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Abstract. The Asian summer monsoon (ASM) anticyclone is
the most pronounced circulation pattern in the upper tropo-
sphere and lower stratosphere (UTLS) during northern hemi-
spheric summer. ASM convection plays an important role in
efficient vertical transport from the surface to the upper-level
anticyclone. In this paper we investigate the potential im-
pact of enhanced anthropogenic nitrogen oxide (NOx) emis-
sions on the distribution of ozone in the UTLS using the
fully coupled aerosol–chemistry–climate model, ECHAM5-
HAMMOZ. Ozone in the UTLS is influenced both by the
convective uplift of ozone precursors and by the uplift of
enhanced-NOx-induced tropospheric ozone anomalies. We
performed anthropogenic NOx emission sensitivity experi-
ments over India and China. In these simulations, covering
the years 2000–2010, anthropogenic NOx emissions have
been increased by 38 % over India and by 73 % over China
with respect to the emission base year 2000. These emis-
sion increases are comparable to the observed linear trends
of 3.8 % per year over India and 7.3 % per year over China
during the period 2000 to 2010. Enhanced NOx emissions
over India by 38 % and China by 73 % increase the ozone
radiative forcing in the ASM anticyclone (15–40◦ N, 60–
120◦ E) by 16.3 and 78.5 mW m−2 respectively. These ele-
vated NOx emissions produce significant warming over the
Tibetan Plateau and increase precipitation over India due to
a strengthening of the monsoon Hadley circulation. However,
increase in NOx emissions over India by 73 % (similar to the
observed increase over China) results in large ozone produc-
tion over the Indo-Gangetic Plain and Tibetan Plateau. The

higher ozone concentrations, in turn, induce a reversed mon-
soon Hadley circulation and negative precipitation anoma-
lies over India. The associated subsidence suppresses vertical
transport of NOx and ozone into the ASM anticyclone.

1 Introduction

Rapid economic development and urbanization in Asia has
resulted in an unprecedented growth in anthropogenic emis-
sions of nitrogen oxides (NOx), carbon monoxide (CO),
carbon dioxide (CO2), and methane (CH4). Many of these
species affect concentrations of tropospheric ozone, which
is both an important polluting agent and a greenhouse gas
(Wild and Akimoto, 2001; Chatani et al., 2014; Revell et
al., 2015). Ground-based and satellite observations show a
large amount of these ozone precursors concentrated over
India and China (Sinha et al., 2014; Richter et al., 2005; Ja-
cob et al., 1999; Zhao et al., 2013; Gu et al., 2014). Studies
show that tropospheric ozone production over Asia is con-
trolled by the abundance of NOx and volatile organic car-
bon (VOC) (Sillman, 1995; Lei et al., 2004; Zhang et al.,
2004; Tie et al., 2007), with large regions such as India and
China being NOx limited regions. Therefore, increased NOx
in these regions leads to an increase in ozone concentra-
tions (Yamaji et al., 2006; Sinha et al., 2014; Fadnavis et al.,
2015). Recently, positive trends in Asian tropospheric col-
umn NO2 have been reported, i.e. 3.8 % yr−1 over India, us-
ing Scanning Imaging Absorption SpectroMeter for Atmo-
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spheric Chartography (SCIAMACHY) observations for the
period 2003–2011 (Ghude et al., 2013) and 7.3 % yr−1 over
China using Ozone Monitoring Instrument (OMI) observa-
tions for the period 2002–2011 (Schneider and van der A,
2012). Lightning contributes to the production of NOx in the
middle and upper troposphere (Barret et al., 2016). Over the
Asian region, lightning contributes ∼ 40 % to NOx and 20 %
to ozone production in the middle and upper troposphere dur-
ing the monsoon season (Tie et al., 2001; Fadnavis et al.,
2014). The upper-tropospheric ozone concentration is deter-
mined by in situ production from both lightning and ozone
precursors, which are transported from the boundary layer
(Søvde et al., 2011; Barret et al., 2016).

Tropospheric ozone has a warming effect on climate, its
estimated radiative forcing due to increased concentrations
since pre-industrial times being 0.4 W m−2, with a 5 to 95 %
confidence range of 0.2 to 0.6 W m−2 (Stevenson et al., 2013;
Myhre et al., 2013). Previous studies highlighted the im-
portance of the tropical tropopause region for ozone radia-
tive forcing (Lacis et al., 1990; Riese et al., 2012; Rap et
al., 2015) and showed that ozone perturbations exert a large
influence on the thermal structure of the atmosphere (e.g.
Thuburn and Craig, 2002; Foster et al., 1997). A recent study
based on Atmospheric Chemistry and Climate Model Inter-
comparison Project (ACCMIP) models reported that NOx
and CH4 are the greatest contributors in determining tropo-
spheric ozone radiative forcing (Stevenson et al., 2013).

Asian summer monsoon (ASM) convection efficiently
transports Asian pollutants from the boundary layer into
the upper troposphere and lower stratosphere (UTLS) (Ran-
del and Park, 2006; Randel et al., 2010; Fadnavis et al.,
2013, 2014). Studies pertaining to modelling and trajectory
analysis confirm this finding (Li et al., 2005; Park et al.,
2007; Randel et al., 2010; Chen et al., 2012; Vogel et al.,
2015, 2016). Satellite observations show the confinement of
a number of chemical constituents like water vapour (H2O),
CO, CH4, ethane, hydrogen cyanide (HCN), peroxyacetyl ni-
trate (PAN), and aerosols within the ASM anticyclone (Park
et al., 2004, 2007, 2008; Li et al., 2005; Randel and Park,
2006; Xiong et al., 2009; Randel et al., 2010; Lawrence,
2011; Abad et al., 2011; Fadnavis et al., 2013, 2014, 2015;
Barret et al., 2016), which has potential implications on
stratospheric chemistry and dynamics. Thus the rise in an-
thropogenic emissions over the ASM region alters the chem-
ical composition of the UTLS (Lawrence, 2011; Fadnavis et
al., 2014, 2015) during the monsoon season. Another promi-
nent feature of the satellite observations is an ozone mini-
mum in the ASM anticyclone (near 100 hPa) (Gettelman et
al., 2004; Konopka et al., 2010; Braesicke et al., 2011). This
ozone minimum is linked to upward transport of ozone-poor
air masses (Gettelman et al., 2004; Park et al., 2007; Kunze
et al., 2010). Observations show that convectively lifted air
masses arriving in the anticyclone are ozone poor but rich
in ozone precursors. Balloon sonde observations show that
ozone variations near the anticyclone are strongly correlated

with temperature near the tropopause (Tobo et al., 2008).
Thus the linkage of low ozone and high concentrations of
ozone precursors with the temperature variation in the anti-
cyclone is an open question.

In this study we ask the question of how increasing
Asian NOx emissions and the associated ozone produc-
tion affect ozone radiative forcing and monsoon circula-
tion. We perform sensitivity experiments of increased anthro-
pogenic NOx emissions using the state-of-the-art ECHAM5-
HAMMOZ (European Centre General Circulation Model
version 5) chemistry–climate model (Roeckner et al., 2003;
Horowitz et al., 2003; Stier et al., 2005). We estimate the
ozone radiative forcing for the different anthropogenic NOx
emission scenarios, together with associated changes in tem-
perature and the monsoon circulation. The paper is organized
as follows: in Sect. 2 the data and model set-up are described,
the results are summarized in Sect. 3 and discussed in Sect. 4,
and the conclusions are given in Sect. 5.

2 Data description and model set-up

2.1 Satellite measurements

Earth Observing System (EOS) microwave limb
sounder (MLS) is one of the four instruments on NASA’s
EOS Aura satellite flying in the polar sun-synchronous
orbit. It measures the thermal emissions at millimetre
and sub-millimetre wavelengths (Waters et al., 2006). It
performs 240 limb scans per orbit with a footprint of
∼ 6 km across-track and ∼ 200 km along-track, provid-
ing ∼ 3500 profiles per day. MLS also measures vertical
profiles of temperature, ozone, CO, H2O, and many other
constituents in the mesosphere, stratosphere, and upper
troposphere (Waters et al., 2006). In the UTLS, MLS has a
vertical resolution of about 3 km. MLS vertical profiles of
ozone show good agreements with the Stratospheric Aerosol
and Gas Experiment II (SAGE-II), Halogen Occultation
Experiment (HALOE), Atmospheric Chemistry Experi-
ment (ACE), and ozonesonde measurements (Froidevaux
et al., 2006). The MLS ozone profiles are considered to
be useful in the range of 215–0.46 hPa (Livesey et al.,
2005). In this study we analyse the MLS level 2 (version 4)
ozone mixing ratios data for the period 2004–2013. The
data have been gridded horizontally, within latitude bins of
equal area (with the equatorial bin of 150 km width) and
longitude bins of about 8.5◦. These data can be accessed
from http://mls.jpl.nasa.gov/. For comparison, simulated
ozone is convolved with the MLS averaging kernel (Livesey
et al., 2011).

2.2 Model simulation and experimental set-up

We employ the aerosol–chemistry–climate model
ECHAM5-HAMMOZ, which comprises the general
circulation model ECHAM5 (Roeckner et al., 2003), the
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tropospheric chemistry module MOZART2 (Horowitz
et al., 2003), and the aerosol module Hamburg aerosol
model (HAM) (Stier et al., 2005). It includes NOx , VOC,
and aerosol chemistry. The gas-phase chemistry is based on
the chemical scheme provided by the MOZART-2 model
(Horowitz et al., 2003), which includes detailed chemistry
of the Ox–NOx hydrocarbon system with 63 tracers and
168 reactions. The O(1D) quenching reaction rates used
are taken from Sander et al. (2006) and isoprene nitrates
chemistry taken from Fiore et al. (2005). The dry deposition
in ECHAM5-HAMMOZ follows the scheme given by
Ganzeveld and Lelieveld (1995). Soluble trace gases like
HNO3 and SO2 are also subject to wet deposition. In-cloud
and below-cloud scavenging follows the scheme given by
Stier et al. (2005). Interactive calculation of cloud droplet
number concentration is according to Lohmann et al. (1999)
and ice crystal number concentrations are according to
Kärcher and Lohmann (2002). The convection scheme is
based on the mass flux scheme developed by Tiedke (1989).
Lightning NOx emissions are parameterized following
Grewe et al. (2001).

The model is run at a T42 spectral resolution correspond-
ing to about 2.8◦× 2.8◦ in the horizontal dimension and
31 vertical hybrid σ–p levels from the surface to 10 hPa.
In our model simulations, emissions from anthropogenic
sources and biomass burning are from the year 2000 RETRO
project data set (available at http://eccad.sedoo.fr/) (Schultz
et al., 2004, 2005, 2007, 2008). Emissions of SO2, black
carbon, and organic carbon are based on the AEROCOM-
II emission inventory, also for the year 2000 (Dentener et
al., 2006). The distribution of NOx emission mass flux (kg
m−2 s−1) averaged for the ASM season (June–September)
is shown in Fig. S1 in the Supplement. It shows high values
over the Indo-Gangetic Plain and East China. Other details of
model parameterizations, emissions, and evaluation are de-
scribed by Fadnavis et al. (2013, 2014, 2015) and Pozzoli et
al. (2008a, b, 2011). Each of our model experiments consists
of continuous simulations for 11 years from 2000 to 2010.
The base year for emissions is taken as 2000 and emissions
were repeated every year throughout the simulation period.
Meteorology varied due to varying monthly mean sea sur-
face temperature (SST) and sea ice concentration (SIC). The
AMIP2 SSTs and SIC varying for the period 2000–2010
were specified as a lower boundary condition.

In order to understand the impact of enhanced anthro-
pogenic NOx emissions on the distribution of ozone in the
UTLS, sensitivity simulations were performed for the pe-
riod 2000–2010. The experimental set-up is the same as de-
scribed by Fadnavis et al. (2014). The four simulations anal-
ysed in this study are a reference experiment (CTRL) and
three sensitivity experiments (referred to as experiments 2–
4), where the anthropogenic NOx emissions over India and
China are scaled in accordance with the observed trends. In
experiment 2, anthropogenic NOx emissions are increased
over India by 38 % (Ind38). In experiment 3, increases over

China by 73 % (Chin73) are prescribed. In order to analyse
the effects of similar NOx percentage increases over India
and China, NOx emissions are increased over India by 73 %
(Ind73) in experiment 4. The emission perturbations were
obtained from observed NO2 trends of 3.8 % per year over
India (Ghude et al., 2013) and 7.3 % per year over China
(Schneider and van der A, 2012). Hiboll et al. (2013) also
reported similar increasing NOx values over megacities in
India and China. All four simulations use the same VOC and
CO emissions and they all include NOx production due to
lightning (lightning-on) and soil emissions. There may be in-
direct impact of lightning NOx emission. Since it is same in
CTRL and sensitivity simulations its impact may be negligi-
ble.

In addition, a lightning-off simulation was performed for
the same period and boundary conditions as experiments 1–
4 (this simulation is the same as the one described in Fad-
navis et al., 2014). The impact of lightning on NOx produc-
tion is estimated by comparing the CTRL (lightning-on) with
lightning-off simulations.

The accuracy of the simulation of the monsoon circulation
probably depends on model resolution and an increased verti-
cal resolution may improve the model performance (Druyan
et al., 2008; Abhik et al., 2014). However, the model res-
olution of T42L31 is capable of reasonably simulating the
general regional spatial pattern of precipitation and low-level
circulation (Rajeevan et al., 2005) (see Fig. S2, showing sim-
ulated seasonal mean precipitation and circulation at 850 hPa
in the CTRL simulation).

The heating rates and radiative forcings associated with
the ozone changes in our three sensitivity simulations are cal-
culated using the Edwards and Slingo (1996) radiative trans-
fer model and the fixed dynamical heating approximation for
stratospheric temperature adjustment. Similarly to previous
studies (Riese et al., 2012; Bekki et al., 2013; Rap et al.,
2015), we used the offline version of the model, with six
shortwave and nine longwave bands, and a delta-Eddington
two-stream scattering solver at all wavelengths.

3 Results

3.1 Comparison with MLS satellite measurements in
the UTLS

The spatial distributions of ozone mixing ratios from MLS
observations at 100 hPa and from the CTRL ECHAM5-
HAMMOZ simulation at 90 hPa (the nearest model level)
after smoothing with the averaging kernel of MLS are il-
lustrated in Fig. 1a and b respectively. For comparison we
have interpolated the model data to the MLS pressure grid,
then applied the MLS averaging kernel and finally interpo-
lated back to the model pressure grid. The climatological
horizontal winds plotted in the figure clearly show the an-
ticyclonic upper-level monsoon circulation. Recent attempts
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Figure 1. Distribution of ozone mixing ratio (ppb) during the monsoon season (June–September) obtained from (a) MLS observations at
100 hPa and (b) ECHAM5-HAMMOZ at 90 hPa. Black arrows indicate wind vectors, the black dashed contour shows the PV-gradient-
based transport barrier of the anticyclone (calculated following Ploeger et al., 2015), and the white contour shows the 270 m geopotential
height anomaly, corresponding to the anticyclone edge definition by Barret et al. (2016). Meteorological data show climatological July fields
from (a) ERA-Interim reanalysis and (b) ECHAM5-HAMMOZ. The ECHAM5-HAMMOZ ozone distribution is smoothed using the MLS
averaging kernel. Grey crosses highlight the regions of the Tibetan Plateau, Bay of Bengal, and South China Sea. Bottom panels show the
vertical distribution of seasonal (June–September) mean ozone mixing ratios (ppb) from ozonesonde (2001–2009), MLS (2004–2013) and
ECHAM5-HAMMOZ CTRL simulation at the (c) Delhi, (d) Pune, and (e) Thiruvananthpuram Indian stations.

to characterize the extent of the anticyclone are based either
on potential vorticity on isentropic surfaces or on geopoten-
tial height on pressure surfaces. Here we apply both char-
acterizations of the anticyclone and show the PV contour
related to the maximum PV gradient on 380 K (calculated
from ERA-Interim reanalysis following Ploeger et al., 2015),
and the 270 m geopotential height anomaly as proposed by
Barret et al. (2016). The close agreement of both methods
shows that from a climatological point of view the two crite-
ria yield a very similar picture of the anticyclonic circulation
and the related trace gas confinement. Locally and at partic-
ular dates, however, differences may be larger with potential
vorticity correlating better with confined trace gas anoma-
lies than geopotential height (e.g. Garny and Randel, 2013;
Ploeger et al., 2015). The spatial pattern of low ozone con-
centrations in the monsoon anticyclone is well simulated in
the model. It is in good agreement with MLS (90–140 ppbv),
MIPAS (80–120 ppbv), and SAGE II (< 150 ppbv) measure-
ments (Kunze et al., 2010; Randel et al., 2001; Randel and
Park, 2006; Park et al., 2007).

Vertical profiles of ozonesonde measurements (averaged
for the monsoon season during 2001–2009) at Indian sta-
tions, Delhi (28.61◦ N, 77.23◦ E), Pune (18.52◦ N, 73.85◦ E),
and Thiruvananthapuram (8.48◦ N, 76.95◦ E) are com-

pared with MLS measurements and ECHAM5-HAMMOZ
simulated ozone mixing ratios in Fig. 1c–e. ECHAM5-
HAMMOZ simulations show good agreement with MLS
data between 200 and 50 hPa at all three stations. Com-
parison of ozonesonde observations with the ECHAM5-
HAMMOZ simulation shows reasonably good agreement at
Pune compared to Delhi and Thiruvananthapuram, where
there are some discrepancies. The simulated ozone mix-
ing ratios are lower than ozonesonde measurements by 10–
40 ppb between 500 and 90 hPa at Pune and by ∼ 70–90 ppb
in the upper troposphere (500–150 hPa) at Delhi. At Thiru-
vananthapuram, while at altitudes below 375 hPa simulated
ozone mixing ratios show good agreement with ozonesonde
data, at the altitudes above 375 hPa simulated values are
lower than observations by∼ 20–70 ppb. The differences be-
tween model and ozonesonde data may be due to differ-
ent grid sizes: the ECHAM5-HAMMOZ model grid size
is ∼ 280 km, while balloon observations are within ∼ 30–
180 km spatial range (balloon typically drifts ∼ 30–180 km
horizontally). In addition, previous work comparing these
model simulations with various aircraft observations during
the monsoon season found a reasonable agreement for PAN,
NOx , HNO3, and O3 mixing ratios (Fadnavis et al., 2014).
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Figure 2. Longitude–pressure cross sections of percentage NOx anomalies averaged for the monsoon season (June–September) obtained
from (a) Ind38 (averaged over 8–35◦ N), (b) Ind73 (averaged over 8–35◦ N), and (c) Chin73 (averaged over 20–45◦ N) simulations. Latitude–
pressure cross sections of percentage NOx anomalies averaged for the monsoon season (June–September) obtained from (d) Ind38 (averaged
over 70–90◦ E), (e) Ind73 (averaged over 70–90◦ E), and (f) Chin73 (averaged over 85–120◦ E) simulations. Black arrows indicate wind
vectors (the vertical velocity field has been scaled by 300), the black line represents the tropopause, and the black dashed arrows indicate the
cross-tropopause transport. The black boxes show the outline of the anticyclone.

3.2 Transport of enhanced NOx emissions into the
UTLS

Recent satellite observations and model simulations demon-
strated the impact of convective transport of boundary layer
pollution into the ASM anticyclone during the ASM season
(Gettelman et al., 2004; Randel et al., 2010; Fadnavis et al.,
2013, 2014, 2015). These pollutants are further transported
across the tropopause as evident in satellite observations of
e.g. water vapour (Bian et al., 2012), HCN (Randel et al.,
2010), CO (Schoeberl et al., 2006), PAN (Fadnavis et al.,
2014, 2015), and aerosols (Vernier et al., 2015; Fadnavis et
al., 2013). To understand the influence of monsoon convec-
tion on the vertical distribution of NOx we show zonal and
meridional cross sections over India and China. Vertical dis-
tributions of NOx averaged for the monsoon season over In-
dian latitudes (8–35◦ N) and Chinese latitudes (20–45◦ N) as
obtained from CTRL simulations are shown in Fig. S3a and b
respectively. These figures show elevated levels of NOx ex-
tending from the surface to the upper troposphere over India
and China. The wind vectors along with the distribution of
cloud droplet number concentration (CDNC) and ice crystal
number concentration (ICNC) (Fig. S4a–c) indicate strong
convective transport from the Bay of Bengal (BOB), South
China Sea, and southern slopes of Himalayas, which might
lift the boundary layer NOx to the upper troposphere.

During the monsoon season, the NOx distribution in the
UTLS is also influenced by lightning, in addition to transport
from anthropogenic sources. Lightning activity during this
season was found to be more pronounced in Asia, compared
to the other monsoon regions such as North America, South
America, and Africa (Ranalkar and Chaudhari, 2009; Penki
and Kamra, 2013). In our simulations, we find that lightning
produces 40–70 % of NOx over northern India and BOB and
40–60 % over the Tibetan Plateau and western China region
(Fig. S5).

Figure 2 shows the vertical distribution of anthropogenic
NOx anomalies obtained from the Ind38, Ind73, and Chin73
simulations, compared with the CTRL simulation. Ind38
simulation shows that the convective winds over the BOB
(80–90◦ E) (Fig. 2a) and at the southern flank of the Hi-
malayas (Fig. 2d) lift up the enhanced Indian NOx emissions
to the UT. Similarly the Chin73 simulation shows that the
convective winds over the South China Sea (100–120◦ E)
(Fig. 2c) and over the Himalayas (Fig. 2f) lift up the en-
hanced Chinese NOx emissions to the UT. While most trans-
port is mainly into the UT, parts of it also occur into the lower
stratosphere, with cross-tropopause transport being particu-
larly evident in the Chin73 simulation (Fig. 2c and f). Randel
and Park (2006) and Randel et al. (2010) also reported that
pollution transported by Asian monsoon convection enters
the stratosphere. Our results are also in good agreement with
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Figure 3. Longitude–pressure cross section of changes in net ozone production (ppt day−1) due to enhanced NOx with respect to the CTRL
simulation, averaged for the monsoon season (June–September) obtained from (a) Ind38 (averaged over 8–35◦ N), (b) Ind73 (averaged
over 8–35◦ N), and (c) Chin73 (over 20–45◦ N) simulations. The black line shows the tropopause while black hatched lines indicate 95 %
confidence level.

previous studies indicating significant vertical transport due
to strong monsoon convection from the southern slopes of
Himalayas (Fu et al., 2006; Fadnavis et al., 2013, 2015) and
the South China Sea (Park et al., 2009; Chen et al., 2012).
In the upper troposphere, NOx is transported over Iran and
Saudi Arabia along the descending branch of the large scale
monsoon circulation (Rodwell and Hoskins, 1995). However,
the cross-tropopause transport is not present in the Ind73
simulation, where it is inhibited by the wind anomalies that
show a descending branch over central India (∼ 20◦ N, 75◦ E)
(Fig. 2b and e). These descending wind anomalies may also
be related to the associated ozone radiative forcing and tem-
perature changes, as discussed in Sect. 4.

3.3 Impact of enhanced anthropogenic NOx on the
tropospheric ozone distribution

We calculate the change in ozone production over India and
China due to enhanced NOx emissions in the Ind38, Ind73,
and Chin73 simulations with respect to the CTRL simula-
tion. Figure 3, showing longitude–pressure cross sections of
net ozone production (ppt day−1) changes, indicates that the
majority of this additional ozone production occurs in the
lower troposphere. At altitudes below 300 hPa, the ozone
production and loss vary between −15 and 15 ppt day−1. In
the upper troposphere (300–150 hPa), the estimated amount
of additional net ozone production in Ind38 and Ind73 sim-
ulation is 3–7 ppt day−1, while in the Chin73 simulation it
is ∼ 3–13 ppt day−1. We also simulate ozone loss near the
tropopause in the Ind73 simulation (Fig. 3b). We note that
these ozone anomalies are not driven by lightning NOx , as
this is included in all simulations. It is interesting to un-
derstand ozone production over the highly populated Indo-
Gangetic Plain and Tibetan Plateau region (these regions
are marked in Fig. S4). A longitude–pressure cross sec-
tion over this region show that ozone production over the

Indo-Gangetic Plain and Tibetan Plateau in Ind73 is (20–
25 ppt day−1) is much larger than Ind38 (6–20 ppt day−1) in
the lower troposphere (Fig. S6).

Figure 4 shows the vertical distribution of ozone anoma-
lies induced by enhanced anthropogenic NOx emissions in
the three perturbation experiments compared to the CTRL
simulation, averaged over India and China. Although the air
mass in the monsoon anticyclone is relatively poor in ozone
(Fig. 1b), the elevated amounts of ozone anomalies in re-
sponse to enhanced anthropogenic NOx emissions are clearly
seen in Fig. 4. This may be partially due to convective trans-
port of enhanced-NOx-emission-induced ozone anomalies
produced in the lower troposphere and partially due to chem-
ical ozone production from convectively transported bound-
ary layer ozone precursors. Ozone anomalies are enhanced
near 300–200 hPa over western Asia (40–60◦ E) (Fig. 4a–
c), possibly due to the vertical convective transport of ozone
anomalies and precursors and also from subsequent horizon-
tal transport in the monsoon anticyclone (Barret et al., 2016).

Latitude–pressure cross sections of enhanced-NOx-
emission-induced ozone anomalies plotted in Fig. 4d and f
illustrate how convection over the BOB, the southern slopes
of the Himalayas and the South China Sea lifts the enhanced
ozone anomalies from India and China into the upper tro-
posphere. These ozone anomalies are also transported fur-
ther across the tropopause and into the lower stratosphere,
where ozone production is also driven by photolysis and NOx
anomalies.

In the Ind73 simulation, similarly to the NOx anomaly dis-
tribution (Fig. 2b and e), the descending branch of circulation
over central India also suppresses the vertical transport of
ozone anomalies across the tropopause (Fig. 4b and e). This
subsidence may be related to ozone heating rate changes,
as there is significant increase in ozone production over the
Indo-Gangetic Plain and Tibetan Plateau in the lower tro-
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Figure 4. Longitude–pressure cross section of percentage ozone anomalies averaged for the monsoon season (June–September) obtained
from (a) Ind38 (averaged over 8–35◦ N), (b) Ind73 (averaged over 8–35◦ N), and (c) Chin73 (averaged over 20–45◦ N) simulations. Latitude–
pressure cross section of percentage ozone anomalies averaged for the monsoon season (June–September) obtained from (d) Ind38 (averaged
over 70–90◦ E), (e) Ind73 (averaged over 70–90◦ E), and (f) Chin73 (averaged over 85–120◦ E) simulations. Black arrows indicate wind
vectors. The vertical velocity field has been scaled by 300. The black line represents the tropopause, and the black dashed arrows indicate
the cross-tropopause transport.

posphere due to enhanced anthropogenic NOx emissions
(Sect. 4).

3.4 Distribution of NOx and ozone in the anticyclone

The distributions of NOx and ozone anomalies in the mon-
soon anticyclone region in the Ind38, Ind73, and Chin73 sim-
ulations with respect to the CTRL simulation are shown in
Fig. 5a–f. A maximum in the NOx anomalies in the ASM
anticyclone (60 to 120◦ E) is seen in all the simulations. NOx
anomalies are high at the eastern part of the monsoon an-
ticyclone since convective injection into the anticyclone oc-
curs mainly in that region (Fadnavis et al., 2013). Increase
in NOx anomalies in the Ind38 simulation is higher (Fig. 5a)
than that in the Ind73 simulation (Fig. 5b), mainly due to de-
scending motion over central India in the Ind73 simulation,
as seen in the previous sections. In contrast to NOx anoma-
lies, ozone anomalies in Ind38 are lower than Ind73, espe-
cially in the north-eastern part of anticyclone. Satellite ob-
servations also show high ozone precursors and low ozone
amounts in the anticyclone (Park et al., 2007; Barret et al.,
2016). Similarly, the Chin73 simulation shows higher val-
ues of NOx anomalies (> 18 %) and strong negative ozone

anomalies (∼−8 %) in the north-eastern region of the mon-
soon anticyclone (Fig. 5c and f). Figure 5 also shows that the
tropical easterly jet transports NOx and ozone (from India
and China) to Saudi Arabia, Iran, and Iraq.

4 Discussion

To estimate the radiative impact of the simulated ozone
changes, we use the offline version of the Edwards and
Slingo (1996) radiative transfer model. Figure 6 shows the
radiative forcing caused by the ozone changes in each of the
three sensitivity simulations compared to the CTRL simula-
tion. The overall increase in tropospheric ozone (see Fig. 4)
has a warming effect on climate, with the regional average
radiative forcing in the monsoon anticyclone (15–40◦ N, 60–
120◦ E) estimated at 16.3, 69.9, and 78.5 mW m−2 in the
Ind38, Ind73, and Chin73 simulations respectively.

We also investigate the impact on the atmospheric heat-
ing rates caused by the ozone changes. Figure 7 shows the
zonal mean heating rate anomalies for the Ind38, Ind73,
and Chin73 simulations compared to the CTRL simula-
tion. These three simulations show positive and negative
heating rates anomalies between 400 and 200 hPa. How-
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Figure 5. Latitude–longitude cross section of percentage NOx anomalies averaged for the monsoon season (June–September) at 110 hPa
obtained from (a) Ind38, (b) Ind73, and (c) Chin73 simulations. (d–f) show the same but for percentage ozone anomalies at 110 hPa for the
(d) Ind38, (e) Ind73, and (f) Chin73 simulations. Black arrows indicate horizontal winds at 110 hPa. The red box in (a) indicates the ASM
anticyclone region used to compute the associated radiative forcing regional average.

Figure 6. Latitude–longitude distribution of changes in ozone radiative forcing (in mW m−2) for the (a) Ind38, (b) Ind73, and (c) Chin73
perturbed simulations, compared to the CTRL simulation.

ever, in the UTLS (200–50 hPa) ozone heating rates are
negative over Indo-Gangetic Plain (20–30◦ N) and Tibetan
Plateau (30–40◦ N) region. In Ind73 simulation, ozone heat-
ing rate anomalies are positive in the lower troposphere
over the Indo-Gangetic Plain (1000–750 hPa) and Tibetan
Plateau (600–400 hPa). This may be due to large amount of
ozone production in the lower troposphere over these regions
(Fig. S6). This heating may produce changes in the circu-
lation leading to ascending motion over the Tibetan Plateau
and a descending branch over central India (∼ 20◦ N), i.e. a
reversal of monsoon Hadley circulation (Fig. 9b).

Figure 8 shows latitude–pressure cross section of tem-
perature anomalies (K) obtained from Ind38, Ind73, and
Chin73 simulations. Ind38 and Chin73 simulations show
anomalous warming in the upper troposphere over the Ti-
betan Plateau while it is subdued in the Ind73 simulation.
Upper-tropospheric warming over the Tibetan Plateau is
one of the key factors responsible for the ASM circula-

tion (Yanai et al., 1992; Meehl, 1994; Li and Yanai, 1996;
Wu and Zhang, 1998). Flohn (1960) suggested that upper-
tropospheric warming over the Tibetan Plateau leads to in-
creased Indian summer monsoon rainfall by enhancing the
cross-equatorial circulation that brings rainfall to India (Ra-
jagopalan and Molnar, 2013; Vinoj et al., 2014). Goswami
et al. (1999) also reported that there is a strong correlation
between Hadley circulation and monsoon precipitation.

Figure 9a–c depict the change in monsoon Hadley cell cir-
culation (averaged over 70–100◦ E) obtained from the dif-
ference in the Ind38, Ind73, and Chin73 and CTRL simula-
tions. The Ind38 and Chin 73 simulations show a strengthen-
ing of the Hadley circulation: a strong ascending branch of
the Hadley cell around 10–20◦ N (Fig. 9a), whereas the tilted
descending branch of Hadley cell is seen over 20◦ N in the
Ind73 simulation (Fig. 9b). In Ind73 simulation ozone heat-
ing rates are positive and negative in the vertical direction
near∼ 20◦ N (Fig. 7b), which might have attributed tilted de-
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Figure 7. Latitude–pressure distribution of ozone heating rate changes (in K day−1) for the (a) Ind38 (averaged over 70–100◦ E), (b) Ind73
(averaged 70–100◦ E), and (c) Chin73 (averaged over 70–100◦ E) perturbed simulations, compared to the CTRL simulation.

Figure 8. Latitude–pressure cross section of temperature anomalies (K) averaged for the monsoon season (June–September) and over 70–
100◦ E obtained from (a) Ind38-CTRL, (b) Ind73-CTRL, and (c) Chin73-CTRL simulations. Black arrows indicate wind vectors (the vertical
velocity field has been scaled by 300).

scending branch of Hadley cell. Consequently, precipitation
anomalies over the Indian region (70–90◦ E, 8–35◦ N) are
positive (0.3 to 0.9 mm day−1) in the Ind38 and Chin73 simu-
lations (Fig. 9d and f), whereas they are negative in the Ind73
simulation (−0.3 to −0.6 mm day−1) (Fig. 9e). In the up-
per troposphere (250–100 hPa), Ind73 simulation shows sub-
sidence while Chin73 simulation shows ascending motion
at these levels over the Indian region. Upper-tropospheric
subsidence in Ind73 simulation might have contributed to
the weak positive and negative precipitation anomalies over
the northern Indian region (Fig. 9e). The Chin73 simulation
shows subsidence near 22◦ N below 200 hPa and ascending
motion above it. The Chin73 simulation shows ascending
motion near 12◦ N rising up to 110 hPa, which leads to posi-
tive precipitation anomalies over the Indian peninsula.

Thus, enhanced Indian (Ind38) and Chinese (Chin73) NOx
emissions increase warming over the Tibetan Plateau and en-
hance precipitation over India via a strengthening of the mon-
soon Hadley circulation. Remarkably, a further increase of
NOx emissions over India (Ind73) leads to high amounts of
ozone in the lower troposphere over the Indo-Gangetic Plain

and Tibetan Plateau. The related ozone heating induces a re-
versal of the monsoon Hadley circulation, thereby resulting
in negative precipitation anomalies.

5 Conclusions

In this paper we investigate the potential impacts of en-
hanced anthropogenic NOx emissions on ozone production
and distribution during the monsoon season using the state-
of-the-art ECHAM5-HAMMOZ model simulations. We per-
formed sensitivity experiments for anthropogenic NOx en-
hancements of 38 % over India (Ind38 simulation) and 73 %
over China (Chin73 simulation) in accordance with recently
observed trends of 3.8 % per year over India and 7.3 %
per year over China (Ghude et al., 2013; Schneider and
van der A, 2012). In another experiment, anthropogenic NOx
emissions over India are increased by 73 %, equal to Chinese
emissions (Ind73 simulation).
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Figure 9. Difference in the meridional circulation due to enhanced NOx emissions averaged for the monsoon season (June–September) and
over 70–100◦ E for (a) Ind38-CTRL, (b) Ind73-CTRL, and (c) Chin73-CTRL simulations. Shaded contours indicate the anomalies in vertical
velocity (m s−1). The vertical velocity field has been scaled by 300. Precipitation anomalies (mm day−1) averaged for the monsoon season
(June–September) obtained from (d) India38-CTRL, (e) Ind73-CTRL, and (f) Chin73-CTRL simulations.

These simulations show that an increase in anthropogenic
NOx emissions (over India and China) increases ozone pro-
duction in the lower and mid-troposphere. The monsoon con-
vection at the southern flank of the Himalayas (80–90◦ E)
and over the BOB lifts up the NOx and ozone anomalies
from India across the tropopause into the lower stratosphere
(Figs. 2a–c, 4a–b and S4). Cross-tropopause transport also
occurs over China due to convection over the South China
Sea.

Increase in NOx emissions in the Ind38, Ind73, and
Chin73 simulations leads to increase in ozone radiative forc-
ings, in the anticyclone (15–40◦ N, 60–120◦ E) of 16.25,
69.88, and 78.51 mW m−2 in the Ind38, Ind73, and Chin73
simulations respectively. Enhanced ozone production (Ind38
and Chin73 simulations) increases ozone heating rates,
which cause anomalous warming over the Tibetan Plateau.
Further increase in NOx emissions over the India re-
gion (Ind73 simulation) produces anomalous heating in the
lower troposphere over the Indo-Gangetic Plain and Tibetan
Plateau. This warming elicits the reversal of the monsoon
Hadley cell circulation. The descending branch of the mon-
soon Hadley circulation over the central India impedes verti-
cal transport of ozone and NOx anomalies.

In the Ind38 and Chin73 simulations, anomalous warm-
ing over the Tibetan Plateau results in a strengthening of
the monsoon Hadley circulation over India and elicits pos-
itive precipitation (0.3 to 0.9 mm day−1) anomalies over In-
dia. However, in Ind73 simulations the reversal of the Hadley

circulation and the concurrent subdued warming in the upper
troposphere over the Tibetan Plateau results in negative pre-
cipitation anomalies (−0.3 to −0.6 mm day−1) over India.

6 Data availability

We have provided reference for the data we used. We have
used satellite data, which are freely available. We have pro-
vided a link (http://mls.jpl.nasa.gov/) in Sect. 2.1 from which
data can be accessed. We have also used RETRO emission
data for the model simulations. These data are freely avail-
able at http://eccad.sedoo.fr/, as mentioned in Sect. 2.2.

The Supplement related to this article is available online
at doi:10.5194/acp-17-1297-2017-supplement.
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