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Abstract. Long-term monitoring of organic aerosol is impor-
tant for epidemiological studies, validation of atmospheric
models, and air quality management. In this study, we ap-
ply a recently developed filter-based offline methodology
using an aerosol mass spectrometer (AMS) to investigate
the regional and seasonal differences of contributing organic
aerosol sources. We present offline AMS measurements for
particulate matter smaller than 10 µm at nine stations in cen-
tral Europe with different exposure characteristics for the en-
tire year of 2013 (819 samples). The focus of this study is
a detailed source apportionment analysis (using positive ma-
trix factorization, PMF) including in-depth assessment of the
related uncertainties. Primary organic aerosol (POA) is sep-
arated in three components: hydrocarbon-like OA related to
traffic emissions (HOA), cooking OA (COA), and biomass
burning OA (BBOA). We observe enhanced production of
secondary organic aerosol (SOA) in summer, following the
increase in biogenic emissions with temperature (summer
oxygenated OA, SOOA). In addition, a SOA component was
extracted that correlated with an anthropogenic secondary
inorganic species that is dominant in winter (winter oxy-

genated OA, WOOA). A factor (sulfur-containing organic,
SC-OA) explaining sulfur-containing fragments (CH3SO+2 ),
which has an event-driven temporal behaviour, was also iden-
tified. The relative yearly average factor contributions range
from 4 to 14 % for HOA, from 3 to 11 % for COA, from 11
to 59 % for BBOA, from 5 to 23 % for SC-OA, from 14 to
27 % for WOOA, and from 15 to 38 % for SOOA. The uncer-
tainty of the relative average factor contribution lies between
2 and 12 % of OA. At the sites north of the alpine crest, the
sum of HOA, COA, and BBOA (POA) contributes less to
OA (POA /OA= 0.3) than at the southern alpine valley sites
(0.6). BBOA is the main contributor to POA with 87 % in
alpine valleys and 42 % north of the alpine crest. Further-
more, the influence of primary biological particles (PBOAs),
not resolved by PMF, is estimated and could contribute sig-
nificantly to OA in PM10.
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1 Introduction

The development and field deployment of the Aerodyne
aerosol mass spectrometer (AMS; Canagaratna et al., 2007)
have greatly improved air quality monitoring by providing
real-time measurements of the non-refractory (NR) submi-
cron aerosol (PM1) components. The application of factor
analysis on the collected organic aerosol (OA) mass spec-
tra enabled the efficient disentanglement of aerosol fac-
tors, which could be subsequently related to specific aerosol
sources and processes (Lanz et al., 2007, 2008; Jimenez et
al., 2009; Ulbrich et al., 2009, Zhang et al., 2011; Ng et al.,
2010; Crippa et al., 2014). Factors typically extracted include
directly emitted primary OA (POA) from biomass burning
(BBOA) or traffic (HOA), and oxygenated OA (OOA) that
is typically associated with secondary OA (SOA), formed
through the oxidation of organic vapour precursors or het-
erogeneous processes. The model is not capable of identify-
ing the main SOA precursors, but often differentiates OOA
based on its volatility and degree of oxygenation (semi-
volatile fraction and low-volatility fraction) due to the avail-
able highly time-resolved data.

However, the cost and operational requirements of the
AMS make its deployment impractical throughout a dense
monitoring network and over longer time periods. As a re-
sult, most available datasets are often limited to a few weeks
of measurements, and factors are extracted mainly based on
diurnal variations in POA emission strength and SOA oxy-
gen content (Zhang et al., 2011; El Haddad et al., 2013).
Highly mobile measurements on platforms as aircrafts (e.g.
DeCarlo et al., 2008) or vehicles (e.g. Mohr et al., 2011) are
designed for regional studies, but are even more limited by
cost, availability, and time than stationary studies. This hin-
ders the determination of the aerosol regional and seasonal
characteristics and evaluation of long-term emission trends,
limiting the information required for model validation and
development of efficient mitigation strategies. Furthermore,
the negligible transmission efficiency of the AMS inlet for
coarse particles prevents the characterization of their chemi-
cal nature and contributing sources.

The recent development of the aerosol chemical speci-
ation monitor (ACSM; Ng et al., 2011, Fröhlich et al.,
2013) has enabled the establishment of dense networks of
long-term AMS-type measurements and source apportion-
ment of the organic aerosol (e.g. Crippa et al., 2014, using
AMSs for shorter campaigns within the EUCAARI project or
EMEP/ACTRIS projects for longer multi-season campaigns
using ACSMs). However, the mass spectrometers used by the
ACSMs have far lower mass resolution than the AMS, re-
ducing their performance for OA characterization and source
apportionment. An alternate monitoring strategy involves ex-
tending AMS spatial and temporal coverage by measuring
the nebulized water extracts of filter samples (Daellenbach
et al., 2016; Mihara and Mochida, 2011). This approach al-
lows the retroactive investigation of specific events, e.g. haze

events in China (Huang et al., 2014), as well as AMS mea-
surements of coarse-mode aerosol (Bozzetti et al., 2016) and
long-term source apportionment studies (Bozzetti, 2017a, b).
Such an approach was also used in recent studies for identify-
ing the different types of water-soluble chromophores (Chen
et al., 2016). Additionally, such filters are routinely collected
and are already available over multi-year periods at many air
quality monitoring stations around the world for years and/or
decades. Unlike single-season online AMS studies, the of-
fline AMS analysis of filter samples may reveal seasonal and
long-term variations in the emissions of POA and SOA pre-
cursors required for model validations and the establishment
of efficient mitigation strategies.

Here, we present offline AMS measurements of PM10
(particulate matter with an aerodynamic diameter smaller
than 10 µm) at nine stations in central Europe with differ-
ent exposure characteristics for the entire year of 2013 (819
samples). The sites cover rural and urban locations, including
urban background and traffic and wood-burning-influenced
stations. Such long-term multi-site analyses allow the quan-
titative description of the temporal and spatial variability in
the main OA sources and may provide further insights into
SOA precursors and formation pathways. This paper focuses
on the identification of the main factors influencing the OA
concentrations at the different sites and the assessment of the
associated uncertainties. In a second paper, we will investi-
gate the site-to-site differences and general trends in the fac-
tor time series and their relationship with external parame-
ters.

2 Methods

2.1 Study area and aerosol sampling

PM10 samples were collected at nine sites in Switzerland and
Liechtenstein (Table 1 and Fig. 1). Seven of the sites (Basel,
Bern, Payerne, Zürich, Frauenfeld, St. Gallen, Vaduz) are
located in northern Switzerland and Liechtenstein and two
(Magadino and San Vittore) in southern Switzerland. Aerosol
was sampled at the selected sites every fourth day for 24 h
throughout the year 2013 on quartz fibre filters (14.7 cm di-
ameter) using high-volume samplers (500 L min−1). Filters
were then wrapped in aluminium foil or lint-free paper and
stored at −20 ◦C. Field blanks were collected following the
same approach.

2.2 Offline AMS analysis

The offline AMS analysis summarized below was carried
out following the methodology developed by Daellenbach et
al. (2016). For each analysed filter sample, four 16 mm di-
ameter filter punches were sonicated together in 10 mL ultra-
pure water (18.2 M� cm, total organic carbon TOC < 5 ppb,
25 ◦C) for 20 min at 30 ◦C. Liquid extracts were then filtered
(0.45 µm) and nebulized in synthetic air (80 % volume N2,
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Table 1. Study sites with geographical location and classification.

Site (station code) Classification General location Altitude

Basel, St. Johann (bas) Urban/background North of Alps/Swiss plateau 308 m
Bern, Bollwerk (ber) Urban/traffic North of Alps/Swiss plateau 506 m
Frauenfeld, Bahnhofstr. (fra) Suburban/background North of Alps/Swiss plateau 403 m
Payerne (pay) Rural/background North of Alps/Swiss plateau 539 m
St. Gallen, Rorschacherstr. (gal) Urban/traffic North of Alps/Swiss plateau 457 m
Zürich, Kaserne (zue) Urban/background North of Alps/Swiss plateau 457 m
Vaduz, Austrasse (vad) Urban/traffic North of Alps/alpine valley 706 m
Magadino, Cadenazzo (mag) Rural/background South of Alps/alpine valley 254 m
San Vittore, Zentrum (vi) Rural/traffic South of Alps/alpine valley 330 m
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Figure 1. Map of study area with locations of sites indicating their
characteristics. The topography is displayed as metres above sea
level.

20 % volume O2; Carbagas, Gümligen CH-3073 Switzer-
land) using a customized Apex Q nebulizer (Elemental Sci-
entific Inc., Omaha, USA) operating at 60 ◦C. The result-
ing droplets were dried using a Nafion® dryer and then in-
jected and analysed using the high-resolution time-of-flight
AMS (HR-ToF-AMS). Three types of measurements were
performed: (i) filter samples, (ii) field blanks (collected and
treated in the same way as the exposed filters), and (iii) mea-
surement blanks (nebulized ultrapure water without filter ex-
tract). The measurement blank was determined before and
after every filter sample. Each sample was recorded for 480 s
(AMS V-mode,m/z 12–447), with a collection time for each
spectrum of 30 s. Ultrapure water was measured for 720 s.
Once per day, ultrapure Milli-Q water was nebulized with a
particle filter interposed between the nebulizer and the AMS
for the determination of the gas-phase contribution to the
measured mass spectrum, which was then subtracted dur-
ing analysis from both blanks and filter samples. The filters
from Zürich were analysed twice with a time difference of
approximately 5 months to assess the measurement repeata-
bility. High-resolution mass spectral analysis was performed

for each m/z (mass to charge) in the range of 12–115. The
measurement blank was subtracted from the sample spectra.
In a previous study, it has been shown that the measurement
blank is comparable to the organic blanks obtained from the
nebulization of NH4NO3 (Bozzetti et al., 2017a). The inter-
ference of NH4NO3 in the CO+2 signal described by Pieber
et al. (2016) was corrected as follows (Eq. 1):

CO2,real = CO2,meas−

(
CO2,meas

NO3,meas

)
NH4NO3,pure

·NO3,meas. (1)

The correction factor
(

CO2,meas
NO3,meas

)
NH4NO3,pure

was determined

based on measurements of aqueous NH4NO3 conducted reg-
ularly during the entire measurement period and varied be-
tween ∼ 1 and ∼ 5 % (Pieber et al., 2016).

2.3 Other chemical analysis

Organic and elemental carbon (OC, EC) content were mea-
sured using a thermo-optical transmission method with a
Sunset OC /EC analyser (Birch and Cary, 1996), follow-
ing the EUSAAR-2 thermal-optical transmission protocol
(Cavalli et al., 2010). Water-soluble carbon was measured
with water extraction followed by catalytic oxidation, non-
dispersive infrared detection of CO2 using a total organic
carbon analyser, only for the samples from Magadino and
Zürich. Water-soluble ions (K+, Na+, Mg2+, Ca2+, and
NH+4 and SO2−

4 , NO−3 , and Cl−) and methane sulfonic acid
were analysed using ion chromatography (Piazzalunga et al.,
2013 and Jaffrezo et al., 1998). Levoglucosan measurements
were performed with a high-performance anion exchange
chromatographer (HPAEC) with pulsed amperometric detec-
tion (PAD) using an ion chromatograph (Dionex ICS-1000)
following Piazzalunga et al. (2010 and 2013). Free cellulose
was determined using an enzymatic conversion to D-glucose
(Kunit and Puxbaum, 1996) and subsequent determination of
glucose with an HPAEC (Iinuma et al., 2009). Online mea-
surements of gas-phase compounds and meteorology were
also performed at selected sites.
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3 Source apportionment

3.1 General principle

Source apportionment of the organic aerosol is performed us-
ing positive matrix factorization (PMF; Paatero and Tapper,
1994). PMF is a statistical un-mixing model explaining the
variability in the organic mass spectral data (xi,j ) as linear
combinations of static factor profiles (fj,k) and their time-
dependent contributions (gi,k); see Eq. (2) (where p is the
number of factors). The index i represents a specific point
in time, j an ion, and k a factor. The elements of the model
residual matrix are termed ei,j .

xi,j =

p∑
k=1

gi,k fk,j + ei,j (2)

In the input data matrix, each filter sample was represented
on average by 11 mass spectral repetitions to examine the in-
fluence of the AMS measurement repeatability on the PMF
outputs. A preceding blank from nebulized ultrapure water
was subtracted from each mass spectrum. The input errors
si,j required for the weighted least-squares minimization by
the model consist of the blank variability (σi,j ) and the un-
certainty related to ion counting statistics and ion-to-ion sig-
nal variability at the detector (δi,j Allan et al., 2003; Ul-
brich et al., 2009). We applied a minimum error according
to Ulbrich et al. (2009) and a down-weighting factor of 3
to all fragments with an average signal-to-noise ratio lower
than 2 (Ulbrich et al., 2009). Input data and the correspond-
ing error matrices consisted of 202 organic ions. The or-
ganic fragments, x′i,j , obtained from offline AMS analyses
do not directly represent ambient concentrations. Therefore,
the signal of each fragment was converted to such an ambi-
ent concentration (xi,j in µgm−3) by multiplying the frac-
tion of this signal with the estimated organic matter (OM)
concentration. The latter was calculated as the product of the
OC concentrations measured by the Sunset OC /EC anal-
yser and the OM /OC from the offline AMS measurements
(OM /OC)oAMS (Eq. 3). Note that such scaling does not
change the outcome of Eq. (2) since both data and error
matrices are scaled in the same manner and the fingerprints
(fk,j ) are not changed.

xi,j =
x′i,j∑
i

x′i,j
·OC · (OM/OC)oAMS (3)

The Source Finder toolkit (SoFi v.4.9; Canonaco et al., 2013)
for the Igor Pro software package (Wavemetrics, Inc., Port-
land, OR, USA) was used to configure the PMF model and
for post-analysis. The PMF algorithm was solved using the
multilinear engine-2 (ME-2; Paatero, 1999). Normalization
of the PMF solution during the iterative minimization pro-
cess is disabled as implemented in SoFi (Canonaco et al.,
2013). ME-2 enables an efficient exploration of the solution

space by constraining the fk,j elements a priori within a cer-
tain range defined by the scalar a (0≤ a ≤ 1) from a starting
value f ′k,j , such that the modelled fk,j in the solution satis-
fies Eq. (4):

fk,j = f
′

k,j ± a · f
′

k,j . (4)

fk,j
′ is the starting value used as a priori knowledge from

previous studies and fk,j is the resulting value in the solu-
tion. In all PMF runs (unless mentioned otherwise), we used
the high-resolution mass spectra for HOA and COA (cook-
ing OA) from Crippa et al. (2013b) as constraints, i.e. two
rows of fk,j ′ were set equal to the mass spectra of HOA
and COA. Ions that were present in our datasets but not in
the reference profiles for HOA and COA were inferred from
published unit mass resolution (UMR) profiles (Ng et al.,
2011 and Crippa et al., 2013c). For this purpose, the fraction
of signal at a specific m/z in the UMR reference spectrum
(fUMR,m/z) was compared to the fraction of signal of all ions
at this m/z in the HR reference spectrum (fHR,m/z). The dif-
ference fUMR,m/z−fHR,m/z was used as an entry in fk,j ′ for
such missing ions. For these ions, an a value of unity was set.
For the other factors, the factor elements were fitted using
ME-2. Alternatively, such missing ions can be also treated
as ordinary factor elements, to be fitted using ME-2 with all
other ordinary factor elements.

Source apportionment analysis was performed follow-
ing the scheme shown in Fig. 2 and discussed below. Un-
constrained and constrained exploratory PMF runs pro-
vided information on the number of interpretable factors
(Sect. 3.2). Multiple constrained PMF runs were then per-
formed to assess the model sensitivity to the chosen a value,
the model starting point and input matrix (entire dataset:
PMFblock; only Zürich: PMFzue,isol; one filter per site and
month: PMF1filter/month; repeated measurements for Zürich:
PMFzue,reps), and repeated measurements (Sect. 3.3). The
factors obtained were then classified and corrected for their
recovery (Sect. 3.4 and 3.5). Finally, the different solutions
were evaluated and only the solutions that satisfied a set of
predefined criteria (Sect. 3.6 and Supplement) were consid-
ered.

3.2 Preliminary PMF

We explored constrained PMF solutions, ranging from 1
to 10 factors. This investigation is performed on the entire
dataset, including all stations and seasons (details in the Sup-
plement). The impact of the number of factors on the resid-
uals is examined in the Supplement. The introduction of two
factors, in addition to HOA and COA, resulted in a signifi-
cant reduction in the residuals and the separation of BBOA
and OOA contribution. BBOA exhibited a prominent sea-
sonal variation with a significant increase during winter and
contributed most to the explained variation in the fragment
C2H4O+2 , originating from the decomposition of anhydrous
sugars, i.e. from cellulose pyrolysis. OOA was identified

Atmos. Chem. Phys., 17, 13265–13282, 2017 www.atmos-chem-phys.net/17/13265/2017/
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Figure 2. Step-by-step outline of adopted source apportionment ap-
proach (factor recoveriesRk). aHOA and aCOA represent the a value
applied for HOA and COA, respectively.

based on its mass spectral fingerprint, with high contribution
from oxygenated ions atm/z= 43 and 44. A further increase
in the number of factors did not significantly contribute to the
reduction in the residuals. However, the introduction of a fifth
factor allowed the separation of the OOA into two different
factors, with distinct seasonal variability and different rela-
tive contributions from oxygenated fragments at m/z= 43
and 44. The two OOA factors will be referred to as winter
and summer OOA (WOOA and SOOA) according to their
seasonality. The introduction of a sixth factor allowed the re-
solving of a factor with a distinct time series explaining the
variability of sulfur-containing fragments (e.g. CH3SO+2 ).
This factor will be referred to as sulfur-containing organic
aerosol (SC-OA). We explored higher-order solutions, but
could not interpret the resulting factor separations. There-
fore, we further consider a six-factor solution below.

3.3 Sensitivity analysis

We assessed the model sensitivity to the chosen a value for
HOA and COA and the model starting point (independently
for all four PMF inputs, as described below). The a val-
ues were independently varied for HOA and COA (a value
from 0 to 1 with increments of 0.1, giving 121 a-value com-
binations). For every a-value combination, the model was
initiated from five different pseudo-random starting points
(seeds), yielding 605 total runs. As the selection of the a-
value combination was randomized, the process was repeated
four times in order to ensure that every a-value combination
was represented at least once (2420 runs), which in turn pro-
vided an assessment of the seed effect on the results.

While this approach has been proven very effective in se-
lecting a range of environmentally relevant solutions (Elser et
al., 2016a, b, and Daellenbach et al., 2016), the resulting un-
certainties may be underestimated. Paatero et al. (2014) com-
pared the effectiveness in estimating uncertainties of factor
elements using two different approaches: the displacement
(DISP) and bootstrap analysis (BS). BS involves applying
the model to input matrices consisting of a subset of the en-
tire dataset. DISP involves running PMF several times using

systematically perturbed factor profile elements of a refer-
ence solution, but allowing a defined difference in Q from
the reference solution. Both approaches are computationally
intensive, especially DISP. Because of such computational
limitations, the combination of BS and DISP was not feasi-
ble for the dataset presented here, especially in combination
with a-value sensitivity tests. Therefore, we chose to perform
four sensitivity tests performing PMF runs using four differ-
ent input datasets, presented in the following. These sensitiv-
ity tests allow conclusions on the stability of PMF analysis
when reducing the temporal or spatial resolution as well as
the influence of the measurement repeatability.

1. PMFblock: PMF was performed on data from all seasons
and all sites combined (all measured in October 2014).
The corresponding data and error matrices involved 819
samples from nine sites with 202 ions and, on average,
11 spectra per sample. This represents the base case.

2. PMFzue,isol: PMF was performed on data from Zürich
alone (isolated from PMFblock input). The correspond-
ing data and error matrices involved 91 samples with
202 ions and on average 11 spectra per sample.

3. PMF1filter/month: PMF was performed on data from all
sites but only considering the first filter collected for ev-
ery month (12 filters per site), as for these samples lev-
oglucosan and cellulose data were available. The corre-
sponding data and error matrices involved 108 samples
with 202 ions and, on average, 11 spectra per sample.

4. PMFzue,reps: PMF was performed on data from the re-
peated measurements of Zürich samples. The corre-
sponding data and error matrices comprised 91 samples
with 196 ions and, on average, 14 spectra per sample.

For each of the four PMF datasets, 2420 PMF runs were per-
formed for evaluating the sensitivity of the model to the cho-
sen a value and the seed. The quality of each of the 2420
PMF runs was individually assessed using criteria lined out
in Sect. 3.6.

3.4 Factor classification

From the sensitivity analysis, a large number of solutions
were generated. Systematic analysis of these solutions re-
quired automatic identification and classification of the re-
trieved factors within each solution. We applied a sequen-
tial classification algorithm as follows. Since HOA and COA
were initially constrained on preselected rows of fk,j , they
did not need to be identified. In a second step, the factor
showing the highest explained variation for C2H4O+2 among
the four remaining factors was identified as BBOA. In a
third step, the factor with the highest explained variation for
CH3SO+2 among the three remaining factors was identified
as SC-OA. From the last two factors, the one with the high-
est explained variation in CO+2 was identified as WOOA and
the other as SOOA.

www.atmos-chem-phys.net/17/13265/2017/ Atmos. Chem. Phys., 17, 13265–13282, 2017
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3.5 Recovery and blank corrections

After factor identification, factor time series are corrected
using factor-specific recoveries (Eq. 5, resulting in OAi,k)
determined in Daellenbach et al. (2016) for HOA, COA,
BBOA, and OOA.

OAi,k =
gi,k
Rk∑
k

gi,k
Rk

·OAi, (5)

where gi,k values are the concentrations of factor k at the time
point i, Rk the recoveries of the respective factor, and OAi
the OA concentration. For a limited number of PMF runs
(PMFblock), the field blank analyses were also included in the
PMF input data. This provides the contributions of different
factors to the field blanks, which were used to correct the
output factor time series. Uncertainties induced by the blank
subtraction were propagated.

3.6 Solution selection

Each of the 2420 PMF solutions per PMF dataset (PMFblock,
PMFzue,isol, PMFzue,reps, PMF1filter/month) was evaluated
based on their factor profiles, time series, and the OC mass
closure. Solutions were selected if they satisfied the follow-
ing set of criteria:

1. fCO+2 <0.04 in HOA and COA factor profiles (HOA
based on Aiken et al., 2009; Mohr et al., 2012; Crippa
et al., 2013b, 2014, and COA based on Crippa et al.,
2013b, 2013c; Mohr et al., 2012);

2. fC2H4O+2 <0.004 and 0.01 in HOA and COA, respec-
tively (HOA based on Aiken et al., 2009; Mohr et al.,
2012; Crippa et al., 2013b, 2014, and COA based on
Crippa et al., 2013b, 2013c; Mohr et al., 2012);

3. HOA correlates significantly with NOx being the sum
of NO and NO2 (defined below);

4. HOA correlates significantly better with NOx than
COA; BBOA correlates significantly with levoglucosan
(defined below);

5. SC-OA correlates significantly with CH3SO+2 (defined
below);

6. for samples from Zürich and Magadino, where water-
soluble organic carbon (WSOC) data are available,
modelled and measured OC masses are comparable for
a set of different conditions (see below and in the Sup-
plement).

The first two criteria (1–2) ensure an appropriate separation
of HOA and COA from OOA and BBOA, respectively. Cri-
teria 3–5 relate to the evaluation of the correlation between

factor and marker time series. This was achieved by comput-
ing the Fisher-transformed correlation coefficient z at differ-
ent stations (Eq. 6):

z= 0.5 · ln
(

1+ r
1− r

)
= arctan(r) , (6)

where r is the correlation coefficient between the factor and
marker at a given station. The z values obtained at the differ-
ent stations are subsequently averaged and transformed back
to ravg before further analysis. A t test is then used to verify
the significance (α = 0.5) of the average correlation coeffi-
cient between factor and marker time series, ravg (Eq. 7):

tavg =
ravg√
1−r2

avg
N−2

. (7)

Here, ravg is the correlation coefficient averaged over the dif-
ferent stations, derived from the average z value, tavg is the
corresponding t value, and N is the average number of sam-
ples at the different stations. Results with a significance level
of α = 0.05 are summarized in Fig. S8 in the Supplement.

To evaluate whether HOA correlated significantly better
with NOx than COA did, the average z values obtained be-
tween HOA and NOx and between COA and NOx (Eq. 6)
were compared using a standard error on the z distribution
of 1/

√
N − 3 (Zar, 1999). The last criterion (6) relates to

OC mass closure. A Monte Carlo approach was applied to
evaluate whether a combination of water-soluble factor time
series and recovery parameters would achieve OC mass clo-
sure, as described in the following. For the samples from
Zürich and Magadino, for which WSOC concentrations were
available (in contrast to the other samples), offline AMS
measurements were scaled to the water-soluble organic mat-
ter (WSOM) calculated using the WSOC measurements and
OM /OC from the HR AMS analysis. The water-soluble
contributions from an identified aerosol source in a sample
i were rescaled to their total organic matter concentrations
(OAi,k), where k represents a given factor, using combina-
tions of factor recoveries as determined by Daellenbach et
al. (2016, medians of the combinations used being RHOA:
0.11, RCOA: 0.54, RBBOA: 0.65, and ROOA: 0.89, used for
WOOA and SOOA). For SC-OA, whose recovery was not
previously determined, a recovery value was stochastically
generated between 0 and 1. The OAi,k concentrations ob-
tained were then converted to OC concentrations OCi,k , us-
ing factor-specific OM /OC determined from the factor pro-
files. The sum of OCi,k from all factors k (mod-OCi) was
then evaluated against the measured OC (meas-OCi). For
this, the residual OC mass (res-OCi) for each sample was
calculated (meas-OCi −mod-OCi), and the residual distri-
butions were examined for different conditions that are spec-
ified in the Supplement. In summary, a solution was only ac-
cepted if res-OCi values were normally distributed around
0 considering all points and subsets of points: (a) summer,
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(b) winter, (c) Magadino, (d) Zürich, and (e) low and high
concentrations of the single factors (see Table S1 in the Sup-
plement).

For each of the Monte Carlo simulations, criteria 1–6,
which satisfy the water-soluble factor time series, were used
together with a combination of factor recoveries from Dael-
lenbach et al. (2016) as input data. The WSOC used for
scaling the Gi,k matrix and the meas-OCi used for resid-
ual calculation were varied within their uncertainties (5 %)
and biases (5 %) assuming a normal distribution of the er-
rors. Likewise, constant biases were also introduced into the
initial recovery distributions from Daellenbach et al. (2016).
Monte Carlo simulations were performed and simulations for
which res-OCi distributions were significantly different from
0 (Q25<0<Q75, details in the Supplement) were discarded
until 500 acceptable simulations were found. Thereby, 331
PMF runs were selected for PMFblock (230 for PMFzue,isol,
99 for PMFzue,reps, and 269 for PMF1filter/month). Median
factor time series and recovery parameters from all retained
simulations were then determined and the interquartile range
(IQR) represents our best estimate of the uncertainties for the
single PMF datasets. The Monte Carlo process was repeated
for the four different PMF datasets described above and the
resulting median time series of their estimated uncertainties
were compared. The resulting uncertainty estimates and the
method are described in Sect. 4.2.1 and in the Supplement.

4 Results and discussions

In this section, the final source apportionment results are pre-
sented and validated. The source signatures are presented in
Fig. 3 for PMFblock colour-coded with the ion family. Fig-
ure 4 shows the time series for Zürich obtained from all PMF
approaches and Table 2 summarizes the correlation coeffi-
cients between factor and marker time series for Zürich (all
PMF runs) and the other sites in the study area (PMFblock),
while the relation between factor and marker time series is
displayed in Figs. 4 and 5. Presented are median (and quar-
tile) results for all PMF runs accepted following the criteria
described above.

4.1 Interpretation of PMF factors

HOA: HOA profile elements were constrained using the ref-
erence profile from Crippa et al. (2013b). The final factor
profile (Fig. 3) maintains the same features, characterized by
high contributions from hydrocarbon fragments. The fraction
of oxygenated organic fragments that were missing in the ini-
tial reference profile, which were added based on UMR spec-
tra, show an increased contribution to the ions above m/z=
100 (see Sect. 3.1). While this indicates a possible overes-
timation of the contribution of these fragments, using this
methodology, this increase does not substantially affect the
results: e.g. the HOA OM /OC remains low (1.32, IQR 1.30–
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Figure 3. PMF factor profiles of HOA, COA, BBOA, SOOA,
WOOA, and SC-OA, colour-coded with the ion family of PMFblock
(average). fm/z is the relative intensity at a specific mass-to-charge
ratio (m/z).

1.33). The HOA time series follows an expected pattern that
matches the NOx yearly cycle (Fig. 4a), except for San Vit-
tore, which is very likely due to the extremely high contribu-
tion of biomass burning at this site during winter, which may
result in additional NOx inputs and/or may affect the separa-
tion of HOA by PMF. The HOA /NOx (Fig. 5a) at the differ-
ent sites (0.015± 0.011 µgm−3 ppb−1) lies within the range
of literature values (0.001 to 0.028 µg m−3 ppb−1, Lanz et al.,
2007 and Kirchstetter et al., 1999). A similar average ratio
was obtained for Zürich from the different sensitivity tests,
but with high variability (0.013± 0.009 µgm−3 ppb−1) sim-
ilar to that obtained between the different sites. This implies
that the observed site-to-site differences are not statistically
significant given our uncertainty in extracting HOA contri-
butions.

COA: COA profile elements were constrained using the
COA profile from Crippa et al. (2013b) and the obtained fac-
tor profile maintains the same features (OM /OC of 1.32,
IQR 1.30–1.33, Fig. 3). For COA, no molecular marker is
available for validation purposes. Daellenbach et al. (2016)
demonstrated that COA concentrations can be estimated with
offline AMS (in Zürich at the same site) by constraining its
signatures, but only with a high uncertainty. This was per-
formed by comparing offline AMS results to those from a
collocated ACSM, which, owing to its higher time resolution,
enabled the identification of cooking emissions based on
their diurnal cycles (Canonaco et al., 2013). Here, while no
ACSM data were available, we followed the same method-
ology used in Daellenbach et al. (2016) to estimate the con-
tribution of COA. The average COA contributions estimated
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Table 2. Comparison of factor time series to reference data for different PMF input datasets runs (with Pearson and Spearman correlation
coefficients, R2

p and Rs). Displayed are the results for PMFblock unless stated otherwise.

R2 (number of points) HOA vs. NOx , R2
p BBOA vs. levo, R2

p WOOA vs. NH+4 , R2
p SOOA vs. T , Rs SC-OA vs. NOx , R2

p

Basel 0.31 (91) 0.91 (11) 0.66 (91) 0.70 (91) 0.17 (91)
Bern 0.22∗ (90) 0.48 (12) 0.53 (90) 0.63 (90) 0.17 (90)
Frauenfeld 0.40 (89) 0.73 (12) 0.77 (90) 0.63 (90) 0.28 (89)
St. Gallen 0.23 (91) 0.39 (12) 0.78 (91) 0.72 (91) 0.50 (91)
Magadino 0.18 (91) 0.55 (12) 0.54 (91) 0.72 (91) 0.63 (91)
Payerne 0.48 (91) 0.65 (12) 0.44 (91) 0.68 (91) 0.17 (91)
Vaduz 0.38 (91) 0.90 (12) 0.77 (91) 0.68 (91) 0.46 (91)
San Vittore 0.02 (90) 0.99 (12) 0.36 (90) 0.76 (68) 0.01 (90)

Zürich

PMFblock 0.35 (91) 0.43 (12) 0.79 (90) 0.65 (91) 0.40 (91)
PMFzue,isol 0.29 (91) 0.59 (12) 0.82 (90) 0.66 (91) 0.27 (91)
PMFzue,reps (only 12 points) 0.32 (12) 0.23 (12) 0.84 (12) 0.85 (12) 0.01 (12)
PMF1filter/month 0.30 (91) 0.44 (12) 0.77 (90) 0.59 (91) 0.53 (91)

∗ One outlier removed.

Figure 4. HOA, COA, BBOA, WOOA, SOOA, and SC-OA and their respective marker concentrations as a function of time for Zürich in
2013. Depicted are the median factor time series results for the different PMF datasets (median) including the uncertainties for PMFblock
(first and third quartiles) (green: PMFblock; black: PMFzue,isol; red: PMFzue,reps; pink bullets: PMF1filter/month).

here and their yearly variability are similar to those from pre-
vious studies at the same sites, but as expected have high un-
certainties (Fig. 4b).

BBOA: BBOA is identified based on its spectral finger-
print (OM /OC of 1.74, IQR 1.74–1.75; Fig. 3), which, sim-
ilar to previously extracted BBOA factors at other locations
(Daellenbach et al., 2016; Lanz et al., 2007; Crippa et al.,
2014), exhibits high contributions from oxygenated frag-
ments (CHO+, C2H4O+2 , C3H5O+2 ) from anhydrous sugar
fragmentation (see comparison to nebulized levoglucosan in
Supplement Fig. S6). Similar to levoglucosan, the BBOA

time series shows an expected seasonal variation with high
concentrations in winter, supporting the identification of this
factor (Fig. 4c). Except for Bern and Magadino (7.5 and
11.2), a similar ratio of BBOA to levoglucosan is found at
all other sites (3.9 to 5.7), despite apparent site-to-site dif-
ferences in the model residuals during winter due to signifi-
cantly higher contributions of BBOA at the southern stations
(Fig. 5b). The ratios obtained are within the range of values
reported in literature (between 4 and 18 assuming OM /OC)
between 1.6 and 1.8 for the non-AMS analyses; Zotter et al.,
2014; Herich et al., 2014; Minguillón et al., 2011; Crippa et
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Figure 5. Scatter plots for the different extreme sensitivity tests for Zürich and for all sites for PMFblock median concentrations: (a) HOA
vs. NOx , (b) BBOA vs. levoglucosan, (c) SOOA vs. temperature, and (d) WOOA vs. NH+4 .

al., 2013a; and Favez et al., 2010). We note that a similar ra-
tio is also found for the different PMF datasets performed for
the case of Zürich (BBOA / levoglucosan between 3.9 and
12.1). Taken together, the high (for most sites) correlation
(R2
= 0.78 for all sites, single sites in Table 2) between lev-

oglucosan and BBOA and their consistent ratios at different
sites and between the different PMF datasets indicates that
BBOA is well resolved by PMF at all sites, despite potential
site-to-site differences in BBOA composition.

SC-OA: Sulfur-containing fragments (e.g. CH3SO+2 ) are
predominantly apportioned to this factor, which also has a
high OM /OC (1.82, IQR 1.80–1.93; Fig. 3). As mentioned
in Sect. 3.6, the recovery of SC-OA was unknown and had
to be determined by mass closure, while the recoveries of
the other factors were determined by comparison to their on-
line counterparts (albeit for a different dataset; Daellenbach
et al., 2016). In the lack of specific constraints (like an online
counterpart), the recovery of SC-OA is highly uncertain and
thus the factor time series is also highly uncertain. A similar
factor profile had been extracted from previous online AMS
datasets and was related to the fragmentation of methane sul-
fonic acid (MSA) present in PM1 particles, a secondary prod-
uct of marine origin (Crippa et al., 2013b; Zorn et al., 2008).
However, the SC-OA factor extracted here did not seem to
be related to marine emissions because neither its variability
nor its levels matched those of MSA (Fig. 4d). First we com-
pared the MSA levels measured in Zürich using ion chro-
matography to those estimated based on the concentration

of sulfur-containing fragments from offline AMS measure-
ments in SC-OA (Eq. 8), based on Crippa et al. (2013b):

MSAi,est = SC-OAi

·
fSC−OA(CH2SO+2 )+ fSC-OA(CH3SO+2 )+ fSC-OA(CH4SO+3 )

0.147
. (8)

Here, MSAi,est is the estimated MSA concentration, SC-
OAi the factor concentration of the sulfur-containing fac-
tor, fSC-OA(CH2SO+2 ) and the following summands the frac-
tional contributions of the respective organic fragment to SC-
OA, and 0.147 is a scaling factor from Crippa et al. (2013b).
The estimated MSA levels are 6 times higher than the mea-
sured MSA, indicating the presence of another source of
sulfur-containing species. Second, unlike marine OA factors
from previous online datasets (lower size cut-off, typically
PM1), the SC-OA time series does not correlate with MSA
(R2
= 0.02). While MSA concentrations show a clear en-

hancement during summer, the SC-OA time series exhibit a
very weak seasonal variability with slightly higher concen-
trations in winter. SC-OA instead exhibits low background
levels episodically intercepted by remarkable 10-fold en-
hancements, especially at urban sites affected by traffic emis-
sions (e.g. the SC-OA contribution is significantly higher at
sites with higher yearly NOx average levels). The hypothe-
sis of an influence of traffic activity on SC-OA is provided
by the correlation of the yearly average concentrations with
NOx (Rs,SC−OA,NOx = 0.65, n= 9, p<0.06), which is, how-
ever, comparable to the correlation of HOA and COA (e.g.
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Rs,HOA,NOx = 0.68, n= 9, p<0.05; Rs,COA,NOx = 0.68, n=
9, p<0.05). In addition, the SC-OA time series also corre-
lates with that of NOx (overall R2

= 0.32, for sites in Ta-
ble 2). While HOA and BBOA also correlate with NOx , both
of the secondary factors, WOOA and SOOA, do not, support-
ing the hypothesis that SC-OA consists of locally emitted
anthropogenic (primary) OA. The site-to-site differences in
SC-OA concentrations and temporal behaviour suggest that
this factor, which to the best of our knowledge is reported
here for the first time, is influenced by primary sources.

Oxygenated OA factors: Unlike oxygenated OA factors
from limited-duration intensive online campaigns character-
ized by a high temporal resolution in which factor variabil-
ity is thought to be primarily driven by volatility and/or lo-
cal oxidation reactions, OOA factors are resolved based on
differences in their seasonal behaviour: SOOA (in summer)
and WOOA (in winter). The SOOA and WOOA mass spec-
tral signatures (Fig. 3) show similarities with OOA from ear-
lier measurements (Ng et al., 2011; Canonaco et al., 2013,
2015), with high contributions of C2H3O+ and CO+2 and
high OM /OC, though SOOA (OM /OC = 1.89, IQR 1.88–
1.89) is less oxidized than WOOA (OM /OC = 2.12, IQR
2.11–2.14). The mass spectral fingerprints (Fig. 3), the tem-
poral behaviour (Fig. 4e and f), and the relation to markers
(Fig. 5c and d) of the two factors are in agreement with those
from earlier work at other locations, including Zürich (Dael-
lenbach et al., 2016), Payerne (Bozzetti et al., 2016), and
Lithuania (Bozzetti et al., 2017a). This OOA separation ap-
pears to be typical for PMF analysis of long-term, low-time-
resolution OA mass spectra of filter samples.

SOOA correlates significantly among the different sites
(also south and north of the alpine crest) and with local tem-
perature (Fig. 5c). The SOOA exponential increase with av-
erage daily temperatures from 5 to 30 ◦C is consistent with
the exponential increase in terpene emissions, which are
dominant biogenic SOA precursors (Guenther et al., 2006).
This is also consistent with the mass spectral fingerprint
of this factor, characterized by an fC2H3O+ of 0.10 and
an fCO+2 of 0.13, which are similar to values reported for
chamber SOA from terpenes or at an urban location (Zürich)
during summer (Canonaco et al., 2015). A similar temper-
ature dependence of biogenic SOA concentrations has been
observed for a terpene-dominated Canadian forest (Leaitch
et al., 2011) and for the case in Switzerland, using a sim-
ilar source apportionment model (Daellenbach et al., 2016;
Bozzetti et al., 2016). Taken together, these observations sug-
gest that SOOA principally derives from the oxidation of bio-
genic precursors during summer. Site-to-site SOOA concen-
trations were not statistically different within our model er-
rors, assessed from the different sensitivity tests for the case
of Zürich. Therefore, even though the behaviour of SOOA at
the different sites studied here might be controlled by various
parameters, including tree cover, available OA mass, air mass
photochemical age, and oxidation conditions (e.g. NOx con-
centrations), temperature seems to be the main driver of the

SOOA concentrations. Indeed, the aforementioned parame-
ters may contribute, together with model and measurement
uncertainties, to the observed scatter in the data. Biogenic
volatile organic compound emissions might even be non-
negligible in winter (Oderbolz et al., 2013; Schurgers et al.,
2009; Holzke et al., 2006). Therefore, significant wintertime
SOOA concentrations are not in disagreement with the hy-
pothesized biogenic origin. The lower SOOA concentrations
in the temperature range between 7 and 12 ◦C might be ex-
plained by often-occurring precipitation in this temperature
range. We note that relative uncertainties related with SOOA
increase with decreasing concentrations (Fig. 7). A small er-
ror in modelling sources with high contributions (BBOA,
WOOA) in winter can result in a large error of SOOA with
its small contribution during winter. Furthermore, some other
sources like primary biological OA (PBOA; see Sect. 4.2.2)
might also mix into SOOA.

Compared to SOOA, the WOOA profile can be distin-
guished by a higher contribution from CO+2 and a lower
contribution from C2H3O+ (Fig. 3), similar to OOA fac-
tors previously extracted in this region during winter based
on ACSM measurements. This fingerprint is characteristic
of highly oxidized SOA from non-biogenic precursors with
low H /C (e.g. aromatic compounds from wood combus-
tion emissions; Bruns et al., 2016). WOOA is well correlated
with NH+4 (Fig. 5d; overall R2

= 0.65 for all sites, overall
R2
= 0.81 for all PMF runs for Zürich in Table 2), which

is in agreement with earlier studies (e.g. Zürich in Lanz et
al., 2008). This is probably explained by its correlation with
other inorganic secondary ions NO−3 and SO2−

4 (driven like
WOOA by meteorological factors including boundary layer
height and temperature), which govern the NH+4 concentra-
tion in the aerosol. Here, we have used ammonium as a proxy
for aged aerosols affected by anthropogenic emissions, as
WOOA correlates better with ammonium than with nitrate
sulfate. We note that in winter, when WOOA is highest, 56 %
of ammonium can be attributed to nitrate, whereas in sum-
mer ammonium sulfate dominates (97 % of ammonium can
be attributed to sulfate). Therefore, WOOA correlates more
with nitrate (R2

= 0.64) than sulfate (R2
= 0.48). WOOA

exhibits a regional behaviour and its concentrations are cor-
related at all sites on the Swiss plateau. The WOOA mass
spectral fingerprint, its seasonal variability, and its high cor-
relation with long-range transported anthropogenic inorganic
secondary ions suggest that this factor is characteristic of a
highly aged OOA influenced by wintertime anthropogenic
emissions (e.g. biomass burning).

4.2 Uncertainty analysis

4.2.1 Model uncertainties

PMF uncertainties depend on the factor contribution. Ac-
cording to Ulbrich et al. (2009), reliable interpretation of fac-
tors with a low relative contribution is challenging. However,

Atmos. Chem. Phys., 17, 13265–13282, 2017 www.atmos-chem-phys.net/17/13265/2017/



K. R. Daellenbach et al.: Source identification and uncertainty assessment 13275

120

80

40

0

#

1.21.00.80.60.40.20.0
Rk

PMFblock:
 HOA
 COA
 BBOA
 OOA
 SC-OA

PMFzue,isol

 HOA
 COA
 BBOA
 OOA
 SC-OA

 

PMFzue,reps:
 HOA
 COA
 BBOA
 OOA
 SC-OA

PMF1filter/month:
 HOA
 COA
 BBOA
 OOA
 SC-OA

Figure 6. Distributions of Rk for HOA, COA, BBOA, OOA
(WOOA plus SOOA), and SC-OA (500 pairs). A priori information
for HOA, COA, BBOA, and OOA on Rk is used from Daellenbach
et al. (2016), with propagated errors and biases, while RSC-OA is
determined in this study. Distributions of all factors have a resolu-
tion of dRk = 0.01, except for dRSC-OA = 0.05.

the specificity of the time series and factor profile (caused by
rotational ambiguity), and in this sense also solution accep-
tance criteria, influence the uncertainty as well. In our anal-
ysis, we correct our results from WSOM to OM using Rk
and thereby introduce additional uncertainties (caused by the
uncertainty of Rk or an unknown Rk). The more uncertain
Rk , the higher the additional uncertainty in the extrapola-
tion (Eq. 5). As mentioned in Sect. 3.5, Rk constraints (re-
covery combinations for different factors) are available for
RHOA, RCOA, RBBOA, and ROOA but not for RSC-OA and not
for individual OOA factors (Daellenbach et al., 2016). With
the available constraints of mass closure (for Magadino and
Zürich), RSC-OA can only be determined with a high uncer-
tainty (Fig. 6).

The variability in the factor time series for the single PMF
sensitivity tests (PMFblock, PMFzue,isol, PMF1filter/month,
PMFzue,eps) is used as an uncertainty estimate (shaded area
in Fig. 4). This estimate (σa) depends on the measurement
repeatability (10 single mass spectra included for each sam-
ple) and on the selected PMF solution and Rk combinations,
and therefore also on the a value. However, the variability
depending (1) on the choice of input points (time and site;
PMFblock, PMFzue,isol, PMF1filter/month) and (2) on the in-
strumental reproducibility (PMFzue,reps) of the offline AMS
measurements is not accounted for. The contribution of (1)
and (2) to the uncertainty is assessed through the sensitivity
tests by examining the variability of the median factor time
series (σb). σb is the variability of the median factor con-
centrations from the PMF sensitivity tests using PMFblock,
PMFzue,isol, PMF1filter/month, PMFzue,reps for the 12 samples
common to all 4 PMF datasets. For the 12 filters common
in all PMF datasets (PMFblock, PMFzue,isol, PMF1filter/month,
PMFzue,reps), we calculate a best estimate of the overall un-
certainty (errtot), by propagating both error terms: σa and σb.
As σb is not available for all datapoints, we parametrized
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σb as a function of the factor concentration (details in the
Supplement) and subsequently used this parameterized σb,
σ ′b, to calculate an approximated overall error, err′tot. err′tot
is displayed in Fig. 7b in comparison with σa (Fig. 7a). For
all factors, err′tot are in general high, especially for low fac-
tor concentrations (∼ a factor of 2). It is worthwhile to note
that for major factors exhibiting a similar seasonality, i.e.
WOOA and BBOA, a great part of the uncertainty arises
from σb. Thus the variability between the PMF solutions us-
ing PMFblock, PMFzue,isol, PMF1filter/month, PMFzue,reps (σb)
and, therefore, the sensitivity of the factor concentrations on
the chosen PMF dataset, significantly contribute to the un-
certainty. By contrast, for moderately soluble fractions con-
strained in the PMF, COA and HOA, the major part of err′tot
is related to σa .

4.2.2 Influence of unresolved primary biological OA

Unresolved sources in PMF are an inherent uncertainty of
source apportionment analyses. As Bozzetti et al. (2016)
show, PBOA can present considerable contributions to OA
in PM10 (constituting a large part of coarse OA). In the
present analysis, PBOA could not be separated by PMF (nei-
ther unconstrained nor using the mass spectral signature from
Bozzetti et al., 2016). This inability might be caused by the
low water solubility and the absence of PM2.5 filters in the
dataset. Since these coarse particles are only abundant in
PM10 and not in PM2.5 or PM1, the presence of both PM10
and PM2.5 samples, exhibiting a large gradient in PBOA,
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Figure 8. Cellulose concentrations as a function of the season and
site. For comparison, literature data from other years are added at
the European sites: Payerne (Bozzetti et al., 2016, error bars rep-
resenting the standard deviation of the measurements in June and
July), Puy de Dôme, Schauinsland, Sonnblick, K-Puszta (Sanchez-
Ochoa et al., 2007), Birkenes, Hyytiälä, Lille Valby, and Vavihill
(Yttri et al., 2011).

might allow an unambiguous separation of PBOA. The aim
of this section is to estimate the influence of PBOA on the
source apportionment results. A quantification of this frac-
tion is, however, beyond the scope of this paper. In the fol-
lowing, we estimate the influence of PBOA in three alterna-
tive ways.

– Based on factor profiles: Bozzetti et al. (2016) iden-
tified the AMS fragment C2H5O+2 as a possible tracer
ion for PBOA. Based on the seasonality of SOOA (high
in summer and low in winter), one can assume that
SOOA in this study is a linear combination of PBOA
and SOOA identified in PM2.5 and PM1. Based on the
relative contribution of the ion C2H5O+2 to the factor
profiles of SOOA from this analysis and literature pro-
files of PBOA and SOOA from Bozzetti et al. (2016,
study site: Payerne), we estimate that 17 % of the water-
soluble SOOA is in fact PBOA (between 2 and 23 % for
the different sensitivity tests). Using this approach, we
estimate that PBOA contributes 0.30 µgm−3 during the
warm months (site-to-site variability computed as the
standard deviation of the average concentration of all
sites of 0.03 µgm−3). During the same period, SOOA
concentrations are 1.78 µgm−3 (site-to-site variability
of 0.18 µgm−3) and OA concentrations are 4.32 µgm−3

(site-to-site variability of 0.44 µgm−3). This approach
is very uncertain, mainly due to the uncertainty in
PBOA and SOOA profiles, the assumption of a constant

PBOA contribution to SOOA, and also the uncertainty
of RPBOA.

– Based on coarse OC: Bozzetti et al. (2016) showed that
coarse OC (OCcoarse = OCPM10 −OCPM2.5 ) in summer
is dominated by PBOA for samples collected at a rural
site in Switzerland (Payerne). For a subset of the sam-
ples used in the present work, OC in the PM2.5 frac-
tion was also analysed (Basel, Bern, Magadino, Pay-
erne, Zürich accounting for 149 samples in total). For
these samples, the OCcoarse contribution to OC in the
PM10 fraction is 16 % higher in summer than in winter
(site-to-site variability of 4 %). This part of OC might
be related to resuspension caused by traffic or emis-
sions of primary biological particles. The ion C2H5O+2
(indicator for PBOA) shows higher concentrations with
increasing OCcoarse concentrations. Therefore, this in-
crement can tentatively be ascribed to PBOA, which
leads to a contribution of 0.55 µgm−3 to OC in sum-
mer (site-to-site variability 0.16 µgm−3). This results in
an average summer PBOA concentration of 1.21 µgm−3

with a site-to-site variability of 0.39 µgm−3 when as-
suming an OM /OC of 2.2 (or 0.66± 0.21 µgm−3, for
OM /OC = 1.2; OM /OC range according to Bozzetti
et al., 2016). For Magadino (2014, Vlachou et al., 2017),
OCcoarse represents 8 % of OC in PM10 in winter while
this ratio is 25 % in summer. It can be assumed that
the difference of 17 % in summer can be attributed
to PBOA. Extrapolating this estimate to the overall
dataset from 2013 considered in this study and assum-
ing an OM /OC of 2.2, PBOA contributes on average
0.97 µgm−3 to OA in PM10 in summer, with a site-to-
site variability of 0.13 µgm−3 (or 0.63± 0.07 µgm−3

OA with for OM /OC of 1.2).

– Based on cellulose: It has previously been shown that
free cellulose contributes strongly to PBOA (25 % of
PBOA mass, for measurements made in Payerne during
summer 2012 and winter 2013; Bozzetti et al., 2016).
Therefore, we can attempt to use cellulose analyses on
a subset of samples (the same one as for levoglucosan
but Bern; see Sect. 2.3) to estimate PBOA concentra-
tions (Fig. 8). As seen for the case of OCcoarse, cellu-
lose concentrations also increase with higher C2H5O+2
concentrations. For the sites with cellulose measure-
ments available (all sites in the study but Bern), cel-
lulose average concentrations of 0.17 µgm−3 (site-to-
site variability of 0.08 µgm−3, in the warm season
0.18± 0.07 µgm−3) are observed, which corresponds
to 0.69 µgm−3 PBOA with a site-to-site variability of
0.34 µgm−3 (in the warm season 0.77± 0.29 µgm−3),
using the cellulose /PBOA from Bozzetti et al. (2016).
In this last study conducted during summer (15 days in
June–July 2012), PBOA concentrations of 3 µgm−3 on
average (with cellulose concentrations of 0.8 µgm−3)
were estimated, which is clearly above the observation
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Figure 9. Map of Switzerland with yearly cycles. Negative concentrations were set to 0 prior to normalization for display. The OA mass
explained by the source apportionment analysis is termed OAexpl.

made here. However, Bozzetti et al. (2016) assessed
a shorter time period with diurnal resolution, instead
of one sample per month as in the present work. Cel-
lulose concentrations from other European sites dur-
ing other years are consistent with the results in this
study (Sanchez-Ochoa et al., 2007; Yttri et al., 2011).
In general, the background cellulose concentrations at
the southern alpine sites are higher and also the tempo-
ral behaviour deviates from that observed at the north-
ern sites: the maximal concentrations are not reached in
July–August but rather in May or October–November.
The different seasonality might be caused by different
agricultural procedures. The higher background con-
centrations of cellulose for the southern Alpine sites
might be caused by interferences from wood burning,
which in the absence of glucose analyses cannot be ex-
cluded.

All these PBOA estimates (between 0.3 and 1.0 µgm−3 dur-
ing the warm season) are consistently lower than reported
in Bozzetti et al. (2016), with a factor 3 to 10 times lower
depending on the site. One should keep in mind that these
estimates are based on limited datasets in both studies (30
samples in Bozzetti et al. (2016) and 12 samples from the
same site in this study).

4.3 Factor relative contribution at different sites

In general, the seasonality of the factor time series is con-
sistent for all nine sites in the entire study area (Fig. 9).
In summer, SOOA is the main contributor to OA, while
in winter POA (HOA+COA+BBOA) becomes more im-
portant, although WOOA still contributes significantly. In
comparison to the sites in northern Switzerland, OA in the
southern alpine valleys is dominated by BBOA in winter,
while in the north WOOA also plays a role. The differ-
ent factors contribute 0.47± 0.12 (HOA, average and site-
to-site variability), 0.31± 0.13 (COA), 1.37± 1.77 (BBOA),
0.67± 0.31 (SC-OA), 1.11± 0.23 (WOOA), and 1.31± 0.13
(SOOA) µgm−3 for all sites during the entire year (Ta-
ble 3). In northern Switzerland, POA contributes less to OA
(POA/OA= 0.3) than in the southern alpine valleys, where
POA/OA is equal to 0.6. Among POA, BBOA is the most
important, with 87 % of POA in the south and 42 % in the
north. The higher relative contribution of BBOA to POA in
the southern alpine valleys than at the northern sites sup-
ports the conclusion that the high BBOA concentrations (e.g.
2.45 µgm−3 in Magadino compared to 0.62 µgm−3 in Vaduz)
are not only a consequence of the meteorological situation
in the valleys (strong thermal inversion close to the valley
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Table 3. Yearly average contribution and uncertainty of resolved factors for PMFblock run for the different sites and the average for all sites.
The uncertainty is calculated based on the variability in the yearly averages from PMFblock and the variability between the sensitivity tests.

Factor contribution HOA COA BBOA SC-OA WOOA SOOA
and uncertainty
µgm−3 (%)

Basel 0.65± 0.23
(14)

0.35± 0.19
(8)

0.72± 0.15
(16)

0.51± 0.24
(11)

1.08± 0.24
(24)

1.21± 0.30
(27)

Bern 0.61± 0.23
(11)

0.59± 0.29
(11)

0.64± 0.14
(12)

1.25± 0.45
(23)

1.21± 0.28
(22)

1.11± 0.29
(21)

Frauenfeld 0.56± 0.22
(12)

0.28± 0.19
(6)

0.64± 0.14
(14)

0.96± 0.35
(20)

0.98± 0.22
(21)

1.30± 0.32
(27)

St. Gallen 0.40± 0.20
(11)

0.15± 0.16
(3)

0.42± 0.09
(11)

0.71± 0.27
(19)

0.83± 0.19
(22)

1.22± 0.30
(33)

Magadino 0.41± 0.20
(6)

0.27± 0.21
(4)

2.45± 0.50
(37)

0.41± 0.20
(6)

1.53± 0.32
(23)

1.54± 0.35
(24)

Payerne 0.34± 0.19
(9)

0.15± 0.16
(4)

0.54± 0.12
(15)

0.26± 0.16
(7)

1.00± 0.22
(27)

1.41± 0.33
(38)

Vaduz 0.43± 0.20
(10)

0.27± 0.19
(6)

0.62± 0.14
(14)

0.84± 0.30
(20)

0.93± 0.22
(22)

1.22± 0.30
(28)

S. Vittore 0.33± 0.18
(4)

0.28± 0.22
(3)

5.78± 1.16
(59)

0.51± 0.23
(5)

1.39± 0.30
(14)

1.45± 0.33
(15)

Zürich 0.54± 0.22
(12)

0.41± 0.21
(9)

0.51± 0.11
(12)

0.62± 0.28
(14)

1.01± 0.23
(23)

1.35± 0.33
(30)

Average 0.47± 0.21
(9)

0.31± 0.20
(6)

1.37± 0.28
(26)

0.67± 0.28
(13)

1.11± 0.25
(21)

1.31± 0.32
(25)

ground) but mainly reflect the emission strength. SC-OA,
which is possibly linked to a local source of rather primary
origin, shows clear site-to-site differences, with high con-
centrations at a traffic site in Bern (1.25 µgm−3) and low
concentrations at a rural site in Payerne (0.26 µgm−3), for
example. SOOA, believed to have strong influences from
biogenic SOA, shows consistently low concentrations at all
sites for low temperatures (0.76± 0.67 µgm−3 at 5–15 ◦C)
and clearly increased concentrations under warmer condi-
tions (4.85± 1.51 µgm−3 at 25–35 ◦C).

5 Conclusions

Sources contributing to OA are quantitatively separated and
their uncertainty estimated statistically at nine sites in cen-
tral Europe throughout the entire year 2013 (819 samples).
Thereby, three primary (HOA, COA, BBOA) OA sources are
separated from two secondary (WOOA, SOOA) categories
and a yet unknown source explaining sulfur-containing frag-
ments (SC-OA). BBOA exhibits clearly higher concentra-
tions at the alpine valley sites in southern Switzerland than
at the sites in northern Switzerland. SOOA, characterized by
high concentrations in summer, shows a more than linear in-

crease with rising temperatures as is observed from biogenic
volatile organic compound emissions and biogenic SOA con-
centrations. WOOA, the dominant SOA category during win-
ter, closely correlates with NH+4 . The influence of PBOA, not
resolved by PMF, is estimated using, among others, cellulose
analyses and could be an important contributor. Cellulose’s
temporal behaviour suggests maximal PBOA contributions
in northern Switzerland during summer, while at the south-
ern alpine sites maximal concentrations are reached in spring
and autumn.

Data availability. The data are available upon request from the cor-
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