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S1 Derivation of ∆𝑽𝑶𝑪𝐦𝐢𝐧 

An expression for ∆𝑉𝑂𝐶min, the minimum amount of VOC reacted required for SOA formation, can be obtained by rearranging 

Eq. (7) and (8) from the main text, which are parts of the volatility basis set (VBS) framework (Donahue et al., 2006),  
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Equation (S5) can also be obtained via L’Hôpitals’ rule, starting from Eq. (S3) 
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Where the terms involving 𝐶𝑂𝐴
0  become 0 and the terms involving 𝐶𝑂𝐴

𝑀≥2 are much smaller than terms involving 𝐶𝑂𝐴
𝑀≤1, and 

could therefore be neglected. 
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Equation (S5) is the same as Eq. (9) in the main text.  
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S2 SOA oxidation state parameterization 

From f44, O:C, H:C, and 𝑂𝑆̅̅̅̅
𝐶  can be estimated as described in the literature (Canagaratna et al., 2015; Donahue et al., 2012; 

Heald et al., 2010; Kroll et al., 2011) 

𝑂: 𝐶 = 0.079 + 4.31 × 𝑓44 ,           (S9) 

𝐻: 𝐶 = 2 − 𝑂: 𝐶 ,            (S10) 5 

𝑂𝑆̅̅̅̅
𝐶 ≅ 3 × 𝑂: 𝐶 − 2 ,           (S11) 

𝑂𝑆̅̅̅̅
𝐶 ≅ 12.93 × 𝑓44 − 1.842 ,           (S12) 

Deviation from Eq. (S11) could occur due to the presence of peroxide or heteroatom groups (Kroll et al., 2011), such as 

chloroalkyl hydroperoxide compounds identified in CISM measurements in this study. UV lights were turned off early during 

Exp. A5. As shown in Fig S1, the SOA extent of oxidation (f44 and f43) was stable in the absence of UV, indicating that dark 10 

reactions, if present, did not affect the SOA extent of oxidation. Some wall-loss-corrected SOA concentration decrease was 

observed in the dark, possibly due to loss of organic vapor to the clean chamber wall and/or higher depositional loss rates of 

organics compared to sulfate due to a size-dependent org/sulfate ratio (Hildebrandt et al., 2009). The wall loss effects were 

smaller than aerosol aging effects, as shown in Fig. S1. Exponential decay functions were fitted to the depositional wall-loss 

corrected SOA concentrations during the initial rapid decay period, the dark period when UV lights were turned off, and during 15 

the continued oxidation period when UV lights were turned back on. The exponent of decay were, in chronological order, 1.1 

× 10-2 min-1, 2.1 × 10-3 min-1, and 5.0 × 10-3 min-1.  

 

Figure S1:  Depositional wall loss-corrected SOA concentration and five-minute averages of f44, and f43 observed for Exp A5. UV lights 

were turned on and off as labeled. f44 and f43 could be interpreted as proxies for oxidized and fresh SOA components, respectively, which 20 
did not evolve in the dark. SOA loss was observed in the dark, possibly due to loss of organic vapor to the Teflon® wall surfaces or differences 

in the depositional loss rates of organic and sulfate aerosol. Exponential fitting was applied to three separate 60-minute SOA concentration 

data segments during the initial photooxidation period, UV off period, and continued photooxidation period.   
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S3 CIMS signal normalization: ACIMS vs P-ACIMS 

Chemical ionization by hydronium-water ion clusters in the CIMS could be described as 

(H2O)n(H3O)+ + X → (H2O)n(XH)+ + H2O        (S13) 

where X (“M” in the main text) represents an analyte and H3O+(H2O)n represents the hydronium-water reagent cluster. k is the 

protonation rate coefficient (de Gouw and Warneke, 2007; Sellegri et al., 2005). A reverse of the above process is possible, 5 

but could be minimized via instrument tuning (Sellegri et al., 2005). For a compound with known proton affinity, the number 

of water clusters involved in the protonation process, n, is known as well.  The proton affinity of isoprene is higher than that 

of H3O+ and lower than that of (H3O)+H2O, meaning that n is 0 for isoprene, which could only extract the hydrogen from  

H3O+, forming C5H9
+ , which was observed in our measurements. The charge transfer product ion, C5H8

+ was also observed. 

In addition, C5H7
+, likely a hydride abstraction product by minor reagent ions such as NO+ or O2

+, was also observed. However, 10 

fragmentation of oxidized products by H3O+(H2O)n or minor O2
+ ions could also produce C5H7

+ ion fragments.  

     Instrument sensitivity may change over the course of an experiment or between experiments and needs to be accounted for. 

For simplification, consider a single analyte and hydronium reagent ion. The active Chemical Ionization Mass Spectroscopy 

(ACIMS) formula could be applied to account for the sensitivity change (de Gouw and Warneke, 2007),  

 15 

[𝑋𝐻+] = [𝐻3𝑂+]0{1 − exp(−𝑘𝜏[𝑋])} ≈ [𝐻3𝑂+]𝑘𝜏[𝑋]            (S14) 

 

where τ is the duration of the protonation process, [H3O+]0 is the reference reagent ion signal, k is the collision rate constant, 

[X] is the analyte mass concentration, and [XH+] is the ion signal. The approximation is valid for very small kτ values (de 

Gouw and Warneke, 2007). Mathematically, the approximation is valid for exp(-kτ[X]) << 1. Linear signal normalization and 20 

species quantification are therefore possible via the following equations, 
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[𝑋] = 𝜌𝑐𝑎𝑙[𝑋𝐻+]𝑛𝑜𝑟𝑚 = [𝑋]𝐴𝐶𝐼𝑀𝑆          (S19) 

 

where [XH+]norm is the normalized gas-phase signal and is sufficient for qualitative time-series analysis. In many cases, we do 

not have standard compounds to obtain a calibration curve and ρcal remains unknown. The above relations break down when 30 

there is significant depletion of reagent ion, where the assumption exp(-kτ[X]) << 1 is no longer accurate, in which case a 

parallel ACIMS (P-ACIMS) formula should be applied (Wollny, 1998) 
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Where ∑ 𝑋𝑗𝐻+(𝐻2𝑂)𝑛
+

𝑗  is the sum of signals of products from protonation by reagent ion H3O+(H2O)n. For instance, the ratio 

of quantified concentration by ACIMS to that by P-ACIMS formula is, for n=0 (compounds such as isoprene), 
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which is a function of the reagent-to-product signal ratio, 
[𝐻3𝑂+]

∑ [𝑋𝑗𝐻+]𝑗
, hereafter referred as RPSR, as shown Fig. S2. The ACIMS 

correction overestimates less than 1% compared to the P-ACIMS correction for RPSR greater than 500. Overestimation greater 10 

than 5 % could be expected for RPSR < 9.8. At RPSR equal to 1, 44 % overestimation could be expected.  

 

Figure S2: Estimated deviation ratio as a function of reagent-to-product signal ratio (RPSR) 
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S4 Particulate chlorine detection 

Low levels of particulate chlorine are observed when sampling pure ammonium nitrate, ammonium sulfate, or diacid aerosols, 

as summarized in Table S1 and illustrated in Fig. S3a. Similar vaporizer effects/interferences have been reported for organic 

artifacts at m/z 44 when sampling inorganic salts (Pieber et al., 2016), which is also observed as illustrated in Fig. S3b. The 

interpretation of chlorine mass using the standard fragmentation table, illustrated in Table S2, relies on ions at m/z 35 and 36 5 

and expects little interference from other ions. Observed chlorine ions when sampling pure ammonium nitrate or ammonium 

sulfate (Fig. S3a) were likely the result of reactions taking place at the vaporizer surface between sampled species and 

chlorinated residue. 

 

Table S1: Particulate chlorine artifact signal correlations 10 

Species Slope (μg m-3)/(μg m-3) Intercept (μg m-3) R2 

NO3 (Ammo. Nitrate) 1.46 × 10-2 -2.25 × 10-1 0.97 

SO4 (Ammo. Sulfate) 9.66 × 10-3 -1.01 × 10-2 0.80 

Organics (Glutaric Acid) 6.81 × 10-3 -4.87 × 10-2 0.65 

 a Fitting parameter for particulate chlorine concentration vs. mass loading of sampled species as shown in Fig. S3a. 

 

Table S2: Treatment of particulate chlorine in standard fragmentation table 

m/z Aira Organica Chloridea,b Cla,b HCla,b 

28 28     

35   frag_HCl[35],frag_Cl[35] 35, -frag_HCl[35] 0.231*frag_HCl[36] 

36 0.00338*frag_air[40]  frag_HCl[36]  36, -frag_air[36] 

37  37, -frag_chloride[37] frag_HCl[37],frag_Cl[37] 0.323*frag_Cl[35] 0.323*frag_HCl[35] 

38 0.000633*frag_air[40] 38, -frag_chloride[38], -frag_air[38] frag_HCl[38]  0.323*frag_HCl[36] 

40 0.01458*frag_air[28]     
a Species designation used in ACSM  

b All chlorine-related signals at m/z 37 and m/z 38 are based on m/z 35 and m/z 36 measurements assuming natural isotopic abundance instead 15 

of being directly measured. 
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Figure S3: Observation of concentration artifact for (a) particulate chlorine when sampling lab-generated ammonium nitrate, ammonium 

sulfate, or pure organics aerosol, and for (b) organics when sampling lab-generated ammonium nitrate or ammonium sulfate aerosol 

 5 
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A particulate chlorine artifact has been observed by some Aerosol Mass Spectrometer users as well, though only ammonium 

nitrate appears to induce noticeable false positive chlorine signal (Jose-Luis Jimenez and Weiwei Hu, personal 

communications). Larger vaporizer effects might be expected in this work considering that the vaporizer effects depend on the 

vaporizer history (Pieber et al., 2016) and the ACSM used in this work has been exposed to elevated levels of particulate 

chloride. Figure S4 shows that the reported chlorine artifact concentration stems mostly from the HCl+ (m/z 36) ion fragment. 5 

 

Figure S4: Ion fragments produced at m/z 35 and 36 when sampling pure ammonium nitrate. “Diff” stands for “Difference mass spectra” 

This does not indicate, however, that only HCl+ fragments are produced at the vaporizer surface. As seen in Fig. S4, m/z 35 

“open” and “closed” signals also rise with increasing inorganic non-chloride salt concentrations. The apparent contribution 

from the m/z 35 difference mass spectra is very low because of the elevated background signals. In contrast, background signals 10 

at m/z 36 are not sensitive towards changes in non-chlorinated aerosol loading. To reduce the vaporizer chlorine artifact, long 

“scrubbing” sessions with inorganic salts may help remove residues from the vaporizer surface.  

     In the worst-case scenario, after routine exposure to particulate organochlorides, the particulate chlorine artifact is less than 

1.5 % of sampled inorganic nitrate mass (Figure S3a). Because all chamber photo-oxidation experiments were conducted under 

low-NOx conditions using nebulized ammonium sulfate or sulfuric acid/ammonium sulfate solutions as seeding particles, the 15 

artifact signal is expected to be well under 1 % of the total aerosol loading. Therefore, vaporizer effects alone cannot explain 

the high initial particulate chlorine loading (> 9 % of total SOA mass) observed in Exp. A8 (see Fig. 4). 

     A high concentration, initial chlorine injection experiment was carried out (Exp. S1) to further explore the ability of the 

ACSM to detect organochloride. Initial isoprene and chlorine concentrations were 240 and 500 ppb, respectively. The initial 

surface area of neutral seed aerosol was 1050 um2 cm-3. The UV lights were turned on for 5 minutes to form SOA and then 20 

turned off. The goal was to isolate the effect of gas-phase chemistry from particulate chlorine detection. The aerosol sample 
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was continuously passed through an unheated and a heated sampling tube at 1 liter per minute (LPM). As expected, lower OA 

concentrations were observed when sampling through the heated tube due to aerosol evaporation. Alternate sampling from 

unheated and heated sampling tubes introduced OA mass step changes, the magnitude of which depended on the temperature 

set-point (and aerosol volatility). As shown in Fig. S5a, each step change perturbed the vaporizer surface condition, resulting 

in a concentration “spike” until a new stable condition was achieved, as marked by the signal “rebound”, as illustrated in Fig. 5 

S5b.  

 

 

Figure S5: (a) Raw particulate organics and chlorine measurement for Exp. S1. Aerosol was alternately passed through heated and unheated 

sampling lines; annotations show the heated line centerline temperatures. The shaded region in (a) is expanded in (b) to illustrate the 10 
definition of “spikes” and “rebounds”. 
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For each step decrease in aerosol concentration, the concentration “spike” (calculated as a concentration change) was negative 

and the concentration “rebound” (calculated as a concentration change) was positive. For each step increase in aerosol 

concentration, the concentration “spike” was positive and concentration “rebound” was negative. The correlation between 

particulate organics and chlorine “spike” and “rebound” concentrations is shown in Fig. S6. 5 

 

Figure S6: Organics and chlorine spikes and rebounds observed following each step change for Exp. S1. Good linear correlation between 

organics and chlorine was observed for both signal spikes (R2 ~ 0.998) and rebounds (R2 ~ 0.848). 

The signal “spikes” and “rebound” were likely caused by the slow vaporization (or bouncing) of particulate chlorine. Two 

distinct types of chlorine ions could be observed in ACSM. As shown in Fig. S7a and S7b, while the fast-desorbing chlorine 10 

(HCl+, m/z 36) ion fragment correlated well with OA, the slow-desorbing (Cl+, m/z 35) ion fragments anti-correlated with OA, 

where the background Cl+ signal was consistently higher than the sample Cl+ signal. Except for signal “spikes” and “rebounds,” 

the ratio of Cl+ to HCl+ was roughly -1:1, which is why the reported particulate chlorine concentration was near zero most of 

the time, even when particulate chlorine might be present. As shown in Fig. S7b, the slow-desorbing chlorine (Cl+, m/z 35) 

was responsible for the observed chlorine spikes seen in Fig. S5a. The magnitudes of the chlorine and organic spikes are shown 15 

in Fig. S6 to correlate very well (R2 > 0.998) over a wide desorption (50–125 oC) and concentration (0–160 µg m-3) range, 

indicating that organochlorides were likely present during the experiment, and that they did not differ significantly from other 

OA components in volatility. Good linear correlation (R2 > 0.848) was also observed for the chlorine and organic signal 

rebounds with a slope of 1, or equal parts Cl and organics ions. The signal rebound was probably due to the build-up/removal 

of slow-desorbing particulate chlorine residues following each step decrease/increase in aerosol concentration. This suggests 20 

that the slow-desorbing chlorinated compounds could have undergone decomposition or oxidation on the vaporizer surface to 
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produce a mixture of ion fragments such as COCl+ (56% Cl by mass), C2H3OCl+ (45% Cl), CO2Cl+ (45% Cl), etc. resulting in 

high background chlorine signal.   

 

 

Figure S7: (a) Fast (m/z 36)- and slow (m/z 35)-desorbing chlorine signals measured by the ACSM. Ion fragments at m/z 35 and 36 5 
correspond to 35Cl+ and H35Cl+ ion fragments. Contribution by 37Cl+ and H37Cl+ (not shown) were calculated based on 35Cl+ and H35Cl+ 

assuming natural isotopic abundance. The particulate chlorine “spikes” and “rebounds” shown in Fig. S5 are consistent with 35Cl+ behavior 

(b) The slow thermal desorption of chlorinated species at m/z 35 (Cl+) leads to elevated background chlorine signals. To acquire each 

“difference” mass spectrum used to calculate aerosol loading, the “closed” spectrum is measured first to determine instrument background, 

after which the “open” spectrum is then measured. Recall that HCl+ background is much less sensitive towards loading changes, as shown 10 
in Fig. S4. 
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Considering only HCl+ ion fragments, which correlate well with OA mass, we observe the Cl-to-organics ratio to be 0.072 ± 

0.01. The ratio does not appear to correlate with isoprene concentration, gas-phase chlorine concentration, or gas-phase 

isoprene-to-chlorine ratio, as shown in Fig. S8.  

 

Figure S8: Averaged particulate chlorine-to-organics ratio for Exp. A3–A5, A8, C2–C4, S1 plotted against gas-phase precursor isoprene-5 
to-chlorine ratio. Particulate Cl concentration was estimated based on m/z 36 ion fragment (H35Cl+) measurement only. Exp A1, A2, and C1 

were excluded from analysis due to low particulate chlorine mass concentrations. Particulate chlorine-to-organics ratio is uncorrelated with 

gas-phase isoprene-to-chlorine ratio (R2 < 0.05), isoprene concentration (not shown, R2 < 0.22), or gas-phase chlorine concentration (not 

shown, R2 < 0.08). 

  10 
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S5 Effects of data selection on 1-D VBS parameter fitting 

Table S3 shows parameters from VBS fits attempting to replicate a yield curve defined by complete VOC consumption where 

the initial VOC concentration (VOC0) is 110 μg m-3, the same as the isoprene concentration used in Exp C1. Fitted VBS 

parameters fail to approximate the linear correlation between Y and VOC0.  

Table S3: Fitted VBS parameters for Y = COA / VOC0 5 

C* 10-4 10-3 10-2 10-1 100 101 102 103 104 105 

10 Bins 0 0 0 0 0 0 1 1 1 1 

4 Bins 0 0 0 3.35 10-3 
      

  
0 0 0 2.28 10-2 

     

   
0 0 0 2.08 10-1 

    

    
0 0 2.09 10-2 1 

   

     
0 0 1 1 

  

      
0 1 1 1 

 

       
1 1 1 1 

6  Bins 0 0 0 0 0 2.08 10-1 
    

  
0 0 0 0 2.09 10-2 1 

   

   
0 0 0 0 1 1 

  

    
0 0 0 1 1 1 

 

     
0 0 1 1 1 1 

 a VBS fitting was performed in Matlab using the fmincon function. VBS parameters (αi values) are constrained to between 0 and 1. 

It is clear that 1-D VBS fitting should not and cannot be applied to yield data collected post VOC depletion. This is further 

illustrated in Fig. S9 for Exp. C1: VBS fittings was performed on data collected before isoprene depletion (“Pre-depletion”) 

and on the entire dataset (“Full”). By incorporating yield data collected post isoprene depletion, the “Full” yield curve more 

closely resembles the pre-defined yield curve (Y = COA / VOC0). While the “pre-depletion” curve should be unique to chlorine-10 

isoprene oxidation, the pre-defined yield curve is not. 
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Figure S9: 1-D VBS fitting for Exp C1 with and without incorporating post depletion data. 

Table S4 shows the biases introduced to the VBS results, where the “Full” fitting parameters were significantly biased towards 

higher volatility bins, under-predicting aerosol yield for COA < 25 μg m-3 and over-predicting for COA > 25 μg m-3. “Full” case 

fitting also overestimates the maximum yield, Ymax, because the “pre-defined” curve has an unlimited Ymax. 5 

Table S4: Comparison of fitted VBS parameter 

αi at C*i 0.1 1 10 100 Ymax
b 

Pre-Depletiona 4.6 × 10-4 1.0 × 10-3 1.8 × 10-1 0 1.8 × 10-1 

Full 1.0 × 10-3 0 1.2 × 10-1 2.2 × 10-1 3.4 × 10-1 

 a “Pre-Depletion” fitting considers only data acquired prior to the complete consumption of isoprene; “Full” fitting encompasses 

measurements acquired after isoprene depletion.  

b Maximum SOA yield, see Eq. (10)  

  10 
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S6. Multi-generational chemistry and proposed reaction pathways 

Potential reaction pathways and observation of ions consistent with proposed reaction products are shown for select 

compounds, including C5H6O in Fig. S10, C5H9ClO in Fig. S11, and C5H8O in Fig. S12. Products observed using CIMS are 

framed in the reaction pathway graphs. Only one isomeric configuration is shown per chemical formula. Products that are 

not observed by CIMS may have low sensitivity, may exist primarily in the particle-phase, or may have not been formed.  5 

  



15 

 

Below, C5H6O is a H-abstraction pathway product containing two double bonds which could undergo chlorine addition 

reactions, as shown in Fig. S10a.   

 

 

 5 

Figure S10. (a, top) Proposed reaction pathways for C5H6O oxidation products, and (b, bottom) time-series of products 

observed in (H2O)nH3O+ CIMS. 
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Below, C5H9ClO2 is a Cl-addition reaction pathway product produced when the RO2 radical undergoes the RO2 + HO2 

reaction pathway as opposed to the RO2 + RO2 reaction pathway. Because HO2 radicals are produced from RO2 + RO2 

reactions, C5H9ClO2 formation is delayed compared to C5H7ClO, which is shown to form very early on during the photo-

oxidation process in Fig. 6a in the main text. Continued oxidation by chlorine radical is possible, as shown in Fig. S11a. 

 5 

 

 

Figure S11. (a, top) Proposed reaction pathways for C5H9ClO2 and its oxidation products, and (b, bottom) time-series 

or products observed in (H2O)nI- CIMS. C5H7ClO is observed using (H2O)nH3O+ CIMS (see Fig.6a).    
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Below, C5H8O is possibly an OH-isoprene oxidation product. As discussed in the main text, the formation mechanism for 

C5H8O is unclear. Continued oxidation by chlorine-radical is possible, as shown in Fig. S12. Reaction product C5H9ClO3 is 

observed in iodide-water CIMS. 

 

 5 

Figure S12. (a) Proposed reaction pathways for C5H8O oxidation products, and (b, bottom) corresponding time-series 

observed in (H2O)nH3O+ CIMS. Reaction product C5H9ClO3 was observed in (H2O)nI- CIMS (see Fig. 6b).   
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S7. Effect of aerosol acidity 

Contribution to overall organic aerosol mass from ion fragments at m/z 82 (C5H6O+ and potentially other interfering ions), f82 

increases from 5.5 ‰ to 6.4‰ in the presence of acidic aerosol, as shown in Fig S13 below. Although this behavior is consistent 

with enhanced uptake of IEPOX onto acidic aerosols (Budisulistiorini et al., 2013; Gaston et al., 2014; Hu et al., 2015; Lin et 

al., 2012; Riedel et al., 2015, 2016), the f82 value observed using neutral seed (5.5 ‰) is only slightly above the f82 values 5 

determined in Cl-monoterpene oxidation experiments using the same ACSM (5 ‰). Therefore, our data does not provide 

evidence for a significant contribution of IEPOX to SOA formation.   

 

Figure S13. Comparison of ACSM unit mass spectra. Red bars indicate m/z fragments enhanced in the presence of acidic aerosols. Green 

bars indicate m/z fragments enhanced in the presence of neutral aerosols.    10 
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Figure S14 shows the effects of acidic aerosol on gas-phase species observed by (H2O)nH3O+ and (H2O)nI- CIMS. Unit mass 

spectra over the first 120 minutes of photooxidation from neutral seed (C3, C5) and acidic seed experiments (C6 and C7) were 

averaged and compared. Due to differences in precursor concentrations used, signals are normalized to the most abundant gas-

phase species observed, which were (C5H6O2)+ at m/z 99 in positive mode and (Cl2)I- at m/z 197 in negative mode. Presence 

of acidic aerosol appears to lead to uniform decreases in gas-phase species concentrations. Formation of C5H6O2 from isoprene-5 

Cl reactions has been proposed previously (Nordmeyer et al., 1997), but the pathway is unknown.   

 

 

Figure S14. Unit mass spectra (UMR) of (a) positive mode measurement, where UMR ion intensities are normalized against the most intense 

photo-oxidation product ion signal at m/z 99, and of (b) negative mode measurement, where the ion intensities are normalized against 10 
chlorine-iodide adduct at m/z 197. The representative spectra are from experiment C3 ([H2O]nI-/neutral seed), C5 ([H2O]nH3O+/neutral seed), 

C6 ([H2O]nI-/acidic seed), and C7 ([H2O]nH3O+/acidic seed).   
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