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Abstract. Accurate exposure estimates are required for
health effect analyses of severe air pollution in China. Chem-
ical transport models (CTMs) are widely used to provide
spatial distribution, chemical composition, particle size frac-
tions, and source origins of air pollutants. The accuracy of air
quality predictions in China is greatly affected by the uncer-
tainties of emission inventories. The Community Multiscale
Air Quality (CMAQ) model with meteorological inputs from
the Weather Research and Forecasting (WRF) model were
used in this study to simulate air pollutants in China in 2013.
Four simulations were conducted with four different anthro-
pogenic emission inventories, including the Multi-resolution
Emission Inventory for China (MEIC), the Emission Inven-
tory for China by School of Environment at Tsinghua Univer-
sity (SOE), the Emissions Database for Global Atmospheric
Research (EDGAR), and the Regional Emission inventory in
Asia version 2 (REAS2). Model performance of each simu-
lation was evaluated against available observation data from
422 sites in 60 cities across China. Model predictions of O3
and PM2.5 generally meet the model performance criteria,
but performance differences exist in different regions, for dif-
ferent pollutants, and among inventories. Ensemble predic-
tions were calculated by linearly combining the results from
different inventories to minimize the sum of the squared er-

rors between the ensemble results and the observations in all
cities. The ensemble concentrations show improved agree-
ment with observations in most cities. The mean fractional
bias (MFB) and mean fractional errors (MFEs) of the en-
semble annual PM2.5 in the 60 cities are −0.11 and 0.24, re-
spectively, which are better than the MFB (−0.25 to −0.16)
and MFE (0.26–0.31) of individual simulations. The ensem-
ble annual daily maximum 1 h O3 (O3-1h) concentrations are
also improved, with mean normalized bias (MNB) of 0.03
and mean normalized errors (MNE) of 0.14, compared to
MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individ-
ual predictions. The ensemble predictions agree better with
observations with daily, monthly, and annual averaging times
in all regions of China for both PM2.5 and O3-1h. The study
demonstrates that ensemble predictions from combining pre-
dictions from individual emission inventories can improve
the accuracy of predicted temporal and spatial distributions
of air pollutants. This study is the first ensemble model study
in China using multiple emission inventories, and the results
are publicly available for future health effect studies.
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1 Introduction

A significant portion of the population in China has been ex-
posed to severe air pollution in recent decades as the con-
sequence of intensive energy use without efficient control
measures. Based on ambient air pollution data published
by the China National Environmental Monitoring Center
(CNEMC), most of the major cities are in violation of the
Chinese Ambient Air Quality Standards grade II standard
(35 µgm−3) for annual average particulate matter with diam-
eter of 2.5 µm or less (PM2.5; Zhang and Cao, 2015; Y. Wang
et al., 2014), with a mean population weighted PM2.5 con-
centration of over 60 µgm−3 during 2013–2014. Long-term
exposure to such high levels of PM2.5 greatly threatens pub-
lic health in China. Recent studies have suggested that ap-
proximately more than 1 million premature deaths can be at-
tributed to outdoor air pollution each year in China (Lelieveld
et al., 2015; Liu et al., 2016; Hu et al., 2017a).

Accurate exposure estimates are required in health effect
studies. Ambient air quality is usually measured at monitor-
ing sites and used to represent the exposure of the population
in the surrounding areas. A routine central monitoring net-
work in China has been operating since 2013, but it is still
limited in spatial coverage and lacks detailed information of
the chemical composition, PM size fractions, and source ori-
gins of air pollutants. Chemical transport models (CTMs)
have been widely used in health effect studies to overcome
the limitations in central monitoring measurements for expo-
sure estimates (Philip et al., 2014; Lelieveld et al., 2015; Liu
et al., 2016; Laurent et al., 2016a, b; Ostro et al., 2015). How-
ever, the accuracy of the predictions from CTMs is largely
affected by the accuracies of the emission inventories (Wang
et al., 2010), meteorological fields (Hu et al., 2010), and nu-
merical solutions to the equations that describe various at-
mospheric processes (Hu et al., 2006; Yu et al., 2005). Sev-
eral emission inventories have been created to cover China.
Different emission inventories focus on specific geographi-
cal regions in the urban, regional (Zhao et al., 2012; Zhang
et al., 2008), and national or continental (Zhang et al., 2009;
Kurokawa et al., 2013) scales, and/or focus on specific pol-
lutants (Su et al., 2011; Ou et al., 2015) and specific sectors
(Zhao et al., 2008; Xu et al., 2017).

Despite great efforts in improving the accuracy of emis-
sion inventories in China, large uncertainties remain. Gener-
ally, emissions of pollutants are estimated as the product of
activity levels (such as industrial production or energy con-
sumption), unabated emission factors (i.e., mass of emitted
pollutant per unit activity level), and the efficiency of emis-
sion controls. Large uncertainties are associated with activity
levels, emission source fractions, and emission factors (Aki-
moto et al., 2006; Lei et al., 2011a). For a Pearl River delta
(PRD) inventory in 2006, SO2 emission has low uncertain-
ties of −16 to +21 % from power plant sources quantified
by Monte Carlo simulations, while NOx has medium-to-high
uncertainties of−55 to+150 % and VOC, CO, and PM have

even higher uncertainties (Zheng et al., 2009). For an inven-
tory for the Yangtze River delta (YRD) region, the overall
uncertainties for CO, SO2, NOx , PM10, PM2.5, VOCs, and
NH3 emissions are ±47.1, ±19.1, ±27.7, ±117.4, ±167.6,
±133.4, and ±112.8 %, respectively (Huang et al., 2011).
A comprehensive quantification study by Zhao et al. (2011)
using Monte Carlo simulations showed that the uncertainties
of Chinese emissions of SO2, NOx , PM2.5, BC, and OC in
2005 are −14 to +13, −13 to +37, −17 to +54, −25 to
+136, and −40 to +121 %, respectively.

The uncertainties in emission inventories are carried into
CTMs simulations, leading to uncertainties in air quality pre-
dictions, which need to be carefully evaluated to identify
the useful information for health effect studies (Hu et al.,
2017b, 2014c, b, 2015b; Tao et al., 2014). An evaluation of
1-year air pollutants predictions using the Weather Research
and Forecasting (WRF) / Community Multi-scale Air Quality
(CMAQ) modeling system with the Multi-resolution Emis-
sion Inventory for China (MEIC) has been reported (Hu et
al., 2016a). The model predictions of O3 and PM2.5 gen-
erally agree with ambient measured concentrations, but the
model performance varies in different regions and seasons.
In some regions, such as Northwest China, the model signif-
icantly underpredicted PM2.5 concentrations. A recent study
compared a few anthropogenic emission inventories in China
during 2000–2008 (Saikawa et al., 2017), but detailed evalu-
ation of model results based on these inventories has not been
performed.

Ensemble techniques are often used to reduce uncertain-
ties in model predictions from combining multiple data sets.
They have been widely used in climate predictions (Mur-
phy et al., 2004; Tebaldi and Knutti, 2007), and have been
adopted recently in air quality predictions (Delle Monache et
al., 2006; Huijnen et al., 2010). The methods to utilize the
strength of different emission inventories to get improved
air quality predictions for China have not been reported in
the literature. The aim of this study is to create an improved
set of air quality predictions in China by using an ensemble
technique. First, four sets of 1-year air quality predictions
were conducted using the WRF/CMAQ modeling system
with four different anthropogenic emission inventories for
China in 2013. In addition to MEIC, the three other emission
inventories are the Emissions Database for Global Atmo-
spheric Research (EDGAR), Regional Emission inventory in
Asia version 2 (REAS2), and Emission Inventory for China
developed by School of Environment at Tsinghua University
(SOE). The model performance of PM2.5 and O3 with dif-
ferent emission inventories was then evaluated against avail-
able observation data for 60 cities in China. The differences
among air quality predictions with the four inventories were
also compared and identified. Finally, an ensemble technique
was developed to minimize the bias of model predictions and
to create improved exposure predictions. To the authors’ best
knowledge, this is the first ensemble model study in China
using multiple emission inventories. The ensemble predic-
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tions of this study are available for public health effect anal-
yses upon request to the corresponding author.

This paper is organized as follows. The CMAQ model,
emissions and other inputs for the model, observational data
sets used for model performance evaluation, and the method
for ensemble calculation are described in Sect. 2. Section 3
discusses the model performance on gaseous and particulate
pollutants simulated with the four emission inventories, as
well as the performance of the ensemble predictions in dif-
ferent regions/cities and with different averaging times. The
major findings are summarized in the Conclusion section.

2 Method

2.1 Model description

In this study, the applied CMAQ model is based on CMAQ
v5.0.1 with changes to improve the model’s performance in
predicting secondary organic and inorganic aerosols. The de-
tails of these changes can be found in previous studies (Hu et
al., 2016a, 2017c) and the references therein; therefore, only
a brief description is summarized here. The gas-phase photo-
chemical mechanism SARPC-11 was modified to better treat
isoprene oxidation chemistry (Ying et al., 2015; Hu et al.,
2017c). Formation of secondary organic aerosol (SOA) from
reactive uptake of dicarbonyls, methacrylic acid epoxide, and
isoprene epoxydiol through surface pathways (Li et al., 2015;
Ying et al., 2015) was added. Corrected SOA yields due to
vapor wall loss (Zhang et al., 2014) were adopted. Formation
of secondary nitrate and sulfate through heterogeneous reac-
tions of NO2 and SO2 on particle surface (Ying et al., 2014)
was also incorporated. It has been shown that these modifi-
cations improved the model performance on secondary inor-
ganic and organic PM2.5 components.

2.2 Anthropogenic emissions

The CMAQ model was applied to study air pollution in China
and surrounding countries in eastern Asia using a horizon-
tal resolution of 36 km. The modeling domain is shown in
Fig. 1. The anthropogenic emissions are from four inven-
tories: MEIC, SOE, EDGAR, and REAS2. MEIC was de-
veloped by a research group in Tsinghua University (http:
//www.meicmodel.org). Compared with other inventories for
China, e.g., INTEX-B (Zhang et al., 2009) or TRACE-P
(Streets et al., 2003), the major improvements include a
unit-based inventory for power plants (Wang et al., 2012)
and cement plants (Lei et al., 2011b), a county-level high-
resolution vehicle inventory (Zheng et al., 2014), and a novel
non-methane VOC (NMVOC) speciation approach (Li et al.,
2014). The VOCs were speciated to the SAPRC-07 mech-
anism. As the detailed species to model species mapping
of the SAPRC-11 mechanism is essentially the same as the
SAPRC-07 mechanism (Carter and Heo, 2012), the speciated

Figure 1. The WRF/CMAQ modeling domain and the regions
in China. The dots represent the 60 cities where observational
data are available for ensemble analysis. The x and y axis is
the Lambert projection grid numbers in the west–east and south–
north direction. NCP represents the North China Plain region.
The provinces included in each region are as follows: NCP:
Beijing, Tianjin, Hebei, Shandong, and Inner Mongolia; North-
east: Liaoning, Jilin, and Heilongjiang; YRD: Shanghai, Jiangsu,
and Zhejiang; Central China: Shanxi, Henan, Hubei, Anhui, Hu-
nan, Jiangxi; Northwest: Xinjiang, Qinghai, Ningxia, Gansu, and
Shaanxi; Sichuan Basin: Sichuan and Chongqing; Southwest: Ti-
bet, Yunnan, Guizhou, Guangxi; PRD: Guangdong, Hong Kong,
and Macau; Fujian, Hainan, and Taiwan are grouped as the “Other”
region.

VOC emissions in the MEIC inventory were directly used in
the simulation.

The SOE emission inventory was developed using an
emission factor method (Wang et al., 2011; Zhao et al.,
2013b). The sectorial emissions in different provinces were
calculated based on activity data, technology-based and un-
controlled emissions factors, and penetrations of control
technologies (fractions of pollutants not collected). Elemen-
tal carbon (EC) and organic carbon (OC) emissions were
calculated based on PM2.5 emissions and their fractions in
PM2.5 in source-specific speciation profiles. The sectorial ac-
tivity data and technology distribution were obtained using
an energy demand modeling approach with various Chinese
statistics and technology reports. More details, including
the spatiotemporal distributions and speciation of NMVOC
emissions, can be found in previous publications (Zhao et al.,
2013a, b; Wang et al., 2011). Since MEIC and SOE emission
inventories only cover China, emissions from other countries
and regions were based on REAS2 (Kurokawa et al., 2013).

Version 4.2 of EDGAR emissions (http://edgar.jrc.ec.
europa.eu/overview.php?v=42) has a spatial resolution of
0.1× 0.1◦. The EDGAR inventory contains annual emis-
sions from different sectors based on IPCC designations.
REAS2 has a spatial resolution of 0.25× 0.25◦ for all of
Asia. The inventory contains monthly emissions of pollu-
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tants from different source categories. Detailed information
regarding these inventories can be found in the publications
presenting them. Table S1 in the Supplement shows the to-
tal emissions of major pollutants within China in a typical
workday of each season. In general, large differences exist
among different inventories for China. MEIC has the highest
CO emissions in winter while REAS2 has the highest in other
seasons. MEIC has the highest NOx emissions while REAS2
has the highest emissions of VOCs in all seasons. EDGAR
predicts the highest SO2 emissions, which are approximately
a factor of 2 higher than those estimated by SOE. SOE has
the highest NH3 emissions while EDGAR has much lower
NH3 emissions than the other three. EDGAR also has the
lowest EC and OC emissions, but the total PM2.5 emissions
are the highest. Standard deviations indicate that winter has
the largest uncertainties for all species except SO2 and NH3.
Winter has the lowest SO2 uncertainties while summer has
the largest NH3 uncertainties.

All emissions inventories were processed with an in-house
program and re-gridded into the 36 km resolution CMAQ
domain when necessary. Representative speciation profiles
based on the SPECIATE 4.3 database maintained by the
U.S. EPA were applied to split NMVOC of EDGAR and
REAS2 into the SAPRC-11 mechanism, and PM2.5 of all in-
ventories was split into AERO6 species. Monthly emissions
were temporally allocated into hourly files using temporal al-
location profiles from previous studies (Chinkin et al., 2003;
Olivier et al., 2003; Wang et al., 2010). More details regard-
ing EDGAR can be found in D. Wang et al. (2014), while
those for REAS2 can be found in Qiao et al. (2015).

2.3 Other inputs

The Model for Emissions of Gases and Aerosols from Na-
ture (MEGAN) v2.1 was used to generated biogenic emis-
sions (Guenther et al., 2012). The 8-day Moderate Resolution
Imaging Spectroradiometer (MODIS) leaf area index (LAI)
product (MOD15A2) and the plant function type (PFT) files
used in the Global Community Land Model (CLM 3.0) were
applied to generate inputs for MEGAN. The readers are re-
ferred to Qiao et al. (2015) for more information. Open
biomass burning emissions were generated using a satellite-
observation-based fire inventory developed by NCAR (Wied-
inmyer et al., 2011). The dust emission module was updated
to be compatible with the 20-category MODIS land use data
(Hu et al., 2015a) for inline dust emission processing, and
sea salt emissions were also generated in-line during CMAQ
simulations.

The meteorological inputs were generated using WRF
v3.6.1 (Skamarock et al., 2008). The initial and bound-
ary conditions for WRF were downloaded from the NCEP
FNL Operational Model Global Tropospheric Analyses data
set. WRF configurations details can be found in Zhang et
al. (2012). WRF performance has been evaluated by com-
paring predicted 2 m above surface temperature and relative

humidity, and 10 m wind speed and wind direction with all
available observational data at ∼ 1200 stations from the Na-
tional Climate Data Center (NCDC). The model performance
is generally acceptable and detailed evaluation results can be
found in a previous study (Hu et al., 2016a).

The initial and boundary conditions representing rela-
tively clean tropospheric concentrations were generated us-
ing CMAQ default profiles.

2.4 Model evaluation

Model predictions with the four emission inventories were
evaluated against available observation data in China. Hourly
observations of PM2.5, PM10, O3, CO, SO2, and NO2
from March to December 2013 at 422 stations in 60 cities
were obtained from CNEMC (http://113.108.142.147:20035/
emcpublish/), but no observations were available for January
and February. Observations at multiple sites in one city were
averaged to calculate the average concentrations of the city.
Detailed quality control of the data can be found in previous
studies (Hu et al., 2014a, 2016a; Y. Wang et al., 2014). Sta-
tistical matrix of mean normalized bias (MNB), mean nor-
malized error (MNE), mean fractional bias (MFB), and mean
fractional error (MFE) were calculated using Eqs. (1)–(4):

MNB=
1
N

N∑
i=1

(Cm−Co)

Co

, (1)

MNE=
1
N

N∑
i=1

∣∣∣∣Cm−Co

Co

∣∣∣∣ , (2)

MFB=
1
N

N∑
i=1

(Cm−Co)(
Co+Cm

2

) , (3)

MFE=
1
N

N∑
i=1

|Cm−Co|(
Co+Cm

2

) , (4)

where Cm and Co are the predicted and observed city aver-
age concentrations, respectively, and N is the total number
of observation data. MNB and MNE are commonly used in
evaluation of model performance of O3, and MFB and MFE
are commonly used in evaluation of model performance of
PM2.5 (Tao et al., 2014). The U.S. EPA previously recom-
mended O3 model performance criteria of within ±0.15 for
MNB and less than 0.30 for MNE (as shown in Fig. 1), and
PM model performance criteria of within±0.60 for MFB and
less than 0.75 for MFE (U.S. EPA, 2001). Figure 2 includes
the criteria and goals for PM as a function of PM concentra-
tion, as suggested by Boylan and Russell (2006), which have
been widely used in model evaluation.

2.5 Ensemble predictions

The four sets of predictions with the different inventories
were combined linearly to calculate the ensemble predic-
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Figure 2. Performance of predicted O3, CO, NO2, and SO2 for different months (top two rows) and regions based on simulations with
individual inventories. The blue dashed lines on the O3 plots are ±0.15 for MNB and 0.3 for MNE as suggested by the U.S. EPA (2001).
Changes of colors show the months from March to December in top two rows (3 refers to March, 12 to December, etc.), while showing
regions from NCP to Other in the bottom two rows.

tions, as shown in Eq. (5):

Cpred,ens
=

Nm∑
m=1

wmCpred,m, (5)

where Cpred,ens is the ensemble prediction, Cpred,m is the
predicted concentration from the mth simulation, Nm is the
number of simulations in the ensemble (Nm = 4), and wm is
the weighting factor of the mth simulation. The weighting
factor for each set of predictions was determined by mini-
mizing the objective function Q in Eq. (6):

Q=

Ncity∑
i

[
Cobs

i −

Nm∑
m=1

wmC
pred,m

i

]2

, (6)

where Cobs
i is the observed PM2.5 or O3 concentration at the

ith city, Ncity is the total number of cities with observation
(N = 60), C

pred,m

i is the predicted concentration at the ith
city from the mth simulation, and Nm is the number of sim-
ulations in the ensemble (Nm = 4). The weight factor wm of
the mth simulation to be determined is within the range of
[0, 1], with w = 0 represents no influence of the individual
simulation on the ensemble prediction, and w = 1 indicates
that concentrations of the individual simulation are fully ac-
counted for in the ensemble prediction. The observation data
were the same as used in the model evaluation. Ensemble

predictions were performed for PM2.5 and O3 in this study.
A MATLAB program was developed to solve above equa-
tion and determine the weighting factors using the linear least
squares solver “lsqlin”.

3 Results

3.1 Model performance on gaseous and particulate
pollutants

Table 1 summarizes the overall model performance on O3,
CO, NO2, SO2, PM2.5, and PM10 with different invento-
ries using the averaged observations in 60 cities in 2013.
Model performance meets the O3 criteria for all inventories.
O3 from SOE is 7.2 parts per billion (ppb) lower than the
mean observed concentration while the underpredictions of
the other three inventories are less than 2 ppb. CO, NO2, and
SO2 are underpredicted by all inventories, indicating poten-
tial emission underestimation of these species in the invento-
ries. CO predictions from three inventories (SOE inventory
does not include CO) are substantially lower than observa-
tions, with the best performance (lowest MNB and MNE)
from REAS2. The overall performance of NO2 is similar to
CO. However, MEIC and SOE yield the lowest MNB, while
EDGAR yields the highest MNB for CO. SO2 performance
is better than CO and NO2, and MEIC and SOE yield the
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Table 1. Overall model performance of gas and PM species in 2013
using different inventories. Obs is observation, MFB is mean frac-
tional bias, MFE is mean fractional error, MNB is mean normal-
ized bias, and MNE is mean normalized error. The indices were
calculated with hourly observations and predictions. The best per-
formance is indicated by the bold numbers.

Prediction MFB MFE MNB MNE

O3

Mean Obs: 51.70 ppb
MEIC 49.83 −0.08 0.35 0.02 0.33
SOE 44.51 −0.2 0.38 −0.09 0.32
EDGAR 49.82 −0.04 0.28 0.03 0.28
REAS2 51.17 −0.04 0.33 0.05 0.33

CO

Mean Obs: 0.96 ppm
MEIC 0.31 −0.92 0.96 −0.57 0.63
SOE – – – – –
EDGAR 0.23 −1.12 1.16 −0.66 0.73
REAS2 0.42 −0.72 0.82 −0.41 0.59

NO2

Mean Obs: 21.45 ppb
MEIC 10.12 −0.79 0.93 −0.41 0.66
SOE 11.59 −0.65 0.81 −0.33 0.61
EDGAR 6.82 −1.02 1.07 −0.6 0.67
REAS2 9.3 −0.81 0.92 −0.46 0.63

SO2

Mean Obs: 17.21 ppb
MEIC 12.5 −0.51 0.87 0.01 0.87
SOE 12.76 −0.44 0.83 0.06 0.86
EDGAR 15.86 −0.16 0.73 0.31 0.88
REAS2 15.15 −0.23 0.74 0.23 0.86

PM2.5

Mean Obs: 70.01 µgm−3

MEIC 56.39 −0.32 0.64 −0.02 0.63
SOE 59.77 −0.24 0.61 0.09 0.67
EDGAR 52.59 −0.3 0.59 −0.05 0.56
REAS2 60.35 −0.21 0.59 0.08 0.63

PM10

Mean Obs: 118.61 µgm−3

MEIC 62.7 −0.63 0.79 −0.32 0.61
SOE 63.32 −0.6 0.76 −0.3 0.6
EDGAR 55.76 −0.67 0.78 −0.38 0.58
REAS2 71.41 −0.49 0.7 −0.21 0.59

lowest MNB, while MNE values of the four inventories are
very similar. PM2.5 and PM10 predictions using all inven-
tories meet the performance criteria with similar MFB and
MFE values. REAS2 yields slightly better PM2.5 and PM10
performance, but all inventories underpredict the concentra-
tions generally.

The difference in model performance with the four inven-
tories also varies seasonally and spatially. Figure 2 shows
the comparison of model performance for hourly gaseous
species (O3, CO, NO2, and SO2) in each month from March
to December 2013. The MNB values of O3 in most months
are within the criteria for all inventories except for SOE,
which underpredicts O3 concentrations. March has the worst
performance of O3 for all inventories with MNE values larger
than 0.4 for MEIC, SOE, and EDGAR. No significant per-
formance difference among different inventories in different
months is found, but large differences exist in various regions

of China (see the definition of regions of China in Fig. 1). O3
predicted using MEIC, EDGAR, and REAS2 meets the per-
formance criteria in most regions except for YRD by MEIC
and PRD by EDGAR. O3 predicted using SOE only meets
the criteria in the Northwest (NW) and other region (Other)
of China. CO and NO2 are underpredicted in all regions, with
the largest underpredictions in NW and Other. This pattern is
similar among the results with all inventories. SO2 is gen-
erally underpredicted in all regions but overpredicted in the
Sichuan Basin (SCB) by all inventories. SO2 is also overpre-
dicted by EDGAR in the PRD region. SO2 in Northeast (NE)
is substantially underpredicted by MEIC and REAS2. In gen-
eral, model performance in the more developed regions such
as YRD, and PRD are relatively better, compared to NW and
Other.

Figure 3 illustrates the PM2.5 and PM10 performance
statistics of MFB and MFE as a function of absolute con-
centrations in different months of 2013 and in different re-
gions. PM2.5 predictions based on each inventory are within
the performance goal of MFB and between the goal and cri-
teria of MFE in all months. There are no significant differ-
ences among inventories. Half of monthly averaged PM10
MFB values fall within the goal while the rest are between
the goal and criteria. MFE values of PM10 are all between the
goal and criteria. From the regional perspective, PM2.5 per-
formance for NE by SOE fails the MFB criteria, while that
for SCB by MEIC, SOE, and REAS2 fails the MFE criteria.
MFB values of PM10 in all regions meet the criteria except
NW, due to underestimation of windblown dust emissions in
NW.

3.2 Spatial variations in predicted gaseous and
particulate pollutants

Figure 4 shows the spatial distribution of annual average
daily maximum 1 h O3 (O3-1h), 8 h mean O3 (O3-8h), NO2,
and SO2 predicted by MEIC and the differences between
predictions of SOE, EDGAR, and REAS2 against those
of MEIC. MEIC-predicted annual O3-1h concentrations are
∼ 60 ppb in most parts of China with the highest values of
∼ 70 ppb in SCB. SOE predicts lower O3-1h values than
MEIC, with ∼ 5 ppb differences in the SCB, central China
(CNT), and North China Plain (NCP) regions and 2–3 ppb
differences in regions other than the above three regions.
EDGAR also predicts 2–3 ppb lower O3-1h in most re-
gions than MEIC but its O3-1h predictions in the Tibetan
Plateau, NCP, and ocean regions are 2–3 ppb higher than
MEIC predictions. REAS2-predicted O3-1h values are lower
than MEIC for scattered areas in the NE, NW, and CNT re-
gions but are slightly higher in other regions. MEIC, SOE,
and REAS2 have similar results for regions out of China (the
difference is generally less than 1 ppb) since the simulations
used same emissions for those regions. O3-8h shows similar
spatial distributions as O3-1h among inventories with slightly
less differences. NO2 concentrations are 10–15 ppb in devel-
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Figure 3. Performance of predicted PM2.5 and PM10 for different months (a–d) and regions (e–h) based on simulations with individual
inventories. The x axis is the observed concentrations. The model performance criteria (solid black lines) and goals (dash blue lines) are
suggested by Boylan and Russell (2006). The model performance goals represent the level of accuracy considered to approximate the best a
model could be expected to achieve, and the model performance criteria represent the level of accuracy that is considered to be acceptable for
modeling applications. Changes in colors show the months from March to December in the top two rows (3 refers to March, 12 to December,
etc.), while they show regions from NCP to Other in the bottom two rows.

oped areas of the NCP and YRD regions, and are greater than
5 ppb in other urban areas as predicted by MEIC. SOE pre-
dicts 2–3 ppb lower NO2 concentrations in most areas except
the vast NW region. EDGAR predicts lower NO2 (more than
5 ppb difference) in urban areas of the NCP and YRD areas
but higher concentrations in the entire western part of China
by approximately 1–2 ppb. REAS2 has the closest NO2 with
MEIC as the 1–2 ppb underestimation or overestimation are

almost evenly distributed in the whole country. SO2 concen-
trations are up to 20 ppb in the NCP, CNT, and SCB regions,
while they are less than 5 ppb in other regions. SOE gener-
ally predicts 2–3 ppb lower SO2 in the eastern half of China
with the largest difference of −10 ppb in the CNT region.
EDGAR and REAS2 have very similar differences in SO2
concentrations with MEIC, i.e., more than 5 ppb higher con-
centrations in the NCP and YRD than MEIC, ∼ 2 ppb higher
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Figure 4. Spatial differences of model-predicted annual average gas species concentrations (in the horizontal panels) with different invento-
ries (in the vertical panels). Units are ppb. The color bars of the first column are different to better show the spatial distribution of different
species. White indicates zero, while blue, green, yellow, and red mean concentrations from low to high. The color bars for the other three
columns are same; white indicates zero and blue and green mean values less than zero, while yellow, purple, and red mean values larger than
zero. O3-1h represents daily maximum 1 h O3 and O3-8h represents daily maximum 8 h mean O3.

Figure 5. Spatial differences of model-predicted seasonal averaged PM2.5 concentrations (in the horizontal panels) with different inventories
(in the vertical panels). Units are µgm−3. In the first column, white indicates zero, while blue, green, yellow, and red mean concentrations
from low to high. The color bars for the other three columns are same; white indicates zero and blue and green mean values less than zero,
while yellow, purple, and red mean values larger than zero.
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concentrations in the PRD, 2–3 ppb lower concentrations in
the NE, and up to 5 ppb lower concentrations in the CNT and
SCB.

Figure 5 shows the seasonal distribution of PM2.5 to-
tal mass predicted by MEIC and differences between
predictions by the other three inventories and those by
MEIC. In spring, MEIC-predicted PM2.5 concentrations are
∼ 50 µgm−3 in eastern and southern China. Southeast Asia
has the highest value of ∼ 100 µgm−3. SOE predicts 5–
10 µgm−3 lower PM2.5 than MEIC in north China and
< 5 µgm−3 higher values in southern China and along the
coastline. EDGAR predicts > 20 µgm−3 lower values in
NCP and ∼ 10 µgm−3 lower values in NE, CNT, and SCB,
but up to 20 µgm−3 higher values in PRD. REAS2 predicts
higher PM2.5 values in most parts of China except underpre-
dictions in NE and SCB. The difference in PM2.5 in YRD and
NCP is up to 20–30 µgm−3. In summer, the high PM2.5 re-
gions are much smaller compared to spring with∼ 50 µgm−3

in NCP, northern part of YRD and SCB and 20–30 µgm−3 in
other parts. Generally, SOE predicts < 10 µgm−3 lower val-
ues in most regions. EDGAR predicts lower values in NCP
and SCB but 5–10 µgm−3 higher values in southern China.
REAS2 predicts higher values in almost all the regions ex-
cept some scattered areas in NCP, YRD, and SCB.

In fall, PM2.5 concentrations are larger than 50 µgm−3 in
most regions except NW and are ∼ 100 µgm−3 in part of
NCP, CNT, and SCB. SOE predicts lower values than MEIC
in northern China but higher in southern China. EDGAR pre-
dicts up to 30 µgm−3 lower values in NCP and SCB while
up to 20 µgm−3 higher values in YRD. REAS2 again esti-
mates similar values as MEIC with less than 5 µgm−3 dif-
ferences in most regions and up to 20 µgm−3 higher val-
ues in scattered areas in YRD and SCB. In winter, MEIC-
predicted PM2.5 concentrations are up to 200 µg m−3 in
NCP, CNT, YRD, and SCB, while PRD has concentrations
of ∼ 50 µgm−3. SOE-predicted concentrations are severely
lower by 30 µgm−3 in most regions with high PM2.5 con-
centrations but by < 10 µgm−3 higher in only coast areas.
EDGAR also predicts 30 µgm−3 lower PM2.5 concentrations
in NE, NCP, CNT, and SCB, but 20 µgm−3 higher in the
YRD region. The regions with lower values by REAS2 com-
pared to MEIC are in the regions of NE, NCP, CNT, and
SCB, similar to EDGAR but with much smaller areas.

Figure 6 shows the annual average concentrations of
PM2.5 components predicted by MEIC and the differences
between predictions by the other three inventories and those
by MEIC. Annual average particulate sulfate (SO2−

4 ) con-
centrations with MEIC are 20–25 µgm−3 in NCP, CNT, and
SCB, and about 10 µgm−3 in other regions in the southeast-
ern China. SOE-predicted concentrations are ∼ 10 µgm−3

lower in the high-concentration areas and 2–3 µgm−3 lower
in other areas. EDGAR-predicted SO2−

4 are ∼ 5 µgm−3

higher in southeastern China and 2–3 µgm−3 lower in SCB.
REAS2-predicted SO2−

4 concentrations are generally 2–
3 µgm−3 lower than those of MEIC in most areas except

Table 2. The weighting factors (w) of each inventory in the en-
semble predictions of PM2.5 when using daily, monthly, and annual
averages in the objective function (Eq. 5).

Daily Monthly Annual

MEIC 0.07 0.13 0.31
SOE 0.14 0.16 0.24
EDGAR 0.38 0.23 0.20
REAS2 0.49 0.63 0.36

the coastal areas. MEIC predicts the highest particulate ni-
trate (NO−3 ) concentrations of up to 30 µgm−3 in NCP and
YRD and concentrations in other regions are 5–10 µgm−3

except northwest China. SOE-predicted nitrate concentra-
tions are < 5 µgm−3 lower in the high-concentration ar-
eas and ∼ 2 µgm−3 higher values in coastal areas. EDGAR
uniformly predicts lower NO−3 values than MEIC with the
largest difference of 10 µgm−3. REAS2 has similar results
to SOE. Particulate ammonium (NH+4 ) concentrations pre-
dicted by MEIC have a peak value of 15 µgm−3 and are
mostly less than 10 µgm−3 in eastern and southern China.
SOE predicts slightly lower concentrations except for the
coastal areas in PRD, where the SOE predictions are 1–
2 µgm−3 higher.

EC concentrations are generally low compared to other
components as predicted by MEIC. The concentrations are
less than 10 µgm−3 in NCP, CNT, and SCB. All other three
inventories predict 1–2 µgm−3 lower EC values than MEIC
throughout the country. Primary organic aerosol (POA) con-
centrations predicted by MEIC are 20–30 µgm−3 in NCP,
CNT, and SCB, and ∼ 10 µgm−3 in other areas in eastern
and southern China. SOE-predicted concentrations are up to
5 µgm−3 higher in most areas, but in scattered places the
SOE predictions are ∼ 2 µgm−3 lower than MEIC. EDGAR
and REAS2 predictions are up to ∼ 10 µgm−3 lower ex-
cept for coastal areas. SOA concentrations are low in north-
ern China and are up to 10 µgm−3 in eastern and southern
China. All three other inventories predict ∼ 2 µgm−3 lower
SOA concentrations than MEIC. For other implicit compo-
nents (OTH), the highest concentrations are ∼ 15 µgm−3 in
NW and NCP, while other regions have concentrations lower
than 5 µgm−3. In NW, the major sources of OTH are wind-
blown dust generated in-line by CMAQ simulations; thus, al-
most no differences are observed among the four simulations.
SOE and EDGAR predict lower OTH vales in northern China
(∼ 2 µgm−3 and slightly higher values in southern and east-
ern China (∼ 5 µgm−3). REAS2 predicts higher OTH values
in eastern China uniformly with up to 10 µgm−3 differences
in the NCP, YRD, and SCB regions.

Additional comparisons of the model predictions in dif-
ferent regions and some major cities in China are shown in
Figs. S1–S4 in the Supplement.
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Figure 6. Spatial differences of model-predicted annual PM2.5 components (in the horizontal panels) with different inventories (in the vertical
panels). Units are µgm−3. “OTHER” represents the other implicit components (OTH). Colors are used as in Fig. 5.

3.3 Ensemble predictions

The above analyses indicate that model performance with
different inventories varies for different pollutants and in dif-
ferent regions. Table S2 shows the observed annual aver-
age concentrations of PM2.5 in the 60 cities and the predic-
tions from the four inventories as well as the weighted en-
semble predictions. The weighting factors for predictions us-
ing MEIC, REAS2, SOE, and EDGAR are 0.31, 0.36, 0.24,
and 0.20, respectively (Table 2). The ensemble predictions
greatly reduce MFB to a value of −0.11, compared to the
MFB values of−0.25 to−0.16 using the annual average con-
centrations in the individual simulations. Also, the ensemble
prediction yields an MFE value of 0.24, lower than any MFE

values of 0.26–0.31 based on individual simulations (Fig. 7).
The ensemble predictions of annual O3-1h have MNB and
MNE of 0.03 and 0.14, respectively, improved from MNB of
0.06–0.19 and MNE of 0.16–0.22 in the individual predic-
tions.

To further evaluate the ability of the ensemble method in
improving predictions at locations where observational data
are not available, ensemble predictions were made using a
data withholding method. For each city, the observations at
the other 59 cities were used to determine the weighting fac-
tors in E6 and the ensemble prediction at the city was cal-
culated. Performance of the ensemble predictions at the city
was calculated using the withheld observations to evaluate
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Table 3. Performance of daily PM2.5 (MFB and MFE) and O3-1h (MNB and MNE) in different regions of China based on individual
inventories and the ensemble. The weighting factors (w) used to calculate the ensemble of each region are also included. The best performance
is indicated by the bold numbers.

Region MEIC SOE EDGAR REAS2 ensemble

(No. of cities) w MFB MFE w MFB MFE w MFB MFE w MFB MFE MFB MFE

PM2.5

NE (4) 0.16 −0.23 0.44 0.21 0.38 0.68 0.20 −0.30 0.43 0.43 −0.12 0.43 −0.08 0.42
NCP (14) 0.00 −0.30 0.47 0.52 −0.34 0.46 0.14 −0.40 0.51 0.56 −0.20 0.41 −0.12 0.40
NW (6) 0.00 −0.87 0.90 0.20 −0.80 0.84 0.59 −0.85 0.87 1.00 −0.81 0.83 −0.49 0.66
YRD (20) 0.05 −0.29 0.45 0.00 −0.27 0.43 0.61 −0.23 0.40 0.35 −0.13 0.40 −0.18 0.38
CNT (5) 0.09 −0.10 0.46 0.18 −0.05 0.41 0.50 −0.27 0.40 0.22 0.09 0.44 −0.14 0.37
SCB (2) 0.00 0.10 0.48 0.64 0.23 0.48 0.00 −0.10 0.39 0.08 0.07 0.43 −0.15 0.40
SOUTH (9) 0.10 −0.35 0.51 0.00 −0.18 0.41 0.59 −0.07 0.45 0.30 −0.25 0.44 −0.16 0.41
CHINA (60) 0.07 −0.34 0.52 0.14 −0.26 0.50 0.38 −0.33 0.49 0.49 −0.22 0.46 −0.20 0.45

w MNB MNE w MNB MNE w MNB MNE w MNB MNE MNB MNE

O3-1h

NE 0.09 0.44 0.50 0.00 0.16 0.34 0.45 0.41 0.47 0.27 0.42 0.48 0.14 0.31
NCP 0.29 0.33 0.47 0.12 0.23 0.44 0.06 0.46 0.59 0.42 0.47 0.56 0.25 0.43
NW 0.00 0.65 0.72 0.82 0.54 0.62 0.00 0.70 0.77 0.00 0.68 0.74 0.25 0.46
YRD 0.00 0.20 0.41 0.53 0.14 0.38 0.00 0.25 0.45 0.45 0.27 0.44 0.17 0.39
CNT 0.27 0.27 0.47 0.18 0.16 0.43 0.10 0.35 0.53 0.36 0.35 0.52 0.18 0.42
SCB 0.44 0.59 0.68 0.14 0.42 0.58 0.28 0.59 0.70 0.00 0.60 0.72 0.33 0.53
SOUTH 0.84 0.39 0.50 0.00 0.29 0.46 0.00 0.38 0.51 0.00 0.42 0.53 0.16 0.37
CHINA 0.19 0.34 0.49 0.20 0.23 0.44 0.00 0.39 0.54 0.51 0.41 0.53 0.21 0.42

Figure 7. MFB (a) and MFE (b) of predicted PM2.5 for with an
averaging time of 24 h, 1 month, and 1 year based on the individual
inventories and the ensemble.

the performance. The evaluation process was repeated for
each of the 60 cities and the performance was compared to
that with individual inventories (shown in Table S3). The re-
sults show that the ensemble predictions are better than those
with EDGAR, MEIC, REAS2, and SOE at 36, 37, 32, and
40 cities for PM2.5, and 39, 39, 43, and 38 cities for O3-1h,
respectively. The ensemble predictions are better than ≥ 2 of

the individual predictions at 45 and 41 cities for PM2.5 and
O3-1h, respectively. Out of the 15 cities for which the en-
semble PM2.5 is only better than one or none of the individ-
ual predictions, 10 cities have MFB within ±0.25 and MFE
less than 0.25. Out of the 19 cities for which the ensemble
O3-1h is only better than one or none of the individual pre-
dictions, 14 cities still have MNB within±0.2 and MNE less
than 0.2. The results demonstrate that the ensemble can im-
prove the predictions even at locations with no observational
data available.

Previous studies have revealed that CTMs predictions
agree more when averaging over longer periods of time (i.e.,
annual vs. monthly vs. daily averages; Hu et al., 2014b,
2015b). Ensemble predictions were also calculated with
daily and monthly averages for PM2.5, in addition to the cal-
culation with annual averages discussed above. The weight-
ing factors and the performance of ensemble predictions are
shown in Table 2 and Fig. 7, respectively. The weighting fac-
tors vary largely with the averaging times, suggesting that
the prediction optimization needs to be conducted separately
when using different time averages. The ensemble predic-
tions improve the agreement with observations in all averag-
ing time cases, with lower MNB and MNE than any of the
individual predictions. In general, EDGAR and REAS2 have
large weights for daily and monthly ensemble calculations,
and MEIC and SOE have large weights for annual ensemble
calculations. This result indicates that the annual total emis-
sion rates of MEIC and SOE are likely accurate, but the tem-
poral profiles to allocate the annual total emissions rates to
specific days/hours need to be improved.

Table 3 shows the ensemble prediction performance on
PM2.5 and O3-1h in different regions of China using the daily
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Figure 8. Spatial distributions of PM2.5 and its components in the ensemble predictions. Units are µgm−3. The scales of the panels are
different. White indicates zero, while blue, green, yellow, and red mean concentrations from low to high. “OTHER” represents the other
implicit components (OTH).

average observations and daily average predictions with indi-
vidual inventories. The weighting factors vary greatly among
regions, reflecting the substantial difference in the spatial dis-
tributions of PM2.5 and O3 when using different inventories.
The MNB and MNE values of ensemble predictions are re-
duced in all regions for both pollutants, suggesting the en-
semble predictions improve the accuracy and can be better
used in further health effect studies. The similar findings are
also found with the monthly average observations and pre-
dictions (shown in Table S4).

Figure 8 shows spatial distributions of PM2.5 and its com-
ponents from the ensemble predictions using the weighting
factors of annual averages. The ensemble of PM2.5 compo-
nents was calculated using the same weighting factors as for
PM2.5 in total mass. Concentrations of over 80 µgm−3 an-
nual average PM2.5 are estimated in NCP, CNT, YRD, and
SCB regions in 2013. Secondary inorganic aerosols (SO2−

4 ,
NO−3 , and NH+4 ) account for approximately half of PM2.5,

and exhibit similar spatial patterns. Carbonaceous aerosols
(EC, POA, and SOA) account for about 30 %, but POA and
SOA have quite different spatial distributions. High POA
concentrations are mainly distributed in NCP, CNT, and
SCB, while high SOA concentrations are found in southern
China. By considering the spatial distributions of population
and ensemble PM2.5, the population-weighted annual aver-
age PM2.5 concentration in China in 2013 is 59.5 µgm−3,
which is higher than the estimated value of 54.8 µgm−3 by
Brauer et al. (2016).

The results of the current study can be further applied
in health effect studies. The first such analysis used annual
PM2.5 ensemble predictions to assess the spatial distribu-
tion of excess mortality due to adult (> 30 years old) is-
chemic heart disease (IHD), cerebrovascular disease (CEV),
chronic obstructive pulmonary disease (COPD), and lung
cancer (LC) in China caused by PM2.5 exposure (Hu et al.,
2017a). Any health studies requiring human exposure infor-
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mation to different pollutants would benefit from this study.
Even though the weighted factors vary depending on the re-
gions, averaging times and different study years, the ensem-
ble method proposed in this study minimizes the difference
between predictions and observations and can be applied in
different studies. The way to calculate the weighting factors
depends on the objectives of specific studies. But in general,
the more observation data used in the calculation, the more
accurate the ensemble prediction will be.

4 Conclusion

In this study, air quality predictions in China in 2013 were
conducted using the WRF/CMAQ modeling system with
anthropogenic emissions from four inventories including
MEIC, SOE, EDGAR, and REAS2. Model performance with
the four inventories was evaluated by comparing against
available observation data from 422 sites in 60 cities in
China. Model predictions of hourly O3 and PM2.5 with the
four inventories generally meet the model performance crite-
ria, but model performance with different inventories varies
by pollutant and by region. To improve the overall agreement
of the predicted concentrations with observations, ensemble
predictions were calculated by linearly combining the predic-
tions from different inventories. The ensemble annual con-
centrations show improved agreement with observations for
both PM2.5 and O3-1h. The MFB and MFE of the ensemble
predictions of PM2.5 in the 60 cities are −0.11 and 0.24, re-
spectively, which are better than the MFB (−0.25 to −0.16)
and MFE (0.26 to 0.31) of any individual simulations. The
ensemble predictions of annual O3-1h have MNB and MNE
of 0.03 and 0.14, improved from MNB (0.06–0.19) and MNE
(0.16–0.22) in individual predictions. The ensemble predic-
tions with the data withholding method at each city show bet-
ter performance than the predictions with individual invento-
ries at most cities, demonstrating the ability of the ensemble
at improving the predictions at locations where observational
data are not available. The ensemble predictions agree better
with observations with daily, monthly, and annual averaging
times in all regions of China. The study demonstrates that
ensemble predictions from combining predictions from in-
dividual emission inventories can improve the accuracy of
concentration estimations and the spatial distributions of air
pollutants.
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