



# Supplement of

# Kinetic modeling studies of SOA formation from $\alpha$ -pinene ozonolysis

Kathrin Gatzsche et al.

Correspondence to: Kathrin Gatzsche (gatzsche@tropos.de)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

# 1 Gas-phase chemistry mechanism for $\alpha$ -pinene oxidation

Table S1: Reaction mechanism for the degradation of  $\alpha$ -pinene according to Chen and Griffin (2005) updated by rate constants from MCM and HOM yields.

| #  | Reactants         |               | Products                                                                                                            | Rate constant in<br>$cm^3$ molecule <sup>-1</sup> s <sup>-1</sup> | Ref. |
|----|-------------------|---------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|
| 1a | APIN + OH         | $\rightarrow$ | $RO_2101 + RO_2T$                                                                                                   | $1.21\text{E-}11 \times \exp(444/T)$                              | 1,6  |
| 1b | APIN + OH         | $\rightarrow$ | $0.961  \text{RO}_2 101 + 0.961  \text{RO}_2 \text{T} + 0.024  \text{HOM}^\dagger$                                  | $1.21E-11 \times \exp(444/T)$                                     | 1,6  |
| 2  | APIN + $NO_3$     | $\rightarrow$ | $RO_2102 + RO_2T$                                                                                                   | $1.2\text{E-}12\times\exp\left(490/T\right)$                      | 1,6  |
| 3a | APIN + $O_3$      | $\rightarrow$ | $0.2 \text{ RO}_2 103 + 0.2 \text{ CO} + 0.8 \text{ OH} + 0.05 \text{ UR} 101 + 0.15 \text{ PINA} +$                | $8.05\text{E-}16\times\exp\left(640/T\right)$                     | 1,6  |
|    |                   |               | $0.15\mathrm{H}_{2}\mathrm{O}_{2} + 0.33\mathrm{RO}_{2}104 + 0.27\mathrm{RO}_{2}105 + 0.8\mathrm{RO}_{2}\mathrm{T}$ |                                                                   |      |
| 3b | APIN + $O_3$      | $\rightarrow$ | $0.1932 \text{ RO}_2 103 + 0.1932 \text{ CO} + 0.7728 \text{ OH} + 0.0483 \text{ UR101} +$                          | $8.05\text{E-}16\times\exp\left(640/T\right)$                     | 1,6  |
|    |                   |               | $0.1449PINA + 0.1449H_2O_2 + 0.31878RO_2104 + 0.26082RO_2105$                                                       |                                                                   |      |
|    |                   |               | $+ 0.034 \mathrm{HOM}^{\dagger}$                                                                                    |                                                                   |      |
| 4  | APIN + O3PX       | $\rightarrow$ | 0.75 UR103 + 0.25 NOPI                                                                                              | 3.2E-11                                                           | 2    |
| 5  | $RO_2101 + NO$    | $\rightarrow$ | $0.2 \text{ AP101} + 0.6 \text{ PINA} + 0.8 \text{ HO}_2 + 0.2 \text{ KETH} + 0.2 \text{ HCHO}$                     | $8.8E-13 \times \exp(180.2/T)$                                    | 2    |
| 6  | $RO_2101 + RO_2T$ | $\rightarrow$ | $0.7 \text{ PINA} + \text{HO}_2 + 0.3 \text{ UR107} + \text{O}_2$                                                   | $1.82\text{E-}13\times\exp\left(416/T\right)$                     | 2    |
| 7  | $RO_2101 + HO_2$  | $\rightarrow$ | 0.8 PINA + 0.2 KETH + 0.2 HCHO + OOH1                                                                               | $4.1\text{E-}13\times\exp\left(790/T\right)$                      | 2    |
| 8  | $RO_2102 + NO$    | $\rightarrow$ | $0.6 \text{ PINA} + 1.825 \text{ NO}_2 + 0.175 \text{ AP102} + 0.225 \text{ KETH} +$                                | $8.8E-13 \times \exp(180.2/T)$                                    | 2    |
|    |                   |               | $0.225 \text{ HCHO} + 0.4 \text{ HO}_2$                                                                             |                                                                   |      |
| 9  | $RO_2102 + RO_2T$ | $\rightarrow$ | $0.795  \text{PINA} + 0.795  \text{NO}_2 + 0.135  \text{AP101} + 0.07  \text{AP102} + \text{O}_2$                   | $1.82\text{E-}13\times\exp\left(416/T\right)$                     | 2    |
| 10 | $RO_2102 + HO_2$  | $\rightarrow$ | $0.6\mathrm{PINA} + 0.825\mathrm{NO}_2 + 0.175\mathrm{AP102} + 0.225\mathrm{HCHO} + 0.225\mathrm{HO}_2$             | $4.1\text{E-}13\times\exp\left(790/T\right)$                      | 2    |
|    |                   |               | + 0.175 OOH1 + 0.825 OOH2                                                                                           |                                                                   |      |
| 11 | $RO_2103 + NO$    | $\rightarrow$ | $0.38 \text{ AP103} + 0.62 \text{ NRPA} + 0.62 \text{ HO}_2 + 0.62 \text{ NO}_2$                                    | $1.05\text{E-}12 \times \exp(180.2/T)$                            | 2, a |
| 12 | $RO_2103 + RO_2T$ | $\rightarrow$ | NRPA + $HO_2$ + $O_2$                                                                                               | $1.82\text{E-}13\times\exp\left(416/T\right)$                     | 2    |
| 13 | $RO_2103 + HO_2$  | $\rightarrow$ | NRPA + OOH1                                                                                                         | $4.1\text{E-}13\times\exp\left(790/T\right)$                      | 2    |
| 14 | $RO_2104 + NO$    | $\rightarrow$ | $NO_2 + RO_2 108 + RO_2 8$                                                                                          | $8.8\text{E-13} \times \exp(180.2/T)$                             | 2    |
| 15 | $RO_2104 + RO_2T$ | $\rightarrow$ | $0.7 \operatorname{RO}_2 108 + 0.7 \operatorname{RO}_2 8 + 0.3 \operatorname{RP} 102 + \operatorname{O}_2$          | $1.82\text{E-}13 \times \exp(416/T)$                              | 2    |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 | $RO_2104 + HO_2$       | $\rightarrow \text{ RO}_2 108 + \text{RO}_2 8 + \text{OOH2}$                                                | $4.1\text{E-}13 \times \exp\left(790/T\right)$ | 2    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| 18 $PO_2 105 + RO_2 T$ $\rightarrow 0.8 HCHO + 0.8 RO_2 109 + 0.01 UR105 + 0.05 RP103 + 1.82E-13 \times exp(-0.05 UR108 + O_2         19       RO_2 105 + HO_2 \rightarrow HCHO + RO_2 109 + OOH2 A.1E-13 \times exp(7)         20       PINA + h\nu \rightarrow O.8 HO_2 106 + OD2 PIotolysis MCM         21       PINA + h\nu \rightarrow O.8 RO_2 106 + 0.2 RO2 104 + H_2O 9.1E-11         22       PINA + OH \rightarrow RO_2 106 + HO_3 5.4E-14         23       RO_2 106 + NO \rightarrow RO_2 105 + NO_2 see Griffin et al. 0.25         24       RO_2 106 + NO_2 see Griffin et al. 0.25 PAN 101 \rightarrow RO_2 106 + NO_2 see Griffin et al. 0.25         25       PAN 101 \rightarrow RO_2 106 + NO_2 see Griffin et al. 0.25 RO_2 106 + RO_2 T \rightarrow 0.2 UR101 + 0.3 RO_2 103 + 0.8 CO_2 + O_2 S.0E-12         26       RO_2 106 + RO_2 T \rightarrow 0.2 UR101 + 0.3 RO_2 103 + 0.8 CO_2 + O_2 S.0E-12 S.0E-12         27       RO_2 106 + RO_2 T \rightarrow 0.2 UR101 + 0.3 RO_2 103 + 0.8 CO_2 + O_2 S.0E-12 S.0E-12         28       NRPA + DH \rightarrow 0.2 UR101 + 0.3 RO_2 108 + RO_2 S.0E-12 S.0E-12         28       RO_2 107 + NO_3 \rightarrow RO_2 107 + NO_3 see Griffin et al. 0.25 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 | $RO_2105 + NO$         | $\rightarrow$ HCHO + NO <sub>2</sub> + RO <sub>2</sub> 109                                                  | $8.8\text{E-13} \times \exp(180.2/T)$          | 2    |
| 19 $RO_2 105 + HO_2$ $\rightarrow$ HCHO + $RO_2 109 + OOH2$ $4.1E-13 \times exp(73)$ 20         PINA + $h\nu$ $\rightarrow$ $OC + HO_2 + RO_2 103$ Photolysis MCM           21         PINA + OH $\rightarrow$ $0.8 RO_2 106 + 10.2 RO2 104 + H_2O$ $9.1E-11$ 22         PINA + NO <sub>3</sub> $\rightarrow$ $RO_2 106 + HO_3$ $5.4E-14$ 23 $RO_2 106 + NO_3$ $ae$ $Griffin et al. (2006 + NO_2)$ $ae$ 24 $RO_2 106 + NO_3$ $ae$ $Griffin et al. (2006 + NO_2)$ $ae$ 25 $PAN101$ $\rightarrow$ $RO_2 106 + NO_2$ $ae$ $Griffin et al. (2006 + NO_2)$ $ae$ 26 $RO_2 106 + RO_2 T$ $\rightarrow$ $O.2 UR101 + 0.8 RO_2 103 + 0.8 CO_2 + O_2$ $SOE-12$ 27 $RO_2 106 + HO_2$ $\rightarrow$ $O.2 UR101 + O_3$ $AE -14$ 28         NRPA + $h\nu$ $\rightarrow$ $O.2 UR107 + O.2 RO_2 108$ $Photolysis MCM$ 29         NRPA + NO_3 $\rightarrow$ $RO_2 107 + HO_3$ $AE -14$ 31 $RO_2 107 + NO_3$ $AE -14$ $AI - 11 + 1 \times exp (18)$ 32 $RO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 | $RO_2105 + RO_2T$      | $\rightarrow 0.8  {\rm HCHO} + 0.8  {\rm RO}_2 109 + 0.10  {\rm UR105} + 0.05  {\rm RP103} +$               | $1.82\text{E-}13 \times \exp(416/T)$           | 2    |
| 19 $RO_2 105 + HO_2$ $\rightarrow$ HCHO + $RO_2 109 + OOH2$ $4.1E \cdot 13 \times exp (75)$ 20       PINA + $h\nu$ $\rightarrow$ CO + HO_2 + RO_2 103       Photolysis MCM         21       PINA + OH $\rightarrow$ 0.8 RO_2 106 + HO_3       5.4E \cdot 14         23       RO_2 106 + NO $\rightarrow$ RO_2 106 + HO_3       5.4E \cdot 14         24       RO_2 106 + NO $\rightarrow$ RO_2 103 + 0.8 CO_2 + O_2       1.11 \cdot 11 \times exp (18)         25       PAN101 $\rightarrow$ PAD 2 103 + 0.8 CO_2 + O_2       5.0E \cdot 12         26       RO_2 106 + RO_2 T $\rightarrow$ 0.2 UR 101 + 0.8 RO_2 103 + 0.8 CO_2 + O_2       5.0E \cdot 12         27       RO_2 106 + HO_2 $\rightarrow$ 0.2 UR 101 + 0.8 RO_2 103 + 0.8 CO_2 + O_2       5.0E \cdot 12         28       NRPA + HO_2 $\rightarrow$ 0.2 UR 101 + 0.8 RO_2 103 + 0.8 CO_2 + O_2       5.0E \cdot 12         29       NRPA + NO_3 $\rightarrow$ CO + HO_2 + RO_2 108       Photolysis MCM         29       NRPA + ND $\rightarrow$ CO + HO_2 + RO_2 108       1.11 \cdot 11 \times exp (18)         31       RO_2 107 + NO $\rightarrow$ NO_2 + CO_2 + RO_2 108       1.11 \cdot 11 \times exp (18)         32       RO_2 107 + NO_2 $\rightarrow$ RO_2 107 + NO_2       see Griffinet al. (2)         33       PAN102 $\rightarrow$ RO_2 107 + NO_2       see Griffinet al. (2)         34       RO_2 107 + RO_2 T <t< td=""><td></td><td></td><td><math>0.05 \text{ UR} 108 + \text{O}_2</math></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                       |    |                        | $0.05 \text{ UR} 108 + \text{O}_2$                                                                          |                                                |      |
| 20       PINA + h $\nu$ $\rightarrow$ CO + HO <sub>2</sub> + RO <sub>2</sub> 103       Photolysis MCM         21       PINA + OH $\rightarrow$ 0.8 RO <sub>2</sub> 106 + 0.2 RO2104 + H <sub>2</sub> O       9.1E-11         22       PINA + NO <sub>3</sub> $\rightarrow$ RO <sub>2</sub> 106 + HO <sub>3</sub> 5.4E-14         23       RO <sub>2</sub> 106 + NO $\rightarrow$ RO <sub>2</sub> 103 + 0.8 CO <sub>2</sub> + O <sub>2</sub> 1.11-11 × exp (18)         24       RO <sub>2</sub> 106 + NO $\rightarrow$ RO <sub>2</sub> 106 + NO <sub>2</sub> see Griffinet al. (2)         25       PAN101 $\rightarrow$ RO <sub>2</sub> 106 + NO <sub>2</sub> see Griffinet al. (2)         26       RO <sub>2</sub> 106 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR101 + 0.8 RO <sub>2</sub> 103 + 0.8 CO <sub>2</sub> + O <sub>2</sub> S.0E-12         27       RO <sub>2</sub> 106 + HO <sub>2</sub> $\rightarrow$ 0.2 UR101 + 0.3 RO <sub>2</sub> 103 + 0.8 CO <sub>2</sub> + O <sub>2</sub> S.0E-12         27       RO <sub>2</sub> 106 + HO <sub>2</sub> $\rightarrow$ 0.2 UR101 + 0.3 RO <sub>2</sub> 103 + 0.8 CO <sub>2</sub> + O <sub>2</sub> Photolysis MCM         29       NRPA + DH $\rightarrow$ 0.8 RO <sub>2</sub> 107 + 0.2 RO <sub>2</sub> 104 + H <sub>2</sub> O       Photolysis MCM         20       NRPA + OH $\rightarrow$ 0.8 RO <sub>2</sub> 107 + NO <sub>3</sub> S.4E-14         31       RO <sub>2</sub> 107 + NO $\rightarrow$ NO <sub>2</sub> 107 + NO <sub>2</sub> See Griffinet al. (2)         32       RO <sub>2</sub> 107 + NO <sub>2</sub> $\rightarrow$ RO <sub>2</sub> 107 + NO <sub>2</sub> See Griffinet al. (2)         33       PAN102 $\rightarrow$ RO <sub>2</sub> 107 + NO <sub>2</sub> See Griffinet al. (2)         34       RO <sub>2</sub> 107 + RO <sub>2</sub> T | 19 | $RO_2105 + HO_2$       | $\rightarrow$ HCHO + RO <sub>2</sub> 109 + OOH2                                                             | $4.1\text{E-}13 \times \exp(790/T)$            | 2    |
| 21       PINA + OH $\rightarrow$ 0.8 R0_2106 + 0.2 R02104 + H_20       9.1E-11         22       PINA + N0 <sub>3</sub> $\rightarrow$ R0_2106 + HN0 <sub>3</sub> 5.4E-14         23       R0_2106 + N0 $\rightarrow$ PAN101 + M       see Griffinet al. (2000 + N02 + M)         24       R0_2106 + N02 + M $\rightarrow$ PAN101 + M       see Griffinet al. (2000 + N02 + M)         25       PAN101 $\rightarrow$ R0_2106 + N02 + M       see Griffinet al. (2000 + N02 + M)         26       R0_2106 + R02 T $\rightarrow$ 0.2 UR101 + 0.8 R0_2103 + 0.8 C02 + 02 + 02       5.0E-12         27       R0_2106 + HO2 + $\rightarrow$ 0.2 UR101 + 0.8 R0_2103 + 0.8 C02 + 02 + 02       5.0E-12         28       NRPA + h $\nu$ $\rightarrow$ C0 + HO_2 + R0_2108       Photolysis MCM         29       NRPA + OH $\rightarrow$ 0.8 R0_2107 + N02 arc 2104 + H_2O       9.1E-11         30       NRPA + NO3 $\rightarrow$ R0_2107 + HN03       5.4E-14         31       R0_2107 + NO $\rightarrow$ $\rightarrow$ R0_2107 + NO2       see Griffinet al. (2000 + 0.8 C02 +                                                                                                                                                                                                              | 20 | PINA + $h\nu$          | $\rightarrow$ CO + HO <sub>2</sub> + RO <sub>2</sub> 103                                                    | Photolysis MCM*                                | 6, 7 |
| 22       PINA + NO3 $\rightarrow$ RO2106 + HNO3       5.4E-14         23       RO2106 + NO $\rightarrow$ RO2103 + 0.8 CO2 + O2       1.11-11 × exp (18)         24       RO2106 + NO2 + M $\rightarrow$ PAN101 + M       see Griffinet al. (11)         25       PAN101 $\rightarrow$ RO2106 + NO2       see Griffinet al. (12)         26       RO2106 + RO2T $\rightarrow$ 0.2 UR101 + 0.8 RO2103 + 0.8 CO2 + O2       5.0E-12         27       RO3106 + HO2 $\rightarrow$ 0.2 UR101 + O3       4.3E-13 × exp (10)         28       NRPA + H $\nu$ $\rightarrow$ CO + HO2 + RO2108       Photolysis MCM         29       NRPA + OH $\rightarrow$ 0.8 RO2107 + 0.2 RO2104 + H2O       9.1E-11         30       NRPA + NO3 $\rightarrow$ RO2107 + HNO3       5.4E-14         31       RO2107 + NO + MO2 + CO2 + RO2108       1.11-11 × exp (18)         32       RO2107 + NO2       see Griffinet al. (11)         33       PAN102 $\rightarrow$ RO2107 + NO2       see Griffinet al. (12)         34       RO2107 + RO2 T $\rightarrow$ 0.2 UR102 + 0.8 CO2 + 0.87, RO2108 + O2       5.0E-12         35       RO2107 + HO2 $\rightarrow$ UR102 + O3       4.3E-13 × exp (10)         36       RO2107 + HO2 $\rightarrow$ UR102 + O3       4.3E-13 × exp (10)         37       RO2108 + RO2 $\rightarrow$ KETH + HO2 + O2 <td>21</td> <td>PINA + OH</td> <td><math display="block">\rightarrow \ 0.8  \text{RO}_2 106 + 0.2  \text{RO}2 104 + \text{H}_2 \text{O}</math></td> <td>9.1E-11</td> <td>4</td>                                                                                                                                                                                                                                                                                                          | 21 | PINA + OH              | $\rightarrow \ 0.8  \text{RO}_2 106 + 0.2  \text{RO}2 104 + \text{H}_2 \text{O}$                            | 9.1E-11                                        | 4    |
| 23 $RO_2106 + NO$ $\rightarrow RO_2103 + 0.8 CO_2 + O_2$ $1.11-11 \times exp(18)$ 24 $RO_2106 + NO_2 + M$ $\rightarrow PAN101 + M$ see Griffin et al. (         25 $PAN101$ $\rightarrow RO_2106 + NO_2$ see Griffin et al. (         26 $RO_2106 + RO_2T$ $\rightarrow 0.2 UR101 + 0.8 RO_2103 + 0.8 CO_2 + O_2$ $5.0E-12$ 27 $RO_2106 + HO_2$ $\rightarrow 0.2 UR101 + 0.8 RO_2103 + 0.8 CO_2 + O_2$ $5.0E-12$ 28 $NRPA + h\nu$ $\rightarrow CO + HO_2 + RO_2108$ Photolysis MCM         29 $NRPA + OH$ $\rightarrow 0.8 RO_2107 + 0.2 RO_2104 + H_2O$ $9.1E-11$ 30 $NRPA + NO_3$ $\rightarrow RO_2107 + HO_3$ $5.4E-14$ 31 $RO_2107 + NO_2$ $ace$ Griffin et al. (         32 $RO_2107 + NO_2 + M$ $\rightarrow PAN102 + M$ see Griffin et al. (         33 $PAN102$ $\rightarrow RO_2107 + NO_2$ see Griffin et al. (         34 $RO_2107 + RO_2T$ $\rightarrow 0.2 UR102 + 0.8 CO_2 + 0.87.RO_2108 + O_2$ $5.0E-12$ 35 $RO_2107 + HO_2$ $\rightarrow UR102 + O_3$ $4.3E-13 \times exp(10)$ 36 $RO_2107 + HO_2$ $\rightarrow UR102 + O_3$ $4.3E-13 \times exp(10)$ 37 $RO_2108 + RO_2$ $\rightarrow KETH + HO_2 + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 | $PINA + NO_3$          | $\rightarrow \text{ RO}_2 106 + \text{HNO}_3$                                                               | 5.4E-14                                        | 4    |
| 24       RO2106 + NO2 + M $\rightarrow$ PAN101 + M       see Griffin et al. (         25       PAN101 $\rightarrow$ RO2106 + NO2       see Griffin et al. (         26       RO2106 + RO2T $\rightarrow$ 0.2 UR101 + 0.8 RO2103 + 0.8 CO2 + O2       5.0E-12         27       RO2106 + HO2 $\rightarrow$ 0.2 UR101 + O3       4.3E-13 × exp (10         28       NRPA + h $\nu$ $\rightarrow$ CO + HO2 + RO2108       Photolysis MCM         29       NRPA + OH $\rightarrow$ 0.8 RO2107 + 0.2 RO2104 + H2O       9.1E-11         30       NRPA + NO3 $\rightarrow$ RO2107 + HNO3       5.4E-14         31       RO2107 + NO2 + M $\rightarrow$ PAN102 + M       see Griffin et al. (         33       PAN102 $\rightarrow$ RO2107 + NO2       see Griffin et al. (         34       RO2107 + RO2T $\rightarrow$ 0.2 UR102 + 0.8 CO2 + 0.87, RO2108 + O2       5.0E-12         35       RO2107 + RO2T $\rightarrow$ 0.2 UR102 + 0.8 CO2 + 0.87, RO2108 + O2       5.0E-12         35       RO2107 + RO2T $\rightarrow$ UR102 + O3       4.3E-13 × exp (10         36       RO2108 + RO2 $\rightarrow$ UR102 + O3       4.3E-13 × exp (10         37       RO2108 + RO2T $\rightarrow$ 0.2 UR103 + 0.65 KETH + 0.65 NO2 + 0.65 HO2       1.24E-12 × exp (12         38       RO2108 + RO2 $\rightarrow$ KETH + HO2 + O2       1.82E-13 × exp (12 <td>23</td> <td><math>RO_2106 + NO</math></td> <td><math>\rightarrow \mathrm{RO}_2 \mathrm{103} + \mathrm{0.8}\mathrm{CO}_2 + \mathrm{O}_2</math></td> <td><math>1.11-11 \times \exp(180.2/T)</math></td> <td>2</td>                                                                                                                                                                                                                                                | 23 | $RO_2106 + NO$         | $\rightarrow \mathrm{RO}_2 \mathrm{103} + \mathrm{0.8}\mathrm{CO}_2 + \mathrm{O}_2$                         | $1.11-11 \times \exp(180.2/T)$                 | 2    |
| 25       PAN101 $\rightarrow$ RO <sub>2</sub> 106 + NO <sub>2</sub> see Griffin et al. (         26       RO <sub>2</sub> 106 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR101 + 0.8 RO <sub>2</sub> 103 + 0.8 CO <sub>2</sub> + O <sub>2</sub> 5.0E-12         27       RO <sub>2</sub> 106 + HO <sub>2</sub> $\rightarrow$ 0.2 UR101 + O <sub>3</sub> 4.3E-13 × exp(10)         28       NRPA + h $\nu$ $\rightarrow$ CO + HO <sub>2</sub> + RO <sub>2</sub> 108       Photolysis MCM         29       NRPA + OH $\rightarrow$ 0.8 RO <sub>2</sub> 107 + 0.2 RO <sub>2</sub> 104 + H <sub>2</sub> O       9.1E-11         30       NRPA + NO <sub>3</sub> $\rightarrow$ RO <sub>2</sub> 107 + HO <sub>3</sub> 5.4E-14         31       RO <sub>2</sub> 107 + NO $\rightarrow$ NO <sub>2</sub> + CO <sub>2</sub> + RO <sub>2</sub> 108       1.11-11 × exp(18)         32       RO <sub>2</sub> 107 + NO $\rightarrow$ PAN102 + M       see Griffin et al. (         33       PAN102 $\rightarrow$ RO <sub>2</sub> 107 + NO <sub>2</sub> see Griffin et al. (         34       RO <sub>2</sub> 107 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR102 + 0.8 CO <sub>2</sub> + 0.87, RO <sub>2</sub> 108 + O <sub>2</sub> 5.0E-12         35       RO <sub>1</sub> 107 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR102 + 0.8 CO <sub>2</sub> + 0.87, RO <sub>2</sub> 108 + O <sub>2</sub> 5.0E-12         35       RO <sub>2</sub> 107 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR102 + O.3       4.3E-13 × exp(10)         36       RO <sub>2</sub> 107 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR102 + O.3       4.3E-13 × exp(10)         37       RO <sub>2</sub> 108 + RO <sub>2</sub> T $\rightarrow$ KETH + HO <sub>2</sub> + O <sub>2</sub> 1.11-11 × exp(18)         38       RO <sub>2</sub> 109 + NO $\rightarrow$            | 24 | $RO_2106 + NO_2 + M$   | $\rightarrow$ PAN101 + M                                                                                    | see Griffin et al. (2002)                      | 3    |
| 26 $RO_2 106 + RO_2 T$ $\rightarrow 0.2 UR101 + 0.8 RO_2 103 + 0.8 CO_2 + O_2$ 5.0E-1227 $RO_2 106 + HO_2$ $\rightarrow 0.2 UR101 + O_3$ 4.3E-13 × exp(10)28 $NRPA + h\nu$ $\rightarrow CO + HO_2 + RO_2 108$ Photolysis MCM29 $NRPA + OH$ $\rightarrow 0.8 RO_2 107 + 0.2 RO_2 104 + H_2O$ 9.1E-1130 $NRPA + NO_3$ $\rightarrow RO_2 107 + HNO_3$ 5.4E-1431 $RO_2 107 + NO$ $\rightarrow NO_2 + CO_2 + RO_2 108$ 1.11-11 × exp(18)32 $RO_2 107 + NO_2 + M$ $\rightarrow PAN102 + M$ see Griffin et al. (10)33PAN102 $\rightarrow RO_2 107 + NO_2$ see Griffin et al. (10)34 $RO_2 107 + RO_2 T$ $\rightarrow 0.2 UR102 + 0.8 CO_2 + 0.87, RO_2 108 + O_2$ 5.0E-1235 $RO_2 107 + HO_2$ $\rightarrow UR102 + O_3$ 4.3E-13 × exp(10)36 $RO_2 108 + RO_2 T$ $\rightarrow VETH + HO_2 + O_2$ 1.24E-12 × exp(12)37 $RO_2 108 + RO_2 T$ $\rightarrow KETH + HO_2 + O_2$ 1.82E-13 × exp(12)38 $RO_2 109 + NO_2$ $\rightarrow CO_2 + NO_2 + RO_2 108$ 1.11-11 × exp(18)40 $RO_2 109 + NO_2$ $\rightarrow CO_2 + NO_2 + RO_2 108$ 1.11-11 × exp(18)41PAN103 $\rightarrow CO_2 + NO_2 + RO_2 108$ 1.11-11 × exp(18)42 $RO_2 109 + NO_2$ $\rightarrow CO_2 + NO_2 + RO_2 108$ 1.11-11 × exp(18)43 $RO_2 109 + NO_2$ $\rightarrow CO_2 + NO_2 + RO_2 108$ 1.11-11 × exp(18)44 $AP101 + OA$ $\rightarrow PAN103 + M$ see Griffin et al. (10)45 $RO_2 109 + NO_2$ $\rightarrow CO_2 + NO_2 + RO_2 108 + O_2 108 +$                                                                                                                                                                                                                                                                                                            | 25 | PAN101                 | $\rightarrow \text{ RO}_2 106 + \text{NO}_2$                                                                | see Griffin et al. (2002)                      | 3    |
| 27 $RO_2 106 + HO_2$ $\rightarrow 0.2 UR101 + O_3$ $4.3E-13 \times exp(10)$ 28 $NRPA + h\nu$ $\rightarrow CO + HO_2 + RO_2 108$ Photolysis MCM29 $NRPA + OH$ $\rightarrow 0.8 RO_2 107 + 0.2 RO_2 104 + H_2O$ $9.1E-11$ 30 $NRPA + NO_3$ $\rightarrow RO_2 107 + HO_3$ $5.4E-14$ 31 $RO_2 107 + NO$ $\rightarrow NO_2 + CO_2 + RO_2 108$ $1.11-11 \times exp(18)$ 32 $RO_2 107 + NO_2 + M$ $\rightarrow PAN 102 + M$ see Griffin et al. (33 $PAN 102$ $\rightarrow RO_2 107 + NO_2$ see Griffin et al. (34 $RO_2 107 + RO_2 T$ $\rightarrow 0.2 UR 102 + 0.8 CO_2 + 0.87, RO_2 108 + O_2$ $5.0E-12$ 35 $RO_2 107 + HO_2$ $\rightarrow UR 102 + O_3$ $4.3E-13 \times exp(10)$ 36 $RO_2 107 + HO_2$ $\rightarrow UR 102 + O_3$ $4.3E-13 \times exp(10)$ 37 $RO_2 108 + RO$ $\rightarrow 0.35 AP 104 + 0.65 KETH + 0.65 NO_2 + 0.65 HO_2$ $1.24E-12 \times exp(10)$ 38 $RO_2 108 + RO_2 T$ $\rightarrow KETH + HO_2 + O_2$ $1.82E-13 \times exp(10)$ 39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11-11 \times exp(18)$ 41 $PAN 103$ $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (42 $RO_2 109 + NO_2 + M$ $\rightarrow PAN 103 + M$ see Griffin et al. (43 $RO_2 109 + HO_2$ $\rightarrow UR 104 + O_2$ $4.3E-13 \times exp(10)$ 44 $AP 101 + OH$ $\rightarrow PAN 103 + M$ see Griffin et al. (45 $AP 101 + OH$ $\rightarrow PAN 103 + M$ see Griffin et al. (46 $AP 101 + OH$ $\rightarrow PAN 103 + M_2$ $ASE-13 \times exp(10)$ 47 $AP 101 + OH$ $\rightarrow PAN 103 + M_2$ $ASE-13 \times exp(10)$ <                                                                                                                                                                                                                                                                                         | 26 | $RO_2106 + RO_2T$      | $\rightarrow 0.2 \text{ UR101} + 0.8 \text{ RO}_2 103 + 0.8 \text{ CO}_2 + \text{O}_2$                      | 5.0E-12                                        | 2    |
| 28       NRPA + $h\nu$ $\rightarrow$ CO + HO <sub>2</sub> + RO <sub>2</sub> 108       Photolysis MCM         29       NRPA + OH $\rightarrow$ 0.8 RO <sub>2</sub> 107 + 0.2 RO <sub>2</sub> 104 + H <sub>2</sub> O       9.1E-11         30       NRPA + NO <sub>3</sub> $\rightarrow$ RO <sub>2</sub> 107 + HO <sub>3</sub> 5.4E-14         31       RO <sub>2</sub> 107 + NO $\rightarrow$ NO <sub>2</sub> + CO <sub>2</sub> + RO <sub>2</sub> 108       1.11-11 × exp(18)         32       RO <sub>2</sub> 107 + NO $\rightarrow$ PAN102 + M       see Griffin et al. (10)         33       PAN102 $\rightarrow$ RO <sub>2</sub> 107 + NO <sub>2</sub> see Griffin et al. (10)         34       RO <sub>2</sub> 107 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR102 + 0.8 CO <sub>2</sub> + 0.87, RO <sub>2</sub> 108 + O <sub>2</sub> 5.0E-12         35       RO <sub>2</sub> 107 + HO <sub>2</sub> $\rightarrow$ UR102 + 0.3       4.3E-13× exp(10)         36       RO <sub>2</sub> 107 + HO <sub>2</sub> $\rightarrow$ UR102 + 0.3       4.3E-13× exp(10)         37       RO <sub>2</sub> 108 + NO $\rightarrow$ 0.35 AP104 + 0.65 KETH + 0.65 NO <sub>2</sub> + 0.65 HO <sub>2</sub> 1.24E-12× exp(10)         38       RO <sub>2</sub> 108 + RO <sub>2</sub> T $\rightarrow$ KETH + HO <sub>2</sub> + O <sub>2</sub> 1.82E-13× exp(10)         39       RO <sub>2</sub> 109 + NO $\rightarrow$ CO <sub>2</sub> + NO <sub>2</sub> + RO <sub>2</sub> 108       1.11-11× exp(18)         40       RO <sub>2</sub> 109 + NO <sub>2</sub> $\rightarrow$ RETH + OOH1       4.1E-13× exp(10)         41       PAN103 $\rightarrow$ RO <sub>2</sub> 109 + NO <sub>2</sub> see Griffin et al. (10)         42       RO <sub>2</sub> 109 + RO <sub>2</sub> T $\rightarrow$ 0.3 RP101                                   | 27 | $RO_2106 + HO_2$       | $\rightarrow 0.2 \text{ UR101} + \text{O}_3$                                                                | $4.3\text{E-}13 \times \exp(1040/T)$           | 2    |
| 29       NRPA + OH $\rightarrow 0.8 RO_2 107 + 0.2 RO_2 104 + H_2 O$ 9.1E-11         30       NRPA + NO <sub>3</sub> $\rightarrow RO_2 107 + HNO_3$ 5.4E-14         31       RO_2 107 + NO $\rightarrow NO_2 + CO_2 + RO_2 108$ 1.11-11 × exp (18)         32       RO_2 107 + NO $\rightarrow PAN 102 + M$ see Griffin et al. (10)         33       PAN 102 $\rightarrow RO_2 107 + NO_2$ see Griffin et al. (10)         34       RO_2 107 + RO_2 T $\rightarrow 0.2 UR 102 + 0.8 CO_2 + 0.87, RO_2 108 + O_2$ 5.0E-12         35       RO_2 107 + RO_2 T $\rightarrow 0.2 UR 102 + 0.8 CO_2 + 0.87, RO_2 108 + O_2$ 5.0E-12         36       RO_2 107 + RO_2 T $\rightarrow UR 102 + 0.3$ 4.3E-13 × exp (10)         36       RO_2 108 + NO $\rightarrow 0.35 AP 104 + 0.65 KET H + 0.65 NO_2 + 0.65 HO_2$ 1.24E-12 × exp (10)         37       RO_2 108 + RO_2 T $\rightarrow KET H + HO_2 + O_2$ 1.82E-13 × exp (10)         38       RO_2 109 + NO_2 $\rightarrow KET H + OH1$ 4.1E-13 × exp (10)         39       RO_2 109 + NO_2 + M $\rightarrow PAN 103 + M$ see Griffin et al. (10)         41       PAN 103 $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (10)         42       RO_2 109 + RO_2 T $\rightarrow 0.3 RP 101 0.1 UR 104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ 5.0E-12         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 | NRPA + $h\nu$          | $\rightarrow$ CO + HO <sub>2</sub> + RO <sub>2</sub> 108                                                    | Photolysis MCM*                                | 6,7  |
| 30NRPA + NO3 $\rightarrow$ RO2107 + HNO35.4E-1431RO2107 + NO $\rightarrow$ NO2 + CO2 + RO21081.11-11 × exp (18)32RO2107 + NO2 + M $\rightarrow$ PAN102 + Msee Griffin et al. (10)33PAN102 $\rightarrow$ RO2107 + NO2see Griffin et al. (10)34RO2107 + RO2 T $\rightarrow$ 0.2 UR102 + 0.8 CO2 + 0.87, RO2108 + O25.0E-1235RO2107 + HO2 $\rightarrow$ UR102 + O34.3E-13 × exp (10)36RO2108 + NO $\rightarrow$ 0.35 AP104 + 0.65 KETH + 0.65 NO2 + 0.65 HO21.24E-12 × exp (12)37RO2108 + RO2 T $\rightarrow$ KETH + HO2 + O21.82E-13 × exp (12)38RO2108 + HO2 $\rightarrow$ KETH + OH14.1E-13 × exp (12)39RO2109 + NO $\rightarrow$ CO2 + NO2 + RO21081.11-11 × exp (18)40RO2109 + NO $\rightarrow$ PAN103 + Msee Griffin et al. (12)41PAN103 $\rightarrow$ RO2109 + NO2see Griffin et al. (12)42RO2109 + RO2 T $\rightarrow$ 0.3 RP101 0.1 UR104 + 0.6 CO2 + 0.6 RO2108 + O25.0E-1243RO2109 + HO2 $\rightarrow$ UR104 + O25.63E-1244AP101 + OH $\rightarrow$ PINA + NO2 + H2O5.63E-1245AP102 + OH $\rightarrow$ NRPA + NO2 + H2O5.63E-1246AP103 + OH $\rightarrow$ NRPA + NO2 + H2O2.53E-1247AP104 + OH $\rightarrow$ VR104 + O3 - HO22.02E-1248RP101 + OH $\rightarrow$ UR104 + O3 - HO22.62E-1149RP102 + OH $\rightarrow$ UR104 + O3 - HO22.62E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29 | NRPA + OH              | $\rightarrow \ 0.8  \text{RO}_2 107 + 0.2  \text{RO}_2 104 + \text{H}_2 \text{O}$                           | 9.1E-11                                        | 4    |
| 31 $RO_2 107 + NO$ $\rightarrow NO_2 + CO_2 + RO_2 108$ $1.11-11 \times exp(18)$ 32 $RO_2 107 + NO_2 + M$ $\rightarrow PAN102 + M$ see Griffin et al. (33 $PAN102$ $\rightarrow RO_2 107 + NO_2$ see Griffin et al. (34 $RO_2 107 + RO_2 T$ $\rightarrow 0.2 UR102 + 0.8 CO_2 + 0.87, RO_2 108 + O_2$ $5.0E-12$ 35 $RO_2 107 + HO_2$ $\rightarrow UR102 + O_3$ $4.3E-13 \times exp(10)$ 36 $RO_2 108 + NO$ $\rightarrow 0.35 AP104 + 0.65 KETH + 0.65 NO_2 + 0.65 HO_2$ $1.24E-12 \times exp(10)$ 37 $RO_2 108 + RO_2 T$ $\rightarrow KETH + HO_2 + O_2$ $1.82E-13 \times exp(10)$ 38 $RO_2 108 + HO_2$ $\rightarrow KETH + OOH1$ $4.1E-13 \times exp(10)$ 39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11-11 \times exp(18)$ 40 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11-11 \times exp(18)$ 41 $PAN103$ $\rightarrow PAN103 + M$ see Griffin et al. (42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E-12$ 43 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E-12$ 44 $AP101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ $5.63E-12$ $4.3E-13 \times exp(10)$ 45 $AP102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ $5.63E-12$ 46 $AP103 + OH$ $\rightarrow NRPA + NO_2 + H_2O$ $5.63E-12$ 47 $AP104 + OH$ $\rightarrow KETH + NO_2 + H_2O$ $2.02E-12$ 48 $RP101 + OH$ $\rightarrow UR104 + O_3 - HO_2$ $2.62E-11$ 49 $RP102 + OH$ $\rightarrow UR106 + O_3 - HO_2$ $2.62E-11$                                                                                                                                                                                                                                                                                                                    | 30 | NRPA + NO <sub>3</sub> | $\rightarrow \text{ RO}_2 107 + \text{HNO}_3$                                                               | 5.4E-14                                        | 4    |
| 32 $RO_2 107 + NO_2 + M$ $\rightarrow$ PAN102 + Msee Griffin et al. (33PAN102 $\rightarrow$ RO_2 107 + NO_2see Griffin et al. (34 $RO_2 107 + RO_2 T$ $\rightarrow$ 0.2 UR102 + 0.8 CO <sub>2</sub> + 0.87, RO_2 108 + O_25.0E-1235 $RO_2 107 + HO_2$ $\rightarrow$ UR102 + O_34.3E-13× exp (10)36 $RO_2 108 + NO$ $\rightarrow$ 0.35 AP104 + 0.65 KETH + 0.65 NO <sub>2</sub> + 0.65 HO_21.24E-12× exp (10)37 $RO_2 108 + RO_2 T$ $\rightarrow$ KETH + HO_2 + O_21.82E-13× exp (20)38 $RO_2 108 + HO_2$ $\rightarrow$ KETH + OOH14.1E-13× exp (20)39 $RO_2 109 + NO$ $\rightarrow$ CO <sub>2</sub> + NO <sub>2</sub> + RO <sub>2</sub> 1081.11-11× exp (18)40 $RO_2 109 + NO_2 + M$ $\rightarrow$ PAN103 + Msee Griffin et al. (41PAN103 $\rightarrow$ RO_2 109 + NO_2see Griffin et al. (42 $RO_2 109 + RO_2 T$ $\rightarrow$ 0.3 RP101 0.1 UR104 + 0.6 CO <sub>2</sub> + 0.6 RO <sub>2</sub> 108 + O_25.0E-1243 $RO_2 109 + HO_2$ $\rightarrow$ UR104 + O_24.3E-13× exp (10)44AP101 + OH $\rightarrow$ PINA + NO <sub>2</sub> + H <sub>2</sub> O5.63E-1245AP102 + OH $\rightarrow$ NRPA + NO <sub>2</sub> + H <sub>2</sub> O5.63E-1246AP103 + OH $\rightarrow$ NRPA + NO <sub>2</sub> + H <sub>2</sub> O2.53E-1247AP104 + OH $\rightarrow$ VR104 + O <sub>3</sub> - HO <sub>2</sub> 2.02E-1248RP101 + OH $\rightarrow$ UR104 + O <sub>3</sub> - HO <sub>2</sub> 2.62E-1149RP102 + OH $\rightarrow$ UR106 + O <sub>3</sub> - HO <sub>2</sub> 2.36E-11                                                                                                                                                                                                                                                                                                                                                             | 31 | $RO_2107 + NO$         | $\rightarrow$ NO <sub>2</sub> + CO <sub>2</sub> + RO <sub>2</sub> 108                                       | $1.11-11 \times \exp(180.2/T)$                 | 2    |
| 33PAN102 $\rightarrow$ RO <sub>2</sub> 107 + NO <sub>2</sub> see Griffin et al. (34RO <sub>2</sub> 107 + RO <sub>2</sub> T $\rightarrow$ 0.2 UR102 + 0.8 CO <sub>2</sub> + 0.87, RO <sub>2</sub> 108 + O <sub>2</sub> 5.0E-1235RO <sub>2</sub> 107 + HO <sub>2</sub> $\rightarrow$ UR102 + O <sub>3</sub> 4.3E-13× exp(10)36RO <sub>2</sub> 108 + NO $\rightarrow$ 0.35 AP104 + 0.65 KETH + 0.65 NO <sub>2</sub> + 0.65 HO <sub>2</sub> 1.24E-12× exp(10)37RO <sub>2</sub> 108 + RO <sub>2</sub> T $\rightarrow$ KETH + HO <sub>2</sub> + O <sub>2</sub> 1.82E-13× exp(10)38RO <sub>2</sub> 108 + HO <sub>2</sub> $\rightarrow$ KETH + OOH14.1E-13× exp(10)39RO <sub>2</sub> 109 + NO $\rightarrow$ CO <sub>2</sub> + NO <sub>2</sub> + RO <sub>2</sub> 1081.11-11× exp(18)40RO <sub>2</sub> 109 + NO <sub>2</sub> + M $\rightarrow$ PAN103 + Msee Griffin et al. (41PAN103 $\rightarrow$ RO <sub>2</sub> 109 + NO <sub>2</sub> see Griffin et al. (42RO <sub>2</sub> 109 + RO <sub>2</sub> T $\rightarrow$ 0.3 RP101 0.1 UR104 + 0.6 CO <sub>2</sub> + 0.6 RO <sub>2</sub> 108 + O <sub>2</sub> 5.0E-1243RO <sub>2</sub> 109 + HO <sub>2</sub> $\rightarrow$ UR104 + O <sub>2</sub> 4.3E-13× exp(10)44AP101 + OH $\rightarrow$ PINA + NO <sub>2</sub> + H <sub>2</sub> O5.63E-1245AP102 + OH $\rightarrow$ RO <sub>2</sub> 108 + NO <sub>2</sub> + H <sub>2</sub> O6.86E-1246AP103 + OH $\rightarrow$ KETH + NO <sub>2</sub> + H <sub>2</sub> O2.53E-1247AP104 + OH $\rightarrow$ KETH + NO <sub>2</sub> + H <sub>2</sub> O2.53E-1248RP101 + OH $\rightarrow$ UR104 + O <sub>3</sub> - HO <sub>2</sub> 2.62E-1149RP102 + OH $\rightarrow$ UR106 + O <sub>3</sub> - HO <sub>2</sub> 2.36E-11                                                                                                                        | 32 | $RO_2107 + NO_2 + M$   | $\rightarrow$ PAN102 + M                                                                                    | see Griffin et al. (2002)                      | 3    |
| 34 $RO_2 107 + RO_2 T$ $\rightarrow 0.2 UR102 + 0.8 CO_2 + 0.87, RO_2 108 + O_2$ 5.0E-1235 $RO_2 107 + HO_2$ $\rightarrow UR102 + O_3$ 4.3E-13 × exp (10)36 $RO_2 108 + NO$ $\rightarrow 0.35 AP104 + 0.65 KETH + 0.65 NO_2 + 0.65 HO_2$ 1.24E-12 × exp (12)37 $RO_2 108 + RO_2 T$ $\rightarrow KETH + HO_2 + O_2$ 1.82E-13 × exp (20)38 $RO_2 108 + HO_2$ $\rightarrow KETH + OOH1$ 4.1E-13 × exp (20)39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ 1.11-11 × exp (18)40 $RO_2 109 + NO_2 + M$ $\rightarrow PAN103 + M$ see Griffin et al. (20)41 $PAN103$ $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (20)42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ 5.0E-1243 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ 5.0E-1244 $AP101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ 5.63E-1245 $AP102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ 6.86E-1246 $AP103 + OH$ $\rightarrow NRPA + NO_2 + H_2O$ 2.53E-1247 $AP104 + OH$ $\rightarrow VR104 + O_3 - HO_2$ 2.02E-1248 $RP101 + OH$ $\rightarrow UR104 + O_3 - HO_2$ 2.02E-1149 $RP102 + OH$ $\rightarrow UR106 + O_3 - HO_2$ 2.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33 | PAN102                 | $\rightarrow \text{ RO}_2 107 + \text{NO}_2$                                                                | see Griffin et al. (2002)                      | 3    |
| 35 $RO_2 107 + HO_2$ $\rightarrow UR102 + O_3$ $4.3E-13 \times exp(10)$ 36 $RO_2 108 + NO$ $\rightarrow 0.35 AP104 + 0.65 KETH + 0.65 NO_2 + 0.65 HO_2$ $1.24E-12 \times exp(10)$ 37 $RO_2 108 + RO_2 T$ $\rightarrow KETH + HO_2 + O_2$ $1.82E-13 \times exp(10)$ 38 $RO_2 108 + HO_2$ $\rightarrow KETH + OOH1$ $4.1E-13 \times exp(10)$ 39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11-11 \times exp(10)$ 40 $RO_2 109 + NO_2 + M$ $\rightarrow PAN103 + M$ see Griffin et al. (10)41 $PAN103$ $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (10)42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E-12$ 43 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E-12$ 44 $AP101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ $5.63E-12$ 45 $AP102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ $6.86E-12$ 46 $AP103 + OH$ $\rightarrow NRPA + NO_2 + H_2O$ $2.02E-12$ 47 $AP104 + OH$ $\rightarrow VR104 + O_3 - HO_2$ $2.02E-12$ 48 $RP101 + OH$ $\rightarrow UR104 + O_3 - HO_2$ $2.62E-11$ 49 $RP102 + OH$ $\rightarrow UR106 + O_3 - HO_2$ $2.36E-11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34 | $RO_2107 + RO_2T$      | $\rightarrow 0.2 \text{ UR102} + 0.8 \text{ CO}_2 + 0.87, \text{RO}_2 108 + \text{O}_2$                     | 5.0E-12                                        | 2    |
| 36 $RO_2 108 + NO$ $\rightarrow 0.35 AP104 + 0.65 KETH + 0.65 NO_2 + 0.65 HO_2$ $1.24E-12 \times exp(1)$ 37 $RO_2 108 + RO_2 T$ $\rightarrow KETH + HO_2 + O_2$ $1.82E-13 \times exp(2)$ 38 $RO_2 108 + HO_2$ $\rightarrow KETH + OOH1$ $4.1E-13 \times exp(2)$ 39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11-11 \times exp(18)$ 40 $RO_2 109 + NO_2 + M$ $\rightarrow PAN103 + M$ see Griffin et al. (10)41 $PAN103$ $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (10)42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E-12$ 43 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E-12$ 44 $AP101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ $5.63E-12$ 45 $AP102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ $6.86E-12$ 46 $AP103 + OH$ $\rightarrow NRPA + NO_2 + H_2O$ $2.53E-12$ 47 $AP104 + OH$ $\rightarrow VR104 + O_3 - HO_2$ $2.62E-11$ 48 $RP101 + OH$ $\rightarrow UR104 + O_3 - HO_2$ $2.36E-11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35 | $RO_2107 + HO_2$       | $\rightarrow$ UR102 + O <sub>3</sub>                                                                        | $4.3\text{E-}13 \times \exp(1040/T)$           | 2    |
| 37 $RO_2 108 + RO_2 T$ $\rightarrow KETH + HO_2 + O_2$ $1.82E - 13 \times exp(4)$ 38 $RO_2 108 + HO_2$ $\rightarrow KETH + OOH1$ $4.1E - 13 \times exp(4)$ 39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11 - 11 \times exp(18)$ 40 $RO_2 109 + NO_2 + M$ $\rightarrow PAN103 + M$ see Griffin et al. (10)41 $PAN103$ $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (10)42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E - 12$ 43 $RO_2 109 + HO_2$ $\rightarrow UR104 + O_2$ $4.3E - 13 \times exp(10)$ 44 $AP101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ $6.86E - 12$ 45 $AP102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ $6.86E - 12$ 46 $AP103 + OH$ $\rightarrow KETH + NO_2 + H_2O$ $2.53E - 12$ 47 $AP104 + OH$ $\rightarrow KETH + NO_2 + H_2O$ $2.02E - 12$ 48 $RP101 + OH$ $\rightarrow UR104 + O_3 - HO_2$ $2.62E - 11$ 49 $RP102 + OH$ $\rightarrow UR106 + O_3 - HO_2$ $2.36E - 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36 | $RO_2108 + NO$         | $\rightarrow \ 0.35  \text{AP104} + 0.65  \text{KETH} + 0.65  \text{NO}_2 + 0.65  \text{HO}_2$              | $1.24\text{E-}12 \times \exp(180.2/T)$         | 2, a |
| 38 $RO_2 108 + HO_2$ $\rightarrow KETH + OOH1$ $4.1E - 13 \times exp(78)$ 39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11 - 11 \times exp(18)$ 40 $RO_2 109 + NO_2 + M$ $\rightarrow PAN 103 + M$ see Griffin et al. (19)41 $PAN 103$ $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (19)42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP 101 0.1 UR 104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E - 12$ 43 $RO_2 109 + HO_2$ $\rightarrow UR 104 + O_2$ $4.3E - 13 \times exp(10)$ 44 $AP 101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ $5.63E - 12$ 45 $AP 102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ $6.86E - 12$ 46 $AP 103 + OH$ $\rightarrow NRPA + NO_2 + H_2O$ $2.53E - 12$ 47 $AP 104 + OH$ $\rightarrow VRPA + NO_2 + H_2O$ $2.02E - 12$ 48 $RP 101 + OH$ $\rightarrow UR 104 + O_3 - HO_2$ $2.62E - 11$ 49 $RP 102 + OH$ $\rightarrow UR 106 + O_3 - HO_2$ $2.36E - 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 | $RO_2108 + RO_2T$      | $\rightarrow$ KETH + HO <sub>2</sub> + O <sub>2</sub>                                                       | $1.82\text{E-}13\times\exp\left(416/T\right)$  | 2    |
| 39 $RO_2 109 + NO$ $\rightarrow CO_2 + NO_2 + RO_2 108$ $1.11 - 11 \times exp (18)$ 40 $RO_2 109 + NO_2 + M$ $\rightarrow PAN103 + M$ see Griffin et al. (19)41 $PAN103$ $\rightarrow RO_2 109 + NO_2$ see Griffin et al. (19)42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ $5.0E - 12$ 43 $RO_2 109 + HO_2$ $\rightarrow UR104 + O_2$ $4.3E - 13 \times exp (10)$ 44 $AP101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ $5.63E - 12$ 45 $AP102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ $6.86E - 12$ 46 $AP103 + OH$ $\rightarrow NRPA + NO_2 + H_2O$ $2.53E - 12$ 47 $AP104 + OH$ $\rightarrow VR104 + O_3 - HO_2$ $2.62E - 11$ 48 $RP101 + OH$ $\rightarrow UR106 + O_3 - HO_2$ $2.36E - 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 | $RO_2108 + HO_2$       | $\rightarrow$ KETH + OOH1                                                                                   | $4.1\text{E-}13 \times \exp(790/T)$            | 2    |
| 40 $RO_2 109 + NO_2 + M$ $\rightarrow$ PAN103 + Msee Griffin et al. (41PAN103 $\rightarrow$ RO_2109 + NO_2see Griffin et al. (42 $RO_2 109 + RO_2 T$ $\rightarrow$ 0.3 RP101 0.1 UR104 + 0.6 CO <sub>2</sub> + 0.6 RO_2 108 + O_25.0E-1243 $RO_2 109 + HO_2$ $\rightarrow$ UR104 + O_24.3E-13× exp(10)44AP101 + OH $\rightarrow$ PINA + NO <sub>2</sub> + H <sub>2</sub> O5.63E-1245AP102 + OH $\rightarrow$ RO_2 108 + NO_2 + H_2O6.86E-1246AP103 + OH $\rightarrow$ NRPA + NO_2 + H_2O2.53E-1247AP104 + OH $\rightarrow$ KETH + NO_2 + H_2O2.02E-1248RP101 + OH $\rightarrow$ UR104 + O <sub>3</sub> - HO <sub>2</sub> 2.62E-1149RP102 + OH $\rightarrow$ UR106 + O <sub>3</sub> - HO <sub>2</sub> 2.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39 | $RO_2109 + NO$         | $\rightarrow$ CO <sub>2</sub> + NO <sub>2</sub> + RO <sub>2</sub> 108                                       | $1.11 - 11 \times \exp(180.2/T)$               | 2    |
| 41PAN103 $\rightarrow$ RO2109 + NO2see Griffin et al. (42RO2109 + RO2T $\rightarrow$ 0.3 RP101 0.1 UR104 + 0.6 CO2 + 0.6 RO2108 + O25.0E-1243RO2109 + HO2 $\rightarrow$ UR104 + O24.3E-13× exp(10)44AP101 + OH $\rightarrow$ PINA + NO2 + H2O5.63E-1245AP102 + OH $\rightarrow$ RO2108 + NO2 + H2O6.86E-1246AP103 + OH $\rightarrow$ NRPA + NO2 + H2O2.53E-1247AP104 + OH $\rightarrow$ KETH + NO2 + H2O2.02E-1248RP101 + OH $\rightarrow$ UR104 + O3 - HO22.62E-1149RP102 + OH $\rightarrow$ UR106 + O3 - HO22.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 | $RO_2109 + NO_2 + M$   | $\rightarrow$ PAN103 + M                                                                                    | see Griffin et al. (2002)                      | 3    |
| 42 $RO_2 109 + RO_2 T$ $\rightarrow 0.3 RP101 0.1 UR104 + 0.6 CO_2 + 0.6 RO_2 108 + O_2$ 5.0E-1243 $RO_2 109 + HO_2$ $\rightarrow UR104 + O_2$ $4.3E-13 \times exp(100)$ 44 $AP101 + OH$ $\rightarrow PINA + NO_2 + H_2O$ $5.63E-12$ 45 $AP102 + OH$ $\rightarrow RO_2 108 + NO_2 + H_2O$ $6.86E-12$ 46 $AP103 + OH$ $\rightarrow NRPA + NO_2 + H_2O$ $2.53E-12$ 47 $AP104 + OH$ $\rightarrow KETH + NO_2 + H_2O$ $2.02E-12$ 48 $RP101 + OH$ $\rightarrow UR104 + O_3 - HO_2$ $2.62E-11$ 49 $RP102 + OH$ $\rightarrow UR106 + O_3 - HO_2$ $2.36E-11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41 | PAN103                 | $\rightarrow \text{ RO}_2 109 + \text{NO}_2$                                                                | see Griffin et al. (2002)                      | 3    |
| 43 $RO_2 109 + HO_2$ $\rightarrow$ UR104 + O_24.3E-13 × exp (10)44 $AP101 + OH$ $\rightarrow$ PINA + NO <sub>2</sub> + H <sub>2</sub> O5.63E-1245 $AP102 + OH$ $\rightarrow$ RO <sub>2</sub> 108 + NO <sub>2</sub> + H <sub>2</sub> O6.86E-1246 $AP103 + OH$ $\rightarrow$ NRPA + NO <sub>2</sub> + H <sub>2</sub> O2.53E-1247 $AP104 + OH$ $\rightarrow$ KETH + NO <sub>2</sub> + H <sub>2</sub> O2.02E-1248RP101 + OH $\rightarrow$ UR104 + O <sub>3</sub> - HO <sub>2</sub> 2.62E-1149RP102 + OH $\rightarrow$ UR106 + O <sub>3</sub> - HO <sub>2</sub> 2.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42 | $RO_2109 + RO_2T$      | $\rightarrow \ 0.3 \text{ RP101 } 0.1 \text{ UR104} + 0.6 \text{ CO}_2 + 0.6 \text{ RO}_2 108 + \text{O}_2$ | 5.0E-12                                        | 2    |
| 44AP101 + OH $\rightarrow$ PINA + NO2 + H2O5.63E-1245AP102 + OH $\rightarrow$ RO2108 + NO2 + H2O6.86E-1246AP103 + OH $\rightarrow$ NRPA + NO2 + H2O2.53E-1247AP104 + OH $\rightarrow$ KETH + NO2 + H2O2.02E-1248RP101 + OH $\rightarrow$ UR104 + O3 - HO22.62E-1149RP102 + OH $\rightarrow$ UR106 + O3 - HO22.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43 | $RO_2109 + HO_2$       | $\rightarrow$ UR104 + O <sub>2</sub>                                                                        | $4.3\text{E-}13 \times \exp(1040/T)$           | 2    |
| 45AP102 + OH $\rightarrow$ RO2108 + NO2 + H2O6.86E-1246AP103 + OH $\rightarrow$ NRPA + NO2 + H2O2.53E-1247AP104 + OH $\rightarrow$ KETH + NO2 + H2O2.02E-1248RP101 + OH $\rightarrow$ UR104 + O3 - HO22.62E-1149RP102 + OH $\rightarrow$ UR106 + O3 - HO22.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44 | AP101 + OH             | $\rightarrow$ PINA + NO <sub>2</sub> + H <sub>2</sub> O                                                     | 5.63E-12                                       | 5    |
| 46AP103 + OH $\rightarrow$ NRPA + NO2 + H2O2.53E-1247AP104 + OH $\rightarrow$ KETH + NO2 + H2O2.02E-1248RP101 + OH $\rightarrow$ UR104 + O3 - HO22.62E-1149RP102 + OH $\rightarrow$ UR106 + O3 - HO22.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45 | AP102 + OH             | $\rightarrow \mathrm{RO}_2 \mathrm{108} + \mathrm{NO}_2 + \mathrm{H}_2 \mathrm{O}$                          | 6.86E-12                                       | 5    |
| 47AP104 + OH $\rightarrow$ KETH + NO2 + H2O2.02E-1248RP101 + OH $\rightarrow$ UR104 + O3 - HO22.62E-1149RP102 + OH $\rightarrow$ UR106 + O3 - HO22.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46 | AP103 + OH             | $\rightarrow$ NRPA + NO <sub>2</sub> + H <sub>2</sub> O                                                     | 2.53E-12                                       | 5    |
| 48RP101 + OH $\rightarrow$ UR104 + O3 - HO22.62E-1149RP102 + OH $\rightarrow$ UR106 + O3 - HO22.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47 | AP104 + OH             | $\rightarrow$ KETH + NO <sub>2</sub> + H <sub>2</sub> O                                                     | 2.02E-12                                       | 5    |
| 49 RP102 + OH $\rightarrow$ UR106 + O <sub>3</sub> - HO <sub>2</sub> 2.36E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 | RP101 + OH             | $\rightarrow$ UR104 + O <sub>3</sub> - HO <sub>2</sub>                                                      | 2.62E-11                                       | 5    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49 | RP102 + OH             | $\rightarrow$ UR106 + O <sub>3</sub> - HO <sub>2</sub>                                                      | 2.36E-11                                       | 5    |

5

<sup>†</sup> Reactions updated by HOM yields according to Berndt et al. (2016) utilized for cases 5a and 5b of Table 1

a) Yields calculated according to Arey et al. (2001)

References: 1) Atkinson (1997); 2) Jenkin et al. (1997); 3) Griffin et al. (2002); 4) Glasius et al. (1997); 5) Kwok and Atkinson (1995); 6) http://mcm.leeds.ac.uk/MCM/; 7) Saunders et al. (2003)

\* Photolysis according to Saunders et al. (2003) with  $J = l(\cos(\chi))^m \exp(-n \sec \chi)$  with  $\chi$  the solar zenith angle; l = 2.792E-05; m = 0.805; n = 0.338.

# Table S2: Abbreviations and full names of the chemical species included in the $\alpha$ -pinene oxidation mechanism.

| Term   | Description                                                  |
|--------|--------------------------------------------------------------|
|        | Reactive, fully integrated species                           |
| APIN   | $\alpha$ -pinene                                             |
| PINA   | pinonaldehyde                                                |
| NRPA   | norpinonaldehyde                                             |
| AP101  | 2-nitrato-3-hydroxy-pinane                                   |
| AP102  | 2-nitrato-3-oxo-pinane                                       |
| AP103  | 2,2-dimethyl-3-acetyl-cyclobutyl-methyl-nitrate              |
| AP104  | 2,2-dimethyl-3-acetyl-cyclobutyl-nitrate                     |
| HOM    | highly oxidized organic compound                             |
| PAN101 | peroxy 2,2-dimethyl-3-acetyl-cyclobutyl-acetyl-nitrate       |
| PAN102 | peroxy 2,2-dimethyl-3-acetyl-cyclobutyl-formyl-nitrate       |
| PAN103 | peroxy 2,2-dimethyl-3-formylmethyl-cyclobutyl-formyl-nitrate |
| RP101  | pinalic-3-acid                                               |
| RP102  | 1-hydroxy-pinonaldehyde                                      |
| RP103  | 10-hydroxy-pinonaldehyde                                     |
|        | Nonreacting, fully integrated species                        |
| UR101  | pinonic acid                                                 |
| UR102  | norpinonic acid                                              |
| UR103  | 2,3-pinane-epoxide                                           |
| UR104  | pinic acid                                                   |
| UR105  | 10-hydroxy-pinonic acid                                      |
| UR106  | 1-hydroxy-pinonic acid                                       |
| UR107  | 2,3-dihydroxy-pinane                                         |
|        |                                                              |

UR108 2-(2,2-dimethyl-3-formylmethyl-cyclobutyl)-2-keto-acetaldehyde

## Reactive, organic pseudo-steady species

- RO<sub>2</sub>101 hydroxy alkyl peroxy radical from oxidation of  $\alpha$ -pinene (2-peroxy-3-hydroxy-pinane)
- RO<sub>2</sub>102 nitrato alkyl peroxy radical from oxidation of  $\alpha$ -pinene (65 % is 2-peroxy-3-nitrato-pinane, 35 % is 2-nitrato-3-peroxy-pinane)
- $RO_2103$  cyclic keto alkyl peroxy radical from oxidation of  $\alpha$ -pinene (C<sub>4</sub> cycle, 1-methyl peroxy, 2,2-dimethyl, 3-acetyl)
- RO<sub>2</sub>104 cyclic keto aldehydic peroxy radical from oxidation of  $\alpha$ -pinene (C<sub>4</sub> cycle, 1-peroxy, 1-acetyl, 2,2-dimethyl, 3-formylmethyl)
- RO<sub>2</sub>105 cyclic keto alkyl peroxy radical from oxidation of  $\alpha$ -pinene (C<sub>4</sub> cycle, 1-(1-keto-ethyl peroxy), 2,2-dimethyl, 3-formylmethyl)
- RO<sub>2</sub>106 acyl peroxy radical from aldehydic H abstraction of pinonaldehyde
- RO<sub>2</sub>107 acyl peroxy radical from aldehydic H abstraction of norpinonaldehyde
- RO<sub>2</sub>108 cyclic keto alkyl peroxy radical from oxidation of  $\alpha$ -pinene (C<sub>4</sub> cycle, 1-peroxy, 2,2-dimethyl, 3-acetyl)
- RO<sub>2</sub>109 acyl peroxy radical from oxidation of  $\alpha$ -pinene (C<sub>4</sub> cycle, 1-formyl peroxy, 2,2-dimethyl, 3-formylmethyl)

| #  | Reactants |               | Products | <b>Rate constant in s</b> <sup>-1</sup> |
|----|-----------|---------------|----------|-----------------------------------------|
| 51 | pPINA     | $\rightarrow$ | rPINA    | $1 - 10^{-6}$                           |
| 52 | pRP101    | $\rightarrow$ | rRP101   | $1 - 10^{-6}$                           |
| 53 | pUR104    | $\rightarrow$ | rUR104   | $1 - 10^{-6}$                           |
| 54 | pNRPA     | $\rightarrow$ | rNRPA    | $1 - 10^{-6}$                           |
| 55 | pRP102    | $\rightarrow$ | rRP102   | $1 - 10^{-6}$                           |
| 56 | pRP103    | $\rightarrow$ | rRP103   | $1 - 10^{-6}$                           |
| 57 | pUR101    | $\rightarrow$ | rUR101   | $1 - 10^{-6}$                           |
| 58 | pUR102    | $\rightarrow$ | rUR102   | $1 - 10^{-6}$                           |
| 59 | pUR105    | $\rightarrow$ | rUR105   | $1 - 10^{-6}$                           |
| 60 | pUR106    | $\rightarrow$ | rUR106   | $1 - 10^{-6}$                           |
| 61 | pAP101    | $\rightarrow$ | rAP101   | $1 - 10^{-6}$                           |
| 62 | pAP102    | $\rightarrow$ | rAP102   | $1 - 10^{-6}$                           |
| 63 | pPAN101   | $\rightarrow$ | rPAN101  | $1 - 10^{-6}$                           |
| 64 | pPAN102   | $\rightarrow$ | rPAN102  | $1 - 10^{-6}$                           |
| 65 | pPAN103   | $\rightarrow$ | rPAN103  | $1 - 10^{-6}$                           |
| 66 | pNOPI     | $\rightarrow$ | rNOPI    | $1 - 10^{-6}$                           |
| 67 | rPINA     | $\rightarrow$ | pPINA    | $1 - 10^{-6}$                           |
| 68 | rRP101    | $\rightarrow$ | pRP101   | $1 - 10^{-6}$                           |
| 69 | rUR104    | $\rightarrow$ | pUR104   | $1 - 10^{-6}$                           |
| 70 | rNRPA     | $\rightarrow$ | pNRPA    | $1 - 10^{-6}$                           |
| 71 | rRP102    | $\rightarrow$ | pRP102   | $1 - 10^{-6}$                           |
| 72 | rRP103    | $\rightarrow$ | pRP103   | $1 - 10^{-6}$                           |
| 73 | rUR101    | $\rightarrow$ | pUR101   | $1 - 10^{-6}$                           |
| 74 | rUR102    | $\rightarrow$ | pUR102   | $1 - 10^{-6}$                           |
| 75 | rUR105    | $\rightarrow$ | pUR105   | $1 - 10^{-6}$                           |
| 76 | rUR106    | $\rightarrow$ | pUR106   | $1 - 10^{-6}$                           |
| 77 | rAP101    | $\rightarrow$ | pAP101   | $1 - 10^{-6}$                           |
| 78 | rAP102    | $\rightarrow$ | pAP102   | $1 - 10^{-6}$                           |
| 79 | rPAN101   | $\rightarrow$ | pPAN101  | $1 - 10^{-6}$                           |

Table S3: Considered particle phase reactions for  $\alpha$ -pinene oxidized products required for the kinetic approach and added to the reaction mechanism presented in Table S1.

| 80 | rPAN102 | $\rightarrow$ | pPAN102 | $1 - 10^{-6}$ |
|----|---------|---------------|---------|---------------|
| 81 | rPAN103 | $\rightarrow$ | pPAN103 | $1 - 10^{-6}$ |
| 82 | rNOPI   | $\rightarrow$ | pNOPI   | $1 - 10^{-6}$ |

Remarks: Reactions 67-82 describe the backward reactions considered for the sensitivity studies.

# Table S4. Estimated vapor pressure of HOMs at 295 K in atm.

| Substance                                                          | SIMPOL   | COSMO-RS* | EVAPORATION |
|--------------------------------------------------------------------|----------|-----------|-------------|
| $HO-C_{10}H_{15}(OO)(OOH)_2$                                       | 8.82E-11 | 9.9E-11   | 5.52E-13    |
| $\text{HO-C}_{10}\text{H}_{15}(\text{OO})(\text{OOH})\text{ONO}_2$ | 1.59E-10 | 8.1E-10   | 7.00E-11    |
| HO-C <sub>10</sub> H <sub>15</sub> (OO)(OOH)OH                     | 1.58E-10 | 2.0E-10   | 6.23E-12    |

\* Estimates of COSMO-RS according to Berndt et al. (2016)

### 2 Results

### 2.1 Impact of the particle phase diffusion coefficient D<sub>b</sub> on SOA formation



Figure S1. Simulated SOA mass for the variation of the bulk particle diffusion coefficient in the range of  $D_b$ :  $10^{-9} \text{ m}^2 \text{ s}^{-1} - 10^{-21} \text{ m}^2 \text{ s}^{-1}$  (case 1 of Table 1) in logarithmic scale for a)  $k_c = 1 \text{ s}^{-1}$  and b)  $k_c = 10^{-6} \text{ s}^{-1}$ .

## 2.2 Impact of the mass accommodation coefficient $\alpha$ on SOA formation

An additional parameter influencing the SOA formation represents the mass accommodation coefficient (see Appendix A),
which is defined as the probability to incorporate a molecule penetrating the particle phase boundary in the condensed phase without inducing the direct emission of a molecule of an identical type (Seinfeld and Pandis, 2006). This subsection investigates the sensitivity of SOA formation on the applied mass accommodation coefficient α. In the literature different values for the mass accommodation coefficient have been proposed for the uptake of organic compounds in organic particles/ on organic surfaces. Experimental studies show different results than model studies. Saleh et al. (2012) propose an approximate value
of α = 0.4 from evaporation studies for semi-volatile organic aerosols. In the review of Davidovits et al. (2006) concerning measured mass accommodation coefficients, the uptake values of organic species (e.g. acetic acid, α-pinene, γ-terpinene, p-

- cymene, and 2-methyl-2-hexanol) on 1-octanol surfaces are summarized. The mass accommodation coefficients are in the range of 0.12 and 0.4 for 265 K, whereby for  $\alpha$ -pinene only a lower limit with  $\alpha > 0.1$  is given. Moreover, Julin et al. (2014) have been combined expansion chamber measurements and molecular dynamics simulations for the determination of the mass
- 15 accommodation coefficient, where bulk and surface mass accommodation coefficients have been distinguished. The probed organic substances were in liquid, semi-solid or solid phase state. Julin et al. (2014) report surface accommodation coefficients near unity ( $0.96 \le \alpha_s \le 1$ ) and the bulk mass accommodation coefficients in the range of  $0.14 \le \alpha_b \le 1$ . Whereby, Julin et al. (2014) state that the conservative lower limits of the bulk mass accommodation coefficients are not very likely, due to the short simulation time scales and near unity values might be consistent with the surface mass accommodation coefficient.
- 20 Additionally, the lower limit for the bulk mass accommodation coefficient assumes that adsorbed molecules will never enter

the particle bulk, and therefore, only absorbed molecules reach the particle bulk.

According to this wide spread of reported values of the mass accommodation coefficient, we varied  $\alpha$  from 1 to  $10^{-2}$  for all organic compounds. Further, we investigated these sensitivity studies for different bulk particle phase diffusion coefficients and pseudo-first-order rate constants of particle reactions (see model case 3a and 3b in Table 1). Fig.S2 shows the results of SOA

- 5 formation for different mass accommodation coefficients and fast particle phase reactions ( $k_c = 1$ ). The SOA mass is highest for  $\alpha = 1$ . For liquid aerosol particles the simulated SOA mass for  $\alpha = 10^{-1}$  in fact leads to about 97 % of the formed SOA mass of the model run using  $\alpha = 1$  (see Fig. S2a). For  $\alpha = 10^{-2}$  the SOA mass is markedly reduced showing only about 45 % of the maximal simulated value. For nearly semi-solid aerosol particles ( $D_b = 10^{-14} \text{ m}^2 \text{ s}^{-1}$ , see Fig. S2b) the SOA formation for  $\alpha = 10^{-1}$  is reduced to 15 % of the SOA mass for the simulation with  $\alpha = 1$ . This demonstrates that the effect on the
- 10 SOA formation is more substantial when a reduced number of molecules is transferred into the particle surface/bulk and the particle phase diffusion is slower. For semi-solid aerosols ( $D_b = 10^{-18} \text{ m}^2 \text{ s}^{-1}$ ) the simulation results are similar to those for nearly semi-solid particles with  $D_b = 10^{-14} \text{ m}^2 \text{ s}^{-1}$  and are thus not presented. For moderate particle phase reactions the SOA formation for the reduced mass accommodation coefficients performs in the same way as for fast reactions (see Fig. S2c and S2d).



**Figure S2.** Simulated SOA mass for different mass accommodation coefficients for  $k_c = 1 \text{ s}^{-1}$  (model case 3a of Table 1) using bulk particle diffusion coefficients for a) liquid ( $D_b = 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ) and b) the transition between liquid and semi-solid ( $D_b = 10^{-14} \text{ m}^2 \text{ s}^{-1}$ ) aerosol particles and for  $k_c = 10^{-4} \text{ s}^{-1}$  (model case 3b of Table 1) using bulk particle diffusion coefficients for c) liquid ( $D_b = 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ) and d) the transition between liquid and semi-solid ( $D_b = 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ) and d) the transition between liquid and semi-solid ( $D_b = 10^{-14} \text{ m}^2 \text{ s}^{-1}$ ) aerosol particles.

# 2.3 Impact of the initial particle phase organic mass concentration OM<sub>O</sub> on SOA formation

5

Organic material in the aerosol phase serves as an absorptive medium for organic gaseous compounds (see Eq. 4). In order to investigate the dependency of the SOA formation from the initial organic aerosol mass  $OM_0$ , the initial value has been varied from  $10^{-5}$  to  $5.8 \times 10^{-2}$  g g<sup>-1</sup> (see Table 1, model study 5). Fig. S3 shows the results for the variation of the initial organic mass for liquid and semi-solid particles, whereby  $k_c = 10^{-1} \text{ s}^{-1}$  is held constant. For liquid particles (Fig. S3a) the initial organic mass has a marginal influence on the formed SOA mass because overall high organic mass concentrations occur for this parameter setup. For an intermediate diffusion coefficient  $D_b = 10^{-14} \text{ m}^2 \text{ s}^{-1}$  the effect of the initial organic mass is also insignificant (not shown here). For the semi-solid particles (Fig. S3b) the initial organic mass influences noticeably the formed

SOA mass. However, the total SOA mass is very low and, therefore, the relative influence of the initial organic aerosol mass is increased. The variation of the initial organic particle concentration mass has no significant influence on the formed SOA mass for aerosol particles where effective SOA formation occurs. Additionally, it is noted that a small initial organic particle mass is required for the numerical computation of the equilibrium term, otherwise the partitioning term cannot be calculated (see Eq. 4). This approach is appropriate under ambient conditions.



**Figure S3.** Simulated SOA mass formation for different initial particle phase organic mass concentrations OM<sub>0</sub> (model case 5 of Table 1) using diffusion coefficients of a) liquid ( $D_b = 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ) and b) semi-solid ( $D_b = 10^{-18} \text{ m}^2 \text{ s}^{-1}$ ) aerosol particles.

# 2.4 Influence of the particle radius $r_p$ on SOA formation

5



Figure S4. Normalized increase of organic mass, which describes the ratio of formed SOA and initial organic mass, for the variation of the particle radius  $r_p$  using a constant  $k_c = 1 \text{ s}^{-1}$  (case 4a and 4b of Table 1); for a) liquid ( $D_b = 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ) and b) semi-solid ( $D_b = 10^{-18} \text{ m}^2 \text{ s}^{-1}$ ) aerosol particles.



**Figure S5.** Results for the variation of the particle radius  $r_p$  for a constant  $k_c = 10^{-4} \text{ s}^{-1}$  (case 4b of Table 1) for a) liquid ( $D_b = 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ) and b) semi-solid ( $D_b = 10^{-18} \text{ m}^2 \text{ s}^{-1}$ ) aerosol particles.

## 2.5 Importance of HOMs for initial SOA formation



**Figure S6.** Simulated SOA mass including HOMs and additional variation of the pseudo-first-order rate constant of particle reactions  $k_c$  (case 6a and 6b of Table 1) for liquid ( $D_b = 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ) aerosol particles as shown in Fig. 4a, but only for the first half hour of the simulation time.

#### 2.6 Implementation of a weighted particle-phase bulk diffusion coefficient

#### 2.6.1 Calculation of the weighted particle-phase bulk diffusion coefficient

All simulations are initialized with inorganic seed particles containing water and dissolved ammonium sulfate, with a particle radius of  $r_p = 35$  nm. A relative humidity of 55 % leads in combination with the dissolved ammonium sulfate to the following mole fractions  $x_{inorg} = 0.43$  and  $x_{water} = 0.57$ . For the self-diffusion coefficient of water, we utilize the relation proposed by Holz et al. (2000):

$$D_{\text{water}} = D_0 [(T/T_{\text{S}}) - 1]^{\gamma}, \tag{1}$$

with:

5

20

$$D_0 = (1.635 \times 10^{-8} \pm 2.242 \times 10^{-11}) \,\mathrm{m}^2 \,\mathrm{s}^{-1}, \tag{2}$$

10 
$$T_{\rm S} = (215.05 \pm 1.20) \,{\rm K},$$
 (3)

$$\gamma = 2.063 \pm 0.051. \tag{4}$$

The self diffusion coefficients of dissolved ions are tabulated in Cussler (2009), D<sub>NH<sup>4</sup></sub> = 1.96 × 10<sup>-9</sup> m<sup>2</sup> s<sup>-1</sup> and D<sub>SO<sup>2-</sup></sub> = 1.06 × 10<sup>-9</sup> m<sup>2</sup> s<sup>-1</sup>. For the aqueous ammonium sulfate seed particles an initial weighted particle-phase bulk diffusion coefficient of D<sub>m</sub> = 1.78 × 10<sup>-9</sup> m<sup>2</sup> s<sup>-1</sup> is derived. Due to the partitioning of organic compounds, the organic mole fraction x<sub>org</sub>
15 increases and D<sub>org</sub> influences D<sub>m</sub>. Since D<sub>org</sub> is estimated to D<sub>org</sub> = 10<sup>-12</sup> m<sup>2</sup> s<sup>-1</sup> or D<sub>org</sub> = 10<sup>-14</sup> m<sup>2</sup> s<sup>-1</sup>, the increase of the organic mole fraction causes a decrease of the weighted particle-phase bulk diffusion coefficient.

## 2.6.2 Evaluation of the applicability of the weighted particle-phase bulk diffusion coefficient

To evaluate the applicability of the composition dependent particle-phase bulk diffusion coefficient within the kinetic approach of Zaveri et al. (2014), comparisons of the particle-phase diffusion rate have been conducted between the semi-implicit Euler method of Zaveri et al. (2014) and the Euler forward-step method of the ETH model (Zobrist et al., 2011). For simplicity, a binary system containing water and organics is assumed. Water is treated as non-volatile (nv) and organics as semi-volatile (sv), and both are assumed to be initially completely present in the gas phase. The composition dependent particle-phase bulk diffusion coefficient is calculated with the following relation (Vignes, 1966):

$$D_{\rm m} = (D_{\rm sv}^0)^{x_{\rm sv}} (D_{\rm nv}^0)^{1-x_{\rm sv}},\tag{5}$$

25 where,  $D_{sv}^0$  is the self-diffusion coefficient of the organics,  $D_{nsv}^0$  is the self-diffusion coefficient of water,  $x_{sv}$  the mole fraction of organics, and  $1 - x_{sv} = x_{nv}$  the mole fraction of water. In the approach of Zaveri et al. (2014), the mole fraction and the diffusion coefficient are treated for the bulk, while in the approach of Zobrist et al. (2011) individual shells are considered. For evaluation of the application of the composition dependent particle-phase bulk diffusion coefficient (Eq. 5) within the approach of Zaveri et al. (2014), the simulated particle-phase concentration of organics is compared with the results from the ETH model. The result of the ETH model serves as standard. Fig. S7a and S7b display the model comparison for  $D_{sv}^0 = 10^{-11} \text{ m}^2 \text{ s}^{-1}$  and  $D_{sv}^0 = 10^{-13} \text{ m}^2 \text{ s}^{-1}$ , respectively. The comparison indicates almost slight differences between the results of the two model approaches, whereby the bulk approach overestimates the concentration of the organics within the particle phase during the early partitioning process. The overestimation of the concentration is compensated within  $1 \times 10^{-6} \text{ s}^{-1}$  and  $1 \times 10^{-4} \text{ s}^{-1}$  for  $D_{sv}^0 = 10^{-11} \text{ m}^2 \text{ s}^{-1}$  and  $D_{sv}^0 = 10^{-13} \text{ m}^2 \text{ s}^{-1}$ , respectively. Therefore, the application of the composition dependent particle-phase bulk diffusion coefficient following the relation of Vignes (1966) within the kinetic approach of Zaveri et al. (2014) appears as a reasonable estimate. Further, the differences for the composition dependent particle-phase diffusion coefficient are significantly smaller than for the condensation and evaporation investigations of O'Meara et al. (2017).

5



**Figure S7.** Model comparison of the approach from Zaveri et al. (2014) with a weighted diffusion coefficient (green line) and Zobrist et al. (2011) (gray line) for a particle phase that contains two components: water and organics with  $D_{nv}^0 = 10^{-9} \text{ m}^2 \text{ s}^{-1}$  and a)  $D_{sv}^0 = 10^{-11} \text{ m}^2 \text{ s}^{-1}$ , b)  $D_{sv}^0 = 10^{-13} \text{ m}^2 \text{ s}^{-1}$ , respectively. Figures courtesy of Simon O'Meara, personal communication.



**Figure S8.** Results for the different vapor pressure estimates a) total SOA mass simulated with vapor pressure estimates from COSMO-RS (Eckert and Klamt, 2002), SIMPOL (Pankow and Asher, 2008) and EVAPORATION (Compernolle et al., 2011) and measured SOA mass from the experiment in LEAK. Relative contribution of the individual product classes to the total organic mass for HOM vapor pressures estimated by b) COSMO-RS c) SIMPOL d) EVAPORATION.

### References

- Arey, J., Aschmann, S. M., Kwok, E. S. C., and Atkinson, R.: Alkyl Nitrate, Hydroxyalkyl Nitrate, and Hydroxycarbonyl Formation from the NO<sub>x</sub> – Air Photooxidations of C5–C8 n-Alkanes, The Journal of Physical Chemistry A, 105, 1020–1027, doi:10.1021/jp003292z, 2001.
- 5 Atkinson, R.: Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes, Journal of Physical and Chemical Reference Data, 26, 215 – 290, doi:10.1063/1.556012, 1997.
  - Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T., Otkjær, R. V., Kjaergaard, H. G., Stratmann, F., Herrmann, H., Sipilä, M., Kulmala, M., and Ehn, M.: Hydroxyl radical-induced formation of highly oxidized organic compounds, Nature Communications, 7, doi:10.1038/ncomms13677, 2016.
- 10 Chen, J. and Griffin, R. J.: Modeling secondary organic aerosol formation from oxidation of α-pinene, β-pinene, and d-limonene, Atmospheric Environment, 39, 7731 – 7744, doi:10.1016/j.atmosenv.2005.05.049, 2005.
  - Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions, Atmospheric Chemistry and Physics, 11, 9431–9450, doi:10.5194/acp-11-9431-2011, 2011.
- 15 Cussler, E. L.: Diffusion: mass transfer in fluid systems, 3rd Edition, Cambridge University Press, doi:10.1017/cbo9780511805134, 2009. Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.: Mass Accommodation and Chemical Reactions at Gas-Liquid Interfaces, Chemical Reviews, 106, 1323 – 1354, doi:10.1021/cr040366k, 2006.
  - Eckert, F. and Klamt, A.: Fast solvent screening via quantum chemistry: COSMO-RS approach, AIChE Journal, 48, 369-385, doi:10.1002/aic.690480220, 2002.
- 20 Glasius, M., Calogirou, A., Jensen, N. R., Hjorth, J., and Nielsen, C. J.: Kinetic study of gas-phase reactions of pinonaldehyde and structurally related compounds, International Journal of Chemical Kinetics, 29, 527–533, doi:10.1002/(SICI)1097-4601(1997)29:7<527::AID-KIN7>3.0.CO;2-W, 1997.

Griffin, R. J., Dabdub, D., and Seinfeld, J. H.: Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents, Journal of Geophysical Research: Atmospheres, 107, 1–26, doi:10.1029/2001jd000541, 2002.

- 25 Holz, M., Heil, S. R., and Sacco, A.: Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements, Physical Chemistry Chemical Physics, 2, 4740–4742, doi:10.1039/B005319H, 2000.
  - Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development, Atmospheric Environment, 31, 81–104, doi:10.1016/s1352-2310(96)00105-7, 1997.
- 30 Julin, J., Winkler, P. M., Donahue, N. M., Wagner, P. E., and Riipinen, I.: Near-Unity Mass Accommodation Coefficient of Organic Molecules of Varying Structure, Environmental Science & Technology, 48, 12083 – 12089, doi:10.1021/es501816h, 2014.
  - Kwok, E. S. and Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structurereactivity relationship: An update, Atmospheric Environment, 29, 1685–1695, doi:10.1016/1352-2310(95)00069-B, 1995.

O'Meara, S., Topping, D. O., Zaveri, R. A., and McFiggans, G.: An efficient approach for treating composition-dependent diffusion within organic particles, Atmospheric Chemistry and Physics Discussions, 2017, 1–25, doi:10.5194/acp-2016-1052, 2017.

Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds, Atmospheric Chemistry and Physics, 8, 2773–2796, doi:10.5194/acp-8-2773-2008, 2008.

Saleh, R., Khlystov, A., and Shihadeh, A.: Determination of Evaporation Coefficients of Ambient and Laboratory-Generated Semivolatile Organic Aerosols from Phase Equilibration Kinetics in a Thermodenuder, Aerosol Science and Technology, 46, 22–30, doi:10.1080/02786826.2011.602762, 2012.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM

- 5 v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 161–180, doi:10.5194/acp-3-161-2003, 2003.
  - Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, 2nd Edition, John Wiley, New York, doi:10.1029/2007JD009735, 2006.

Vignes, A.: Diffusion in Binary Solutions. Variation of Diffusion Coefficient with Composition, Industrial & Engineering Chemistry Funda-

- 10 mentals, 5, 189–199, doi:10.1021/i160018a007, 1966.
  - Zaveri, R. A., Easter, R. C., Shilling, J. E., and Seinfeld, J. H.: Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction, Atmospheric Chemistry and Physics, 14, 5153–5181, doi:10.5194/acp-14-5153-2014, 2014.

Zobrist, B., Soonsin, V., Luo, B. P., Krieger, U. K., Marcolli, C., Peter, T., and Koop, T.: Ultra-slow water diffusion in aqueous sucrose

15 glasses, Phys. Chem. Chem. Phys., 13, 3514–3526, doi:10.1039/c0cp01273d, 2011.