the early dry season in northern Australia. Measure-
ments were made of biomass burning aerosols, volatile or-
ganic compounds, polycyclic aromatic carbons, greenhouse
gases, radon, speciated atmospheric mercury and trace met-
als. Aspects of the biomass burning aerosol emissions inves-
tigated included; emission factors of various species, physi-
cal and chemical aerosol properties, aerosol aging, micronu-
trient supply to the ocean, nucleation, and aerosol water up-
take. Over the course of the month-long campaign, biomass
burning signals were prevalent and emissions from several
large single burning events were observed at ATARS.

Biomass burning emissions dominated the gas and aerosol
concentrations in this region. Dry season fires are extremely

frequent and widespread across the northern region of Aus-
tralia, which suggests that the measured aerosol and gaseous
emissions at ATARS are likely representative of signals
across the entire region of north Australia. Air mass forward
trajectories show that these biomass burning emissions are
carried north-west over the Timor Sea and could influence
the atmosphere over Indonesia and the tropical atmosphere
over the Indian Ocean. Here we present characteristics of the
biomass burning observed at the sampling site and provide
an overview of the more specific outcomes of the SAFIRED
campaign.
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1 Introduction

Tropical north Australia is dominated by savannah ecosys-
tems. This region consists of dense native and exotic grass-
lands and scattered trees and shrubs. Conditions are hot, hu-
mid and wet in the summer months of December through
March, with hot, dry conditions for the rest of the year giv-
ing rise to frequent fires between June and November each
year. Human settlements are relatively scarce in northern
Australia, outside of the territory capital, Darwin (popula-
tion of 146 000). To the north of the continent are the tropi-
cal waters of the Timor Sea, as well as the highly populated
Indonesian archipelago. South of the savannah grasslands
are the Tanami, Simpson and Great Sandy deserts, spanning
hundreds of thousands of square kilometres. Emissions from
fires in the savannah regions of northern Australia are there-
fore the most significant regional source of greenhouse and
other trace gases, as well as atmospheric aerosol. Globally,
savannah and grassland fires are the largest source of carbon
emissions from biomass burning (van der Werf et al., 2010;
Shi et al., 2015) and play a significant role in the Earth’s
radiative budget. It is therefore important to quantify, char-
acterise and fully understand the emissions from savannah
fires in northern Australia, taking into account the complex-
ity, variability and diversity of the species emitted.

In Australia approximately 550 000 km2 of tropical and
arid savannahs burn each year (Meyer et al., 2012; Russell-
Smith et al., 2007), representing 7 % of the continent’s land
area. In the tropical north of Australia, the fires during the
early dry season in May/June consist of naturally occurring
and accidental fires, as well as prescribed burns under strate-
gic fire management practice to reduce the frequency and in-
tensity of more extensive fires in the late dry season in Octo-
ber and November (Andersen et al., 2005). These fires in the
early dry season burn with a low to moderate intensity and
are normally confined to the grass layer. Events where fires
reach the canopy level are rare. These prescribed burns are an
important process for the region and are undertaken by local
landholders with permits, as well as government supported
bodies and volunteers. There has been a recent push to rein-
state traditional Aboriginal fire management regimes in this
region (Russell-Smith et al., 2013). Other fire management
regimes are implemented in similar environments around the
world, such as the savannah ecosystems of Africa (Goven-
der et al., 2006) or the chaparral grasses in the United States
(Akagi et al., 2012). In general, fire management regimes are
considered to benefit regional biodiversity and can lead to
the long-term increase in living biomass, resulting in a re-
duction of greenhouse gas emissions (Russell-Smith et al.,
2013). Quantifying the emissions from dry season fires on
regional scales is essential for understanding the impact of
these fires on the local and global atmosphere.

The components and concentrations of emissions from sa-
vannah fires are dependent upon the vegetation and burning
conditions. While CO2 is the primary product of biomass

burning (BB), combustion processes also result in the emis-
sion of many other trace gases such as CO, CH4, NOx, N2O
and non-methane organic compounds (NMOCs) and aerosol
particles composed of elemental carbon, organic carbon and
some inorganic material (Crutzen and Andreae, 1990). The
state of organics in biomass burning aerosols can vary sig-
nificantly due to the type of plant material burned and the
characteristics of the fires themselves, as well as through ag-
ing processes in the atmosphere.

The effects of these emissions on radiative forcing are
complex. The global average radiative forcing due to biomass
burning aerosol–radiation interaction is estimated in the 5th
International Panel on Climate Change report as 0.0 W m−2

with an uncertainty range of −0.20 to +0.20 W m−2 (Bind-
off et al., 2013). It is well known that greenhouse gases
have a positive radiative forcing, heating up the atmosphere.
Light-absorbing carbon in the aerosol phase will also result
in a positive radiative forcing (Jacobson, 2001) by absorbing
shortwave radiation. Conversely, the presence of aerosol or-
ganic and inorganic matter can result in a negative radiative
forcing by scattering solar radiation (Penner et al., 1998). In
addition, biomass burning has been shown to be a significant
source of cloud condensation nuclei (CCN), despite typically
being composed of weakly hygroscopic substances (Lawson
et al., 2015), due to the high number of particles emitted.
This can result in a change in cloud droplet concentrations
and volume, thereby influencing cloud formation, albedo and
lifetime. The contribution of each species to the overall ra-
diative forcing is also likely to change as smoke plumes age
(Liousse et al., 1995). Furthermore, not all biomass burning
aerosol will interact with radiation in the same way. For ex-
ample, fresh BB emissions in the tropics has been observed
to be more absorbing than those from boreal forest fires
(Wong and Li, 2002). The role of biomass burning emissions
is not limited to the Earth’s radiative budget. Certain species
of emissions (e.g. mercury) can be deposited and sequestered
in soil (Gustin et al., 2008), vegetation (Rea et al., 2002) or
bodies of water (LaRoche and Breitbarth, 2005).

Large-scale studies in Africa (Keil and Haywood, 2003),
North America (Yokelson et al., 2009; Singh et al., 2006),
Europe (Saarikoski et al., 2007), South America (Ferek et al.,
1998) and Asia (Lin et al., 2013; Du et al., 2011) have pro-
vided valuable insight into the impact of fire emissions on
the regional atmosphere and laboratory measurements have
proved to be useful in understanding the emission factors,
composition and atmospheric processing of these emissions
(Stockwell et al., 2014). Despite this, there is still a need for a
better scientific understanding of the influence biomass burn-
ing has on atmospheric composition and air quality (Kaiser
and Keywood, 2015), particularly around Australia. Further-
more, the tropics are disproportionately under-sampled and
the atmospheric and ocean processes in these regions are of
both regional and global consequence. The SAFIRED cam-
paign will contribute towards better understanding biomass
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burning emissions and the atmospheric composition in trop-
ical Australia.

On a more specific level, the SAFIRED campaign was un-
dertaken with the following objectives:

– To obtain Australian savannah fire dry season emission
factors for greenhouse gases, polycyclic aromatic hy-
drocarbons, gaseous elemental mercury, non-methane
organic compounds, Aitken- and accumulation-mode
aerosols and non-refractory submicron organic, sul-
fates, ammonia, nitrates and chlorides.

– To understand the emission of mercury from north Aus-
tralian fires and to quantify the delivery of mercury to
the ecosystem.

– To characterise the composition and size of aerosols in
the region of north Australia and to understand the influ-
ence and extent of biomass burning on the total aerosol
burden.

– To assess the ability of biomass burning aerosol to act
as cloud condensation nuclei and to establish a link be-
tween aerosol composition, size and CCN.

– To assess the fractional solubility of aerosol iron and
other trace metals in this region in the context of the
potential supply of micronutrients required for marine
primary production in the ocean.

2 Description of experiment

2.1 Site

The Australian Tropical Atmospheric Research Station
(ATARS; 12◦14′56.6′′ S, 131◦02′40.8′′ E) is located on the
Gunn Point Peninsula in northern Australia (see Fig. 1).
ATARS is operated by the Australian Bureau of Meteorol-
ogy and the CSIRO (Commonwealth Scientific and Indus-
trial Research Organisation). Standard meteorological mea-
surements (wind velocity, atmospheric pressure, precipita-
tion) run permanently at ATARS and two laboratories are in
place for the installation of other instruments. The SAFIRED
campaign took place from 29 May until 30 June 2014, with
personnel and instruments from nine institutes utilising these
laboratories to make comprehensive gaseous and aerosol
measurements during this period of the early dry season.

2.2 Instruments and measurements

2.2.1 Trace Gases

Greenhouse gases

Continuous measurement of CO2, CO, CH4 and N2O were
made using a high-precision Fourier transform infrared
(FTIR) trace gas and isotope Spectronus analyser, developed

by the Centre for Atmospheric Chemistry at the University
of Wollongong. The analyser combines an FTIR spectrome-
ter (Bruker IRcube), a pressure- and temperature-controlled
multi-pass cell and an electronically cooled mercury cad-
mium telluride detector. A detailed description of the instru-
ment and concentration retrieval technique are available in
Griffith et al. (2012) and Griffith (1996).

Ozone and other trace gases

A multi-axis differential optical absorption spectrometer
(MAX-DOAS) was installed on the top of one of the labo-
ratories during the campaign. The technique has been shown
to provide the vertical profile of nitrogen dioxide, ozone, sul-
fur dioxide, formaldehyde, glyoxal and aerosol extinction
(Sinreich et al., 2005; Hönninger et al., 2004). The MAX-
DOAS instrument used in this campaign was designed and
built at the University of Wollongong. It consists of a ver-
tically rotating prism capturing scattered solar radiation at
different angles (1, 2, 4, 8, 16, 30 and a reference at 90◦)
into a fibre optic that carries the radiation to a UV–visible
spectrometer (AvaSpec – ULS3648). Furthermore, a Thermo
Scientific model 49i UV photometric ozone analyser was
used to measure ozone concentrations. Several periods of el-
evated biomass burning emissions resulted in interferences
with the 49i UV analyser and were removed from the analy-
ses. These periods were marked with strong correlations with
high concentrations of acetonitrile and other UV-absorbing
species, such as certain polycyclic aromatic hydrocarbon
(PAH) species.

Non-methane organic compounds

Online NMOC measurements were made using a high-
sensitivity proton transfer reaction mass spectrometer (PTR-
MS; Ionicon Analytik) using H3O+ as the primary ion. The
inlet was 10 m in length and drew air at 5 L min−1 from 2 m
above the roof (approx 5.5 m above ground level). The PTR-
MS ran with inlet and drift tube temperature of 60 ◦C, 600 V
drift tube, and 2.2 mbar drift tube pressure, which equates to
an energy field of 135 Td. The PTR-MS sequentially scanned
masses 15–190, with 1 s dwell time. The PTR-MS operated
with the aid of auxiliary equipment which regulates the flow
of air in the sample inlet and controls whether the PTR-MS
is sampling ambient or zero air or calibration gas (Galbally
et al., 2007).

Furthermore, AT VOC (adsorbent tube volatile or-
ganic compound) samples were collected by an auto-
matic VOC sequencer which actively draws air through
two multi-adsorbent tubes in series (Markes Carbograph
1TD/Carbopack X). The adsorbent tubes were then analysed
by a PerkinElmer TurboMatrix™ 650 ATD (automated ther-
mal desorber) and a Hewlett Packard 6890A gas chromato-
graph (GC) equipped with a flame ionisation detector (FID)
and a mass-selective detector (MSD) at CSIRO Oceans and
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Table 1. A summary of the quantities measured during SAFIRED and the respective instrument or measurement technique. Detection limits
and uncertainties are expressed for select instruments or measurements.

Quantity Instrument or technique Sample
frequency

Reference Detection limits Uncertainties

CO, CO2, CH4 and N2O Fourier transform infrared spec-
trometry

3 min Griffith et al.
(2012)

0.04 mg CO2 m−2 s−1,
20 ngN m−2 s−1

(N2O),
30 ng CH4 m−2 s−1)

0.02 (CO2), 0.2
(CH4), 0.1 (N2O),
0.2 (CO)a

O3 UV Photometric Ozone Analysis 1 min 0.50 ppb ∼ 1 ppb
Non-methane organic
compounds

Proton transfer mass spectrome-
try, high-performance liquid chro-
matography of Supelco cartridge
samples; gas chromatography of ad-
sorbant tubes

3 min; 12 h;
12 h

Galbally et al.
(2007); Cheng et
al. (2016); Lawson
et al.
(2015); Dunne et
al. (2017)

2–563 ppt (PTR-MS
ions)

< 22 % (PTR-MS
ions)

Polycyclic aromatic hy-
drocarbons (gas and par-
ticle phase)

Gas chromatography and high-
resolution mass spectrometry of
filter and foam samples

24 h Wang et al. (2017) < 1 pg m−3 <±20 % (rep)

Gaseous elemental mer-
cury; gaseous oxidised
mercury; and particulate-
bound mercury

Cold-vapour atomic fluorescence
spectroscopy

5 min; 2 h; 2 h Landis et al.
(2002); Steffen et
al. (2008)

0.1 ng m−3 (GEM),
2 pg m−3 (GOM),
2 pg m−3 (PBM)

WmN.R.b

Radon 700 L dual-flow two filter detector 1 h Chambers et al.
(2014)

±0.04 Bq m−3 10–14 %

Aerosol mobility size
distributions (14 to
670 nm); neutral and
charged aerosol size
distributions (0.8 to
42 nm)

Scanning mobility particle sizer,
neutral cluster and air ion spectrom-
etry

5 min; 4 min Mirme et al. (2007) – ±1 % in size se-
lection, ±10 % in
CPC counts

Cloud condensation
nuclei concentration (at
0.5 % supersaturation)

Supersaturated streamwise
continuous-flow of aerosols in
a wetted column using thermal gra-
dient followed by optical particle
counting of activated CCN

10 s Fedele (2015) – ±0.1 % SS, ±20 %
in OPC counts

Elemental and organic
carbon; water soluble
ions; and anhydrous
sugars (PM1 and PM10)

β+ attenuation; ion chromatog-
raphy; high-performance anion-
exchange chromatography

12 h Chow et al. (2007);
Iinuma et al. (2009)

0.0009 µg m−3 (ox-
alate), 0.0002 µg m−3

(levoglucosan)

N.R.

Soluble and total fraction
of trace metals (PM10)

High-resolution inductively coupled
plasma mass spectrometry analysis
of extracted leachates and digests

24 h Winton et al.
(2016)

< 1 pg m−3
±5 % in soluble Fe,
±3 % in total Fe

Non-refractory chemical
composition (PM1)

Time-of-flight aerosol mass spec-
trometry

3 min Drewnick et al.
(2005)

0.003 µg m−3 (NO−3 ,

SO2−
4 ), 0.03 µg m−3

(NH+4 , organics)

∼±20 %

Aerosol volatility and
hygroscopicity (50 and
150 nm)

Volatility and hygroscopicity tan-
dem differential mobility analysis

12 min (full
cycle)

Johnson et al.
(2004)

– ±1 % in size selec-
tion, ±1 %
in RH, ±3 % in
thermodenuder
temperature

a Uncertainty expressed as measurement precision (Allan deviation) for 1 min, expressed in µmol mol−1. b To be discussed in future work. N.R.: not reported.

Atmosphere laboratories. Further details of the sampling and
analyses are given in Cheng et al. (2016).

During sampling, carbonyls and dicarbonyls were trapped
on S10 Supelco cartridges, containing high-purity silica
adsorbent coated with 2,4-dinitrophenylhydrazine (DPNH),
where they were converted to the hydrazone derivatives.
Samples were refrigerated immediately after sampling until
analysis. The derivatives were extracted from the cartridge
in 2.5 mL of acetonitrile and analysed by high-performance

liquid chromatography with diode array detection. The diode
array detection enables the absorption spectra of each peak to
be determined. The difference in the spectra highlights which
peaks in the chromatograms are mono- or dicarbonyl DPNH
derivatives and, along with retention times, allows the iden-
tification of the dicarbonyls glyoxal and methylglyoxal. Fur-
ther details can be found in Lawson et al. (2015).
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PAHs

PAHs were sampled through a high-volume air sampler
(Kimoto Electric Co., Ltd.) using a sampling rate typically
at ∼ 60 m−3 h−1. The sampling rate was calibrated using an
orifice plate prior to the sampling campaign and the sampling
volume was calculated based on the calibrated sampling
rate and sampling duration. A bypass gas meter installed on
the sampler was used to monitor any anomalous fluctuation
of the sampling rate during the sampling period. Particle-
associated and gaseous PAHs were collected on glass fibre
filters (Whatman™, 203× 254 mm, grade GF/A in sheets)
and subsequent polyurethane foam plugs respectively. The
glass fibre filters and polyurethane foam, along with the field
blank samples, were extracted separately using an acceler-
ated solvent extractor (Thermo Scientific™ Dionex™ ASE™

350) after being spiked with a solution containing 7 deuter-
ated PAHs (i.e. 2D10-phenanthrene, 2D10-fluoranthene,
2D12-chrysene, 2D12-benzo[b]fluoranthene, 2D12-BaP,
2D12-indeno[1,2,3-cd]pyrene, 2D12-benzo[g,h,i]perylene)
at different levels as internal standards for quantification
purposes. Concentrated extracts were cleaned up by neutral
alumina and neutral silica. Eluents were carefully evaporated
to near dryness and refilled with 250 pg of 13C12-PCB (poly-
chlorinated biphenyl) 141 (in 25 µL isooctane) employed
as the recovery/instrument standard for estimating the
recoveries of the spiked internal standards and monitoring
the performance of the analytical instrument. Samples
were analysed using a Thermo Scientific™ TRACE™

1310 gas chromatograph coupled to a Thermo Scientific™

double-focusing system magnetic sector high-resolution
mass spectrometer (HRMS). The HRMS was operated in
electron impact–multiple ion detection mode and resolution
was set to ≥ 10 000 (10 % valley definition). An isotopic
dilution method was used to quantify 13 PAH analytes
including phenanthrene, anthracene, fluoranthene, pyrene,
benzo[a]anthracene, chrysene, benzo[b]fluoranthene,
benzo[k]fluoranthene, benzo[e]pyrene, BaP, indeno[1,2,3-
cd]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene.

Mercury

Total gaseous mercury, i.e. gaseous elemental mer-
cury+ gaseous oxidised mercury (TGM; GEM+GOM),
was sampled from a 10 m mast and measured via gold
pre-concentration and cold-vapour atomic fluorescence spec-
troscopy using a Tekran 2537X instrument. Simultaneously,
GEM, GOM and particulate-bound mercury (PBM) were in-
dividually measured using a Tekran 2537B connected to a
combined Tekran 1130/1135 speciation unit sampling at a
5.4 m height. The sampling train of the 1130/1135 collects
first GOM (KCl-coated denuder) then PBM (quartz wool py-
rolyser) in series from a 10 L min−1 sampling flow, allow-
ing GEM only to flow onwards for detection by subsam-
pling by the 2537B. Due to the small atmospheric concen-

trations of GOM and PBM, pre-concentration occurred over
a 1 h period with subsequent analysis taking an additional
hour. Continuous measurements of GEM at 5 min resolu-
tion were made possible for the 2537B unit by rotating pre-
concentration/analysis roles of the two internal gold traps.
Both 2537 units sampled at 1 L min−1 and were calibrated
every 23 h using an internal mercury permeation source. For
more information on the 2537 and 1130/1135 systems see
Landis et al. (2002) and Steffen et al. (2008).

GEM fluxes were measured using the methods outlined in
Edwards et al. (2005). Air samples were drawn at heights of
5.2 and 8.0 m through 46.4 m of nylon tubing using a PTFE
diaphragm pump operating at 10 L min−1. Subsampling from
this flow through a 0.2 µm PTFE filter at 1 L min−1 by a
Tekran 2537A, and switching between sample intakes, al-
lowed resolution of a GEM gradient every 30 min. The
transfer velocity was measured using a Campbell Scientific
CSAT3 sonic anemometer and LI-COR 7200 closed-path in-
frared gas analyser for CO2, both located on the same tower
as the gradient intakes at 6.6 m and sampling at 20 Hz.

Radon

In order to measure radon concentrations, a 700 L dual-flow-
loop two-filter radon detector, designed and built by the Aus-
tralian Nuclear Science and Technology Organisation (Whit-
tlestone and Zahorowski, 1998; Chambers et al., 2014), was
installed at ATARS in 2011 and has been fully operational
since July 2012. The detector provided continuous hourly
radon concentrations for the duration of the SAFIRED cam-
paign, sampling air at 40 L min−1 from 12 m above ground
level through 25 mm high-density polyethylene agricultural
pipe. A coarse aerosol filter and dehumidifier were installed
“upstream” of the detector, as well as a 400 L delay volume
to ensure that thoron (220Rn, half-life 55 s) concentrations
in the inlet air stream were reduced to less than 0.5 % of
their ambient values. The detector’s response time is around
45 min, and the lower limit of detection is 40–50 mBq m−3.
Calibrations are performed on a monthly basis by inject-
ing radon from a PYLON 101.15± 4 % kBq Ra-226 source
(12.745 Bq min−1 222Rn), traceable to NIST standards, and
instrumental background is checked every 3 months. In post-
processing, half-hourly raw counts were integrated to hourly
values before calibration to activity concentrations (Bq m−3).

2.2.2 Aerosols

Aerosol drying system

An automated regenerating aerosol diffusion dryer
(ARADD) is permanently installed on the roof of the
laboratory containing the aerosol instrumentation for this
campaign. This was used in front of the aerosol manifold to
continuously dry the aerosol sample. The ARADD design,
similar to that described by Tuch et al. (2009), continuously
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conditions the aerosol sample to a relative humidity of
below 40 % with maximum aerosol transmission efficiency.
The ARADD utilises two diffusion drying columns in
parallel, each containing seven stainless-steel mesh tubes of
10 mm internal diameter and approximately 800 mm length,
surrounded by a cavity packed with silica gel. The aerosol
sampled is directed into one column at a time, while the
other column is regenerated by an ultra-dry compressed air
system. All flows are controlled by software that directs
sample flow and compressed air flow to the appropriate
column with a series of valves. The ARADD has total
suspended particulate style intake at the inlet of the aerosol
sample path. This is a non-size-selective stainless-steel
inlet with a semi-circular hat over an inverted conical
funnel of variable pitch ending with a 3/4 in. stainless-steel
tube. In practice, the aerosols collected have an equivalent
aerodynamic diameter of 100 µm or less depending on
sampling conditions. The inlet led to a sample manifold
at the exit of the system to provide sampling take-offs for
the various aerosol instruments connected to the ARADD.
Flow through the ARADD is provided by the instruments
and pumps connected downstream. The ambient and inlet
relative humidity for the entire sampling period were logged
and are displayed in Supplement Fig. S1.

Aerosol size

Aerosol size distributions were measured with a scanning
mobility particle sizer (SMPS). A TSI 3071 long-column
electrostatic classifier with a TSI 3772 condensation particle
counter (CPC) measured the size distribution over a range of
14 to 670 nm at a scan interval of 5 min.

In addition to the aerosol size distributions measured by
the SMPS, neutral and charged aerosol particle distributions
from 0.8 to 42 nm were measured using a neutral cluster and
air ion spectrometer (NAIS; Manninen et al., 2009; Mirme et
al., 2007). In this study, the NAIS was set to operate in a cycle
of 4 min including ion and neutral particle sampling periods
of 2 and 1 min, respectively, with the remaining minute being
an offset period which is required to neutralise and relax the
electrodes. The total sampling air flow was 60 L min−1, the
high flow rate being used to minimise ion diffusion losses
and maximise the measured ion concentration sensitivity. Ion
losses are accounted for during post-processing of the data by
the software (Mirme et al., 2007).

Aerosol composition and water uptake

PM1 and PM10 12 h filter samples (night and day) were col-
lected on a TAPI 602 Beta plus particle measurement sys-
tem (BAM). Portions of the PM1 filters have been analysed
for elemental and organic carbon mass loadings using a DRI
model 2001A thermal–optical carbon analyser following the
IMPROVE-A temperature protocol (Chow et al., 2007). Ad-
ditional portions of the PM1 filters were extracted in 5 mL

of 18.2 m� de-ionised water and preserved using 1 % chlo-
roform. These extracts have been analysed for major water-
soluble ions by suppressed ion chromatography and for an-
hydrous sugars including levoglucosan by high-performance
anion-exchange chromatography with pulsed amperometric
detection (Iinuma et al., 2009).

Daily aerosol filters were collected using two Ecotech
3000 high-volume volumetric flow-controlled aerosol sam-
plers with PM10 size selective inlets. One high-volume sam-
pler was used to collect aerosols on acid-cleaned Whatman
41 filters to determine the soluble and total fraction of trace
metals. Soluble trace metals were extracted from a filter
aliquot using ultra-pure water (> 18.2 m�) leaching experi-
ments. Total trace metal concentrations were determined by
digesting a second filter aliquot with concentrated nitric and
hydrofluoric acids. Leachates and digested solutions were
analysed by high-resolution inductively couple plasma mass
spectrometry. The second sampler was used to collect a set
of aerosol samples on quartz filters for elemental and organic
carbon analysis following (Chow et al., 2007) and major an-
ion and cation analysis.

The volatility and hygroscopicity of 50 and 150 nm par-
ticles were measured with a custom-built volatility and
hygroscopicity tandem differential mobility analyser (VH-
TDMA). Inlet dried particles were size-selected (alternating
between 50 and 150 nm) using a TSI 3080 electrostatic clas-
sifier. Scans alternated between two different sample path-
ways. In the first, after size selection, particles were passed
through a thermodenuder set to 120 ◦C. The sample line was
then split so that half went to an SMPS comprised of a
TSI 3080 classifier and a TSI 3010 CPC (V-TDMA). The
rest of the sample was passed through a humidifying system
that exposed the particles to a relative humidity of 90 % be-
fore being brought into another SMPS with a 3080 classifier
and 3010 CPC (H-TDMA). Alternatively, the thermodenuder
was bypassed in every second scan so that the V-TDMA was
used to verify the size selection and the H-TDMA was able
to observe the hygroscopic growth of ambient particles. Each
scan ran for 3 min, giving a full set of data every 12 min.

The chemical composition and properties of non-
refractory submicron particles were investigated with a com-
pact time-of-flight aerosol mass spectrometer (cToF-AMS,
Aerodyne Research, Inc.) and a time-of-flight aerosol chem-
ical speciation monitor (ToF-ACSM, Aerodyne Research,
Inc.). Both of these instruments operate with the same prin-
ciple and have many identical components. An aerodynamic
lens in the inlet of each instrument focuses the particles into
a beam and differential pumping removes most of the gas
phase. Particles are flash-vaporised at 600 ◦C and ionised by
electron impact before passing through a time-of-flight mass
spectrometer to a multi-channel plate detector in the cToF-
AMS and a dynode detector in the ToF-ACSM. The cToF-
AMS has the added benefit of having a particle time-of-flight
(pToF) mode, which allows the size resolved chemical com-
position to be measured. Both instruments sampled through
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a PM2.5 inlet and Nafion dryer. In addition, the inlet of the
cToF-AMS was incorporated into the VH-TDMA system, so
that when the VH-TDMA was measuring ambient particles,
the cToF-AMS would draw particles through the thermod-
enuder set at 120 ◦C and vice versa. This gives additional
information about the chemical composition of the volatile
component of submicron particles.

The number of particles activated to cloud droplets was
measured using a continuous-flow stream-wise thermal gra-
dient cloud condensation nuclei counter (CCNC) from
Droplet Measurement Technologies Inc. (DMT, model no.
100). Particles were exposed to a 0.5 % supersaturation and
activated particles greater than 1 µm were counted with an
optical particle counter using a 50 mW, 658 nm laser diode.

Back trajectories

Hourly 10-day air mass back trajectories terminating at
ATARS were produced using the NOAA HYSPLIT model
(Draxler and Rolph, 2011) and catalogued in a database for
use with the SAFIRED campaign data set. Global Data As-
similation System input files with 0.5◦ resolution were ob-
tained from the NOAA ARL FTP site (http://ready.arl.noaa.
gov/gdas1.php) to drive the HYSPLIT model.

Satellite detection of fires

Data on the location of fires was collected from the
Australian national bushfire monitoring system, Sentinel
Hotspots. Hotspot locations are derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors on
the Terra and Aqua satellites and the Visible Infrared Imaging
Radiometer Suite (VIIRS) sensor on the Suomi NPP satellite.
The Terra, Aqua and Suomi NPP satellites fly over the region
around ATARS at approximately 10:30, 15:00 and 14:30, re-
spectively. Detection of fires is therefore limited to those that
are flaming during these times.

3 Overview of campaign

3.1 Fires and air masses

Thousands of fires were observed during the period of the
SAFIRED campaign in Australia by the MODIS and VIIRS
sensors on the Terra and Aqua NASA satellites. The vast
majority of these occurred in the savannah regions of north-
ern Australia. Over 28 000 fires were detected within 400 km
of ATARS during the sampling period. Air mass back tra-
jectories from the sampling site show that air masses over
the study period predominately originated from the south-
east (see Fig. 1), generally over the regions where fires were
frequently detected. Considering the daily satellite obser-
vations of close and distant fires, as well as meteorologi-
cal, gaseous and aerosol measurements over the duration of
SAFIRED, five periods were distinguished: four biomass-

Figure 1. All satellite-detected fires with > 50 % detection confi-
dence in June 2014 in Australia. Trajectory densities are shown as
shaded regions (blue: > 10 % of all data; cyan: > 1 % of all data;
green:> 0.1 % of all data).

Table 2. The start and end dates for the four identified biomass burn-
ing periods (BBP1, BBP2, BBP3 and BBP4) and the coastal period
(CP).

Period Start date End date
(mm/dd/yy hh:mm) (mm/dd/yy hh:mm)

BBP1 05/30/14 00:00 05/31/14 23:59
BBP2 06/06/14 00:00 06/12/14 23:59
BBP3 06/14/14 00:00 06/17/14 23:59
CP 06/19/14 12:00 06/22/14 23:59
BBP4 06/23/14 00:00 06/28/14 23:59

burning-related periods (BBP1, BBP2, BBP3 and BBP4) and
a “coastal” period (CP). The dates for these periods are dis-
played in Table 2.

The number of detected fires on each day within 10, 20,
50, 100 and 200 km of the sampling location was determined
(see Fig. 2). Several fires within 10 km were detected on 30
May (BBP1), 9 and 10 June (BBP2) and 25 and 26 June
(BBP4). BBP1, BBP2 and BBP4 were also associated with
the highest concentrations of most of the measured gaseous
(Fig. 3) and aerosol species (Fig. 4). The periods between
12 and 23 June (BBP3 and CP) had very few detected fires
within 50 km of the station, corresponding to smaller gaseous
and aerosol concentrations.

Most of the gaseous and aerosol time series show a pro-
nounced diurnal trend, with higher concentrations typically
observed during the night (see Figs. 5 and and S2). This is
likely due to a combination of variations in fire locations,
time of burns, and changes in the boundary layer height or
wind velocity. The diurnal trends of radon concentrations,
temperature, wind speed, wind direction and greenhouse
gases for each of the BBPs and the CP are displayed in Fig. 5.
The radon concentrations provide further information regard-
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Figure 2. The number of hotspots observed each day within
(a) 200 km, (b) 100 km, (c) 50 km, (d) 20 km and (e) 10 km of
ATARS, as detected by the MODIS and VIIRS sensors on the Terra
and Aqua satellites.

Figure 3. The time series of the major measured gaseous species
during the SAFIRED campaign: (a) carbon monoxide, (b) carbon
dioxide, (c) methane, (d) nitrous oxide, (e) gaseous elemental mer-
cury, (f) acetonitrile and (g) ozone. The biomass burning and coastal
periods are indicated by the red dotted lines. All parts-per notation
refers to mole fractions unless otherwise indicated. The date and
time is local time.

ing the regional air mass origins and the degree of contact
with the land surface and give insight into the boundary layer.
Sharp decreases in the radon concentrations were observed
after 09:00 local time and did not increase until after sunset
at approximately 18:00 for all periods (Fig. 5a), suggesting
a pronounced diurnal variation in the boundary layer height.
Furthermore, radon concentrations were consistently lower
during the CP than the BB periods, suggesting less terrestrial
influence than the rest of the sampling period. The HYS-
PLIT air mass back trajectory for the CP originated along
the east coast of Australia and passing over little land be-
fore arriving at the station. Figure 5d supports this, showing
predominately easterly and north-easterly winds during the
night and day, respectively. The diurnal variations during the
BB periods were more pronounced. The winds during these
periods were predominately south-easterly during the night
and morning, turning easterly during the afternoon before re-
verting at approximately 20:00 local time. The HYSPLIT air
mass back trajectories for the BB periods indicated terrestrial
origins, with air masses passing predominately over the sa-
vannah region of northern Australia where the fires occurred.

With numerous fires occurring across the region and the
limitations of once-per-day satellite flyovers and stationary
measurements, it can be difficult to identify the exact source
of these elevated signals. Nonetheless, it is possible to link
detected plumes with fires given back-trajectory analysis.
The elevated signals during BBP1 were likely a result of sev-
eral fires that were burning and observed on 30 May at 14:00
local time approximately 2 and 10 km from ATARS during
the day. While the elevated signals were observed later in the
evening, it is likely that they were due to a continuation or
evolution of those fires. Some of the most intense signals of
the campaign were observed during BBP2, with numerous
close (within 50 km) and distant (within 200 km) detected.
Due to the limitations of the once-per-day satellite fly-by,
it was only possible to link one of the observed plumes to
a source during this period. A large event observed on the
evening of 9 June was likely due to a cluster of fires de-
tected approximately 5 km south-east of ATARS. Only one
fire within 20 km of ATARS was observed via satellite during
BBP3 on 17 June but this was not associated with any sig-
nificant increase in gaseous or aerosol concentrations. Sev-
eral fires were also observed between 20 and 50 km from the
station. One close fire was also observed during CP; how-
ever, wind directions during this period were typically north-
easterly and concentrations were therefore much lower. Five-
day HYSPLIT trajectories also show that air mass during the
CP originated along the east coast of Australia before trav-
elling towards the sampling station with very little terrestrial
influence.

For a portion of BBP4, fires were burning within several
kilometres of ATARS and several plumes were easily ob-
served from the station. The signals from these plumes are
shown in Fig. 6. The observed enhancements between 12:30
and 15:00 on 25 June during BBP4 were a result of grass fires
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Figure 4. The times series of the major aerosol properties during the SAFIRED campaign: (a) the non-refractory PM1 organic mass concen-
tration (left) and organic mass fraction (right), (b) the inorganic non-refractory PM1 mass concentrations, (c) the 12 h filter OC and EC PM1
mass concentrations (left) and the ratio of OC to OC+EC (right), (d) the particle size distributions and particle size mode (left) and the total
particle number concentration (right) at ATARS. The date and time is local time.

burning approximately 2 km south-east from the station. Dur-
ing this event, the wind direction was highly variable, chang-
ing between 140 and 80◦ true bearing (TB) multiple times.
As a result, the sampling changed from measuring the air
mass with and without the plume from this fire, which led to
sharp increases and decreases in biomass burning-related sig-
nals. Visually, the fire area and extent of the plume was larger
at 16:00 than earlier; however, the wind direction changed
to north-easterly, which directed the plume away from the
station. From 16:00 until 22:00, the wind direction was sta-
ble at approximately 50◦ TB. At 22:00, the wind direction
rapidly changed to directly south and the largest enhance-

ments for the whole campaign were observed until approxi-
mately 02:00 on 26 June. It is very likely that these signals
were a result of a continuation and evolution of these fires as
the night progressed. Portions of a∼ 0.25 km2 grassland field
within 500 m directly south of ATARS were observed to be
burned upon arrival at the station on the morning of 26 June
and we speculate that the burning of this field contributed to
the large enhancements in measured biomass burning emis-
sions. The emissions during this portion of BBP4 are likely
to be the most representative of fresh biomass burning smoke
during the SAFIRED campaign. Significant ozone enhance-
ments over 80 ppb were observed during this event, although
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Figure 5. Mean hourly diurnal (a) radon, (b) wind speed, (c) wind direction (d) dew point temperature (e) CO, (c) CO2, (d) CH4, and
(e) N2O at ATARS, separated into different biomass burning periods (BBP) and a coastal period (CP). All parts-per notation refers to mole
fractions.

this was likely result of a cross-contamination due to con-
currently high concentrations of UV-absorbing organic com-
pounds in the gaseous phase. This enhancement would only
be possible with significant photochemical processing, which
is very unlikely considering the time of the event, the vi-
sual evidence of close fires, and the large concentrations ob-
served.

Based on the elevated concentrations of biomass burn-
ing related gaseous and aerosol species, detection of close
fires and the air mass back-trajectory analysis during por-
tions of BBP1, BBP2 and BBP4, these periods are likely
associated with fresh biomass burning smoke from nearby
fires. With smaller concentrations and more distant observed
fires, the signals observed during BBP3 are possibly more
characteristic of aged biomass burning smoke. The influence
of biomass burning during CP was much smaller than the
rest of the campaign. Investigating the relationship between
toluene and acetonitrile, two NMOCs emitted from biomass
burning, can provide further information on the aging of BB
emissions. Toluene is much shorter lived than acetonitrile as
it readily reacts in the presence of the OH radical. Assum-
ing a consistent emission ratio of these two NMOCs from
fires in this region, the ratio of toluene / acetonitrile thereby
provides a proxy for photochemical age. Unfortunately, the
PTR-MS which measures these species was not operational
during BBP1 and CP. The diurnal trends for the toluene
and acetonitrile concentrations and the toluene / acetonitrile
ratio is shown in Fig. 7 for BBP2, BBP3 and BBP4. The
toluene / acetonitrile ratio was highest during the night, in-
dicating more photochemically aged smoke throughout the
day. Interestingly, while the toluene and acetonitrile concen-
trations were consistently higher during BBP2 and BBP4
than BBP3, the toluene / acetonitrile ratio was of the same
magnitude and followed the same trend. It is therefore plau-

sible that, while there were no large enhancements in concen-
trations during BBP3 and there were few fires detected close-
by during the daytime satellite flyovers, there were small-
scale burns during the night that were close enough for the
emissions to reach the sampling site. This observation high-
lights the limitation of using satellite hotspot detection in
fully understanding the aging processes of biomass burning
emissions.

Particle size distributions were unimodal for the major-
ity of the sampling period with a mode of approximately
100 nm on average (see Fig. 8). The SMPS was not opera-
tional during BBP1. Although the shape of the BBP4 size
distribution was similar to the campaign average, concentra-
tions were much higher and a result of close fires. BBP2 had
a slightly larger size distribution centred on 110 nm. The size
distribution during BBP3 was slightly smaller than the cam-
paign average and BBP2 and BBP4, with a mode centred on
∼ 95 nm. Furthermore, the diurnal trends of the BBA mode
diameter during BBP2, BBP3 and BBP4 and CP all showed
a clear maximum during the night (see Fig. S2d). The di-
urnal trends of the toluene / acetonitrile ratios (Fig. 7c) as
well as the ratio of oxygenated organic aerosol to total or-
ganics (see Fig. S2c) suggest that the larger night time par-
ticle sizes are more associated with fresh biomass burning.
The contrast between these size distributions could be a re-
sult of atmospheric aging and dilution in which organic mass
condenses onto or evaporates from the particle. Variations in
fuel load or burning conditions could also contribute to this
difference. The size and concentration of particles during CP
were much smaller than the rest of the campaign. There were
two periods during CP where a bimodal size distribution was
observed: one from approximately 15:00 until midnight on
19 June and the other between 14:00 and 18:00 on 20 June.
The size distributions for both of these periods had a mode
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Figure 6. The major gas and aerosol concentrations measured during two biomass burning events within 1 km of ATARS during BBP4.
Panels (a–g) and (h–k) are as per Figs. 3 and 4, respectively. All parts-per notation refers to mole fractions unless otherwise indicated. The
date and time are local time.

Figure 7. Mean hourly diurnal (a) acetonitrile concentration, (b) toluene concentration, and (c) toluene / acetonitrile ratio, separated into
different biomass burning periods (BBP). All parts-per notation refers to mole fractions.

at approximately 20 nm and another at approximately 85 nm.
Submicron sulfates made up to 32 % of the total submicron
non-refractory mass concentrations, as reported by the cToF-
AMS from the period of midday on 19 June until midnight
on 22 June, whereas the average sulfate contribution for the
rest of the campaign was approximately 8 %. The low radon
values, small particle concentrations, bimodal size distribu-
tions and significant contributions of sulfate during this pe-
riod also suggest very little biomass burning signal and a
more marine-like aerosol. No particle nucleation events were
observed over the entire sampling period (see Fig. S3). This

is likely due to the elevated particle concentrations acting as
a condensation sink.

Over the campaign, organics dominated the non-refractory
submicron aerosol mass contributing, on average, 90 % of the
total mass. Sulfate, nitrates, ammonium and chloride species
contributed the rest of this mass, with the largest contribu-
tions from sulfate and ammonium. Sulfate contributions were
very significant during the coastal period, contributing up to
32 % of the total mass. Although chlorides contributed the
least to the total mass on average, during clear biomass burn-
ing events where sharp increases in CO and organics were
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Figure 8. The average number size distribution during BBP2,
BBP3, BBP4, CP and the campaign average.

Table 3. A list of currently published companion studies undertaken
during SAFIRED.

Reference Title

Winton et al. (2016) Dry season aerosol iron solubility
in tropical northern Australia

Wang et al. (2017) Emissions of selected semivolatile organic
chemicals from forest and savannah fires

Milic et al. (2017) Biomass burning and biogenic aerosols in
northern Australia during the SAFIRED campaign

Mallet et al. (2017) Composition, size and cloud condensation nuclei
activity of biomass burning aerosol
from northern Australian savannah fires

Desservattaz et al. (2017) Emission factors of trace gases and particles
from tropical savanna fires in Australia

Howard et al. (2017) Atmospheric mercury in the southern hemisphere
tropics: seasonal and diurnal variations and
influence of inter-hemispheric transport

observed, chlorides made up the largest component of inor-
ganic aerosol. Organic carbon made up approximately 80 to
90 % of the total carbon (organic carbon+ elemental carbon)
PM1 mass during the campaign, with the exception of BBP3,
when this dropped to 70 %. Whether these observations were
a result of burn conditions or aging processes (i.e. evapora-
tion of organic compounds from the aerosol phase) is unclear.

4 Outcomes of SAFIRED

The overall aim of this study was to investigate the char-
acteristics of BB emissions in the tropical savannah region
of northern Australia during the early dry season. For many
gaseous and aerosol species, elevated signals were observed
for much of the month-long sampling period due to the high
frequency of fires. Further analysis of these species can pro-
vide more insight into the impact of these fires on the regional
atmosphere. Table 2 displays a summary of companion stud-
ies undertaken within the SAFIRED campaign.

4.1 Emission factors and gaseous species loadings

Desservettaz et al. (2017) identified individual plumes with
high signals during SAFIRED in order to determine emis-
sion factors of CO2, CO, CH4, and N2O, as well as GEM,
Aitken- and accumulation-mode aerosols, and submicron
non-refractory particle species (organics, sulfates, nitrates,
ammonium and chlorides). Seasonal emission factors for the
major greenhouse gases are important for national green-
house gas inventories and in understanding the impact of sa-
vannah fires. Furthermore, these results will be the first set
of emission factors for aerosol particles from savannah fires
in Australia, with early results suggesting higher factors than
those observed from African and South American savannah
fires. Emission factors were mostly found to be dependent
on the combustion conditions (using the modified combus-
tion efficiency as a proxy) of the fires.

Wang et al. (2017) investigated 13 major PAH compounds
in both the gaseous and aerosol phase during the SAFIRED
campaign and estimated their emission factors from sa-
vannah fires, as well as from subtropical eucalypt forest
fires. Concentrations of these PAHs varied from ∼ 1 to over
15 ng m−3 within different BB periods and the emission fac-
tor for savannah fires for

∑
13 PAHs were estimated to be

1600 ±110 µg kg−1 In the gas phase, three- and four-ring
compounds typically contributed ∼ 90 % to the sum concen-
trations whereas the particle-associated PAHs were domi-
nated by five- and six-ring compounds (> 80 %). Measured
PAH concentrations were significantly higher during BBP2
and BBP4. During these periods, concentrations of BaP ex-
ceeded the monitoring investigation level for atmospheric
BaP (0.30 ng m−3) in Australia (National Environment Pro-
tection Council Service Corporation, 2011) by up to 200 %.

Biomass burning produces significant amounts of semi-
volatile NMOC, which can be difficult to quantify and
identify with current measurement techniques. However re-
cent studies have shown that including semi-volatile NMOC
chemistry in models improves the agreement between the
modelled and observed organic aerosol (Alvarado et al.,
2015; Konovalov et al., 2015) and ozone (Alvarado et al.,
2015). High-quality NMOC emission factors are crucial for
models to assess the impact of biomass burning plumes on
air quality and climate. Future analyses will be undertaken
on the SAFIRED data to quantify emission factors for vari-
ous NMOCs.

SAFIRED represents the first measurements of atmo-
spheric mercury undertaken in the tropical region of the
Australian continent. The mean observed GEM concentra-
tion over the study period was 0.99± 0.09 ng m−3, similar
to the average over that month (0.96 ng m−3) for five other
Southern Hemisphere sites and slightly lower than the av-
erage (1.15 ng m−3) for five tropical sites (Sprovieri et al.,
2016). Mean GOM and PBM concentrations were 11± 5
and 6± 3 pg m−3 respectively, representing 0.6–3.4 % of to-
tal observed atmospheric mercury. During periods of pro-
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nounced trace gas and aerosol concentrations during the cam-
paign, spikes in GEM concentrations were also observed,
though there were no significant increases in GOM or PBM.
Emission ratios calculated during the campaign were 2 or-
ders of magnitude higher than those reported by Andreae and
Merlet (2001). Future outcomes from the SAFIRED cam-
paign will focus on the use of micrometeorological tech-
niques and the passive tracer radon to quantify delivery of at-
mospheric mercury to tropical savannah ecosystems. ATARS
also now serves as an additional site measuring continuous
GEM as part of the Global Mercury Observation System
(GMOS), one of only two tropical observing sites in the east-
ern hemisphere and the third such site located in Australia.
A discussion of the seasonal and diurnal variations of atmo-
spheric mercury at the ATARS site can be found in Howard
et al. (2017).

4.2 Biomass burning aerosol chemistry

Milic et al. (2017) provided further analysis into the aerosol
chemical composition to elucidate the aging of early dry sea-
son biomass burning emissions. Fractional analysis (e.g. f 44
and f 60, the fraction of m/z44 and m/z60 to all organic
masses, indicated oxygenation and BB sources, respectively)
and factor analysis using positive matrix factorisation (PMF)
of cToF-AMS data were investigated over the entire sampling
period. Outside of the periods of significant influence from
BB events, three PMF-resolved organic aerosol factors were
identified. A BB organic aerosol factor was found to com-
prise 24 % of the submicron non-refractory organic mass,
with an oxygenated organic aerosol factor and a biogenic
isoprene-related secondary organic aerosol factor compris-
ing 47 and 29 %, respectively. These results indicate the sig-
nificant influence of fresh and aged BB on aerosol composi-
tion in the early dry season. The emission of precursors from
fires is likely responsible for some of the secondary organic
aerosol formation.

The water uptake of aerosols during SAFIRED was fur-
ther investigated in Mallet et al. (2017) to identify the in-
fluence of early dry season BB in this region on cloud for-
mation. The concentrations of cloud condensation nuclei at
a constant supersaturation of 0.5 % were typically of the or-
der of 2000 cm−3 and reached well over 10 000 cm−3 during
intense BB events. Variations in the ratio of aerosol parti-
cles activating cloud droplets showed a distinct diurnal trend,
with an activation ratio of 40 %± 20 % during the night and
60 %± 20 % during the day. The particle size distribution
and the hygroscopicity of the particles were found to sig-
nificantly influence this activation ratio. Particles were gen-
erally extremely hydrophobic, particularly during the night
and during the BB periods shown in this paper. Modelling
CCN concentrations using the size distributions of aerosols
and typical continental and terrestrial values of hygroscopic-
ities yielded significant overpredictions of more than 200 %,

highlighting the need to include more regional parameterisa-
tions of aerosol composition and hygroscopicity.

Furthermore the fractional solubility of aerosol iron and
other trace metals during SAFIRED were investigated in
Winton et al. (2016). The fractional iron solubility is an im-
portant variable determining iron availability for biological
uptake in the ocean. On a global scale, the large variability in
the observed fractional iron solubility results, in part, from a
mixture of different aerosol sources. Estimates of fractional
iron solubility from fire combustion (1–60 %) are thought to
be greater than those originating from mineral dust (1–2 %;
Chuang et al., 2005; Guieu et al., 2005; Sedwick et al., 2007)
and may vary in relation to biomass and fire characteristics
as well as that of the underlying terrain (Paris et al., 2010;
Ito, 2011). Iron associated with BB may provide information
with respect to BB inputs of iron to the ocean (Giglio et al.,
2013; e.g. Meyer et al., 2008). ATARS provides an ideal lo-
cation to further investigate BB-derived fractional iron solu-
bility at the source. The results from this study can be found
in Winton et al. (2016) and show that soluble iron concen-
trations from BB sources are significantly higher than those
observed in Southern Ocean baseline air masses from the
Cape Grim Baseline Air Pollution Station, Tasmania, Aus-
tralia (Winton et al., 2015). Aerosol iron at SAFIRED was
a mixture of fresh BB, mineral dust, sea spray and industrial
pollution sources. The fractional iron solubility (2–12 %) was
relatively high throughout the campaign and the variability
was related to the mixing and enhancement of mineral dust
iron solubility with BB species.

5 Conclusions and future outlook

Biomass burning was found to significantly influence the sur-
face atmospheric composition during the 2014 early dry sea-
son in north Australia. Over 28 000 fires were detected via
satellite retrieval during the sampling period. Several peri-
ods were identified when fires within 20 km of the research
station resulted in significant enhancements of greenhouse
gases, non-methane gaseous organic compounds, gaseous el-
emental mercury and polycyclic aromatic hydrocarbons and
aerosol loadings. Much of the PM1 mass was comprised of
organic material. The aerosol particle number size distribu-
tions were typically unimodal and centred around 100 nm,
which is smaller than BBA observed in other regions. The
analysis of the time series of these measured quantities has
so far allowed the quantification of savannah fire emission
factors for these aerosol and gaseous species and has pro-
vided and understanding of the aerosol aging, water uptake
and solubility in this region.

While the specific outcomes of the SAFIRED campaign
are reviewed in the previous section, the general importance
of this study can be discussed in a greater context. This is
the first large-scale collaborative project undertaken in this
region and draws on the resources and expertise of most of
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Australia’s research institutes focused on atmosphere chem-
istry and composition. Large-scale, multidisciplinary mea-
surement campaigns in the tropics, such as SAFIRED, are
needed to make distinctions between different types of fires
in different regions to reduce uncertainties in global climate
models (Keywood et al., 2013). This need has been recog-
nised with the formation of global collaborative initiatives
promoting interdisciplinary collaboration in biomass burning
research (Kaiser and Keywood, 2015). As the world moves
towards a warmer climate, it is plausible that the frequency
and intensity of biomass burning will increase, and these
emissions will become an increasingly important source of
trace gases and aerosols to the atmosphere.

SAFIRED lays the foundation for future measurements at
ATARS that could make measurements throughout the whole
dry season and on a more long-term scale. Future work in
this region should focus on (1) the detailed characterisation
of individual fires and their emissions, (2) biomass burning
emissions throughout the late dry season and (3) the verti-
cal and horizontal transport of biomass burning emissions in
this region. With well-established emission factors, a concen-
trated effort should be made to link modelled aerosol gaseous
and aerosol loadings with in situ and remote sensing mea-
surements. This should be done not just at the surface but
also throughout the boundary layer as well as over the waters
north of Australia. Furthermore, a further investigation of the
radiative influence of the gaseous and aerosol species should
be done for this region.
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