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Abstract. There is a long-standing challenge in cloud and
climate models to simulate the process of ice particle riming
realistically, partly due to the unrealistic parameterization of
the growth of ice particle mass (m) and projected area (A)
during riming. This study addresses this problem, utilizing
ground-based measurements of m and ice particle maximum
dimension (D) as well as theory to formulate simple expres-
sions describing the dependence of m and A on riming. It
was observed that β in the m−D power law m = αDβ ap-
pears independent of riming during the phase 1 (before the
formation of graupel), with α accounting for the ice particle
mass increase due to riming. This semi-empirical approach
accounts for the degree of riming and renders a gradual and
smooth ice particle growth process from unrimed ice par-
ticles to graupel, and thus avoids discontinuities in m and
A during accretional growth. Once the graupel with quasi-
spherical shape forms,D increases with an increase inm and
A (phase 2 of riming). The treatment for riming is explicit,
and includes the parameterization of the ice crystal–cloud
droplet collision efficiency (Ec) for hexagonal columns and
plates using hydrodynamic theory. In particular, Ec for cloud
droplet diameters less than 10 µm are estimated, and un-
der some conditions observed in mixed-phase clouds, these
droplets can account for roughly half of the mass growth rate
from riming. These physically meaningful yet simple meth-
ods can be used in models to improve the riming process.

1 Introduction

Observational studies have determined that the riming pro-
cess contributes substantially to snowfall rates. Along the
coastal plains of northern Japan, riming was responsible for
50 to ∼ 100 % of the mass of snow collected at ground level,
which included graupel particles (Harimaya and Sato, 1989).
When only snowflakes were considered (no graupel), riming
contributed between 40 and 63 % of the snow mass. In the
Colorado Rocky Mountains, Feng and Grant (1982) found
that, for the same number flux, the snowfall rate for rimed
plates and dendrites was about twice the snowfall rate for
unrimed plates and dendrites (implying that about half of the
snowfall rate was due to riming). In the Sierra Nevada of Cal-
ifornia, Mitchell et al. (1990; hereafter M90) estimated that
riming contributed 30 to 40 % of the mass of fresh snow dur-
ing two snowfall events. Thus, an improved treatment of the
riming process in cloud-resolving models could significantly
improve predicted snowfall amounts. This could also trans-
late to improved quantitative precipitation estimates (QPEs)
from National Weather Service (NWS) radar systems dur-
ing winter. For example, a simple snow growth model can
be coupled with National Weather Service radar reflectivity
as described in Mitchell et al. (2006) to improve QPE, and
adding the riming process should further improve these QPEs
during winter storms.

The life cycle of Arctic mixed-phase clouds, which
strongly affect the Arctic energy budget and climate, should
be affected by the mass sink, represented by the ice mass flux
(Mf; all symbols are defined at the end of the manuscript)
at cloud base (representing a moisture sink). Riming has a
strong impact on ice particle fall speeds (Mitchell, 1996;
hereafter M96), andMf can be estimated asMf= IWC×Vm,
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where Vm is the mass-weighted fall speed at cloud base and
IWC is the ice water content. Since riming strongly con-
tributes to both IWC and Vm, it has a considerable impact
on Mf.

1.1 Characteristics of riming

Riming (accretion of supercooled water droplets on ice par-
ticles) occurs in mixed-phase clouds where ice particles
and water droplets coexist at temperatures (T ) between
−37.5 and 0 ◦C in convective clouds in the tropics (Rosen-
feld and Woodley, 2000; Mitchell and d’Entremont, 2012),
and at −40.5 ◦C < T < 0 ◦C in wave clouds over continen-
tal mountains (Heymsfield and Miloshevich, 1993). Mixed-
phase clouds are persistent in both the Arctic and in tropical
regions, as they happen nearly half of the time in the west-
ern Arctic, also known as Northwestern Territories, Canada
(Shupe et al., 2006). Moreover, such clouds are an impor-
tant part of tropical convective storms, as airborne observa-
tions indicate large amounts of supercooled water in these
storms (Rosenfeld and Woodley, 2000). They also constitute
a large portion of the cloud fraction in mid-latitude storms
track (e.g., Hobbs, 1978; Matejka et al., 1980). However, a
lack of observations in mixed-phase clouds (resulting from
the challenge of detecting layers of supercooled liquid wa-
ter in the ice-dominated parts of clouds) impeded an accurate
computation of the liquid water content (LWC)-to-IWC ratio,
which therefore limits an understanding of phase partitioning
(Kalesse et al., 2016). Wind tunnel experiments by Takahashi
and Fukuta (1988) and Fukuta and Takahashi (1999) mea-
sured the riming enhancement as an increase in ice particle
fall speed (V ). They also showed that riming has a peak at
−10.5 ◦C for low LWCs, where ice particles are isometric,
and therefore have higher V . In addition, the reason is partly
due to different collision efficiencies for planar versus iso-
metric ice particles.

The wind tunnel experiment of Pflaum and Prup-
pacher (1979) showed that a cone-like graupel forms, when
riming occurs on the bottom side of a falling planar crystal.
However, if the particle flips over during fallout, a lump grau-
pel forms ultimately. Heymsfield (1982) developed a parcel
model, and demonstrated that growth of ice crystals by rim-
ing occurs on their minor axis, and therefore they evolve
to graupel with a spherical shape of the same dimension.
In this model, accreted mass fills in the unoccupied vol-
ume of the ultimately spherical graupel via riming growth.
Therefore, ice particle mass increases while ice particle max-
imum dimension is conserved. The increase in dimension
due to riming initiates once the ice particle obtains a spher-
ical shape. This method was employed by several models to
represent riming (Morrison and Grabowski, 2008; hereafter
MG08; Morrison and Grabowski, 2010; Jensen and Harring-
ton, 2015; hereafter JH15; Morrison and Milbrandt, 2015).

Note that riming occurs only when ice particles have a
D greater than the riming threshold size (Dthres: the small-

est ice crystal D for which riming can occur). Early obser-
vations (Harimaya, 1975) and numerical studies (Pitter and
Pruppacher, 1974; Pitter, 1977) determined a Dthres being
around 300 µm. However, it was later shown by both obser-
vational (Bruntjes et al., 1987) and numerical (WJ00) studies
that such Dthres is around 35, 110, and 200 µm for hexago-
nal columns, hexagonal plates, and broad-branched crystals,
respectively (note that all these dimensions are along the a-
axis of crystals, the a-axis being the axis along the basal face
of a hexagonal ice crystal, as shown in Fig. B1 of Erfani and
Mitchell, 2016).

Many models calculated ice particle mass by assuming
that ice particles are spherical (e.g., m = ρi π D3/6, where
ρi is ice density; Rutledge and Hobbs, 1984; Ferrier, 1994;
Morrison and Gettelman, 2008). However, this assumption is
not realistic, and produces errors in the evolution of snow-
size spectra (Mitchell, 1988). Based on observations, several
studies developed ice particle mass − dimension (m−D)
power law parameterizations to reduce the dimensionality of
complex ice particle shapes. For a specific ice particle shape
or an environmental condition, this relationship has the fol-
lowing form:

m = αDβ , (1)

where both α and β are constants over a specific size range.
They are determined via direct measurements of ice parti-
cle mass and dimension (Locatelli and Hobbs, 1974; M90),
or are constrained through aircraft measurements of the ice
particle size distribution (PSD) and IWC (Heymsfield et al.,
2010; Cotton et al., 2013). The prefactor α was consid-
ered to contain information on particle density and thick-
ness, whereas β was believed to have information on particle
shape. We will discuss the latter in Sect. 4.1 for the riming
process. Similar power laws have been developed for pro-
jected area − dimension (A−D) relationships:

A = γ Dδ, (2)

where γ and δ are constants over a specific size range derived
by direct measurements of ice particle projected area and di-
mension (M96). When comparing rimed particles with the
same size, lump graupel has the largest mass and area relative
to cone-like graupel or hexagonal graupel, and densely rimed
dendrites have still lower values (Locatelli and Hobbs, 1974;
M96). For a specific ice habit, the m−D and A−D power
laws are dependent on the size range considered, and it often
takes two or even threem−D power laws to describe a given
m−D relationship over all relevant sizes for that habit. To ad-
dress this issue, Erfani and Mitchell (2016; hereafter EM16)
developed a single m−D and A−D second-order polyno-
mial curve fit in log–log space for 20 µm ≤D≤ 4000 µm for
each cloud type (synoptic or anvil) and temperature range.
Such expressions can easily be reduced to power laws for use
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in models and remote sensing, and provide size-dependent
power law coefficients (α, β, γ , and δ). For this reason, they
are useful for characterizing a gradual change in power law
coefficients with ice particle growth. For more details on
m−D and A−D expressions, see EM16.

1.2 Treatment of riming in models

Since explicit modeling of the riming process is computa-
tionally expensive, graupel and hail categories were not con-
sidered in some bulk microphysics parameterizations used in
some global climate models or GCMs (Morrison and Get-
telman, 2008; Gettelman and Morrison, 2015). The com-
mon ice microphysics approach in most cloud and climate
models is the separation of ice into various hydrometeor
categories such as cloud ice, snowflakes, and graupel (Rut-
ledge and Hobbs, 1984; Ferrier, 1994; Fowler et al., 1996;
Reisin et al. 1996; Morrison and Gettelman, 2008; Gettel-
man and Morrison, 2015). The transition between various
hydrometeors occurs by autoconversion from one hydrom-
eteor category to another. However, such autoconversion is
arbitrary and poorly constrained, and as shown by Eidham-
mer et al. (2014), cloud radiative properties were sensitive to
the choice of autoconversion threshold size in the Commu-
nity Atmosphere Model version 5 (CAM5). This is because
the distinct boundaries between various ice hydrometeor cat-
egories impose abrupt changes in microphysical properties
(such as ice particle mass, projected area, fall speed, and ef-
fective diameter) from one hydrometeor category to another,
while in nature the transition processes are gradual.

To overcome this problem, MG08 advanced a bulk model
that employed vapor diffusion and the riming processes, and
used multiple m−D and A−D power laws (Eqs. 1 and 2)
to characterize ice particles associated with different parts of
the PSD. This method was applied to a bin model developed
by Morrison and Grabowski (2010), and was later used in a
bulk model that prognoses number concentration, rime vol-
ume, rime mass, and total mass (Morrison and Milbrandt,
2015). In this approach, different m−D and A−D expres-
sions from the literature are used for either pure ice crystals
or graupel. Then, m and A are calculated in a transitional
step as a function ofD and rimed mass fraction. Suchm−D
and A−D expressions resulted in a gradual transition from
crystal mass to graupel mass. However, discontinuities were
observed in the transition between variousA−D expressions
over the PSD because the size range for each microphysical
step (ice crystal, graupel, and transition) was calculated in a
way to provide only continuous mass, and thus produced dis-
continuities in projected area. JH15 developed a detailed ice
growth model that simulates ice particle habit and mass via
the processes of vapor deposition and riming. This model is
also a single-category scheme, but it does not employ m−D
andA−D power laws; instead, it computes the growth of ice
particles along the major and minor axes of oblate or prolate
spheroids (representing hexagonal plates or columns). There-

fore, the model is able to simulate simple ice particle shapes,
and also captures the temperature dependency of vapor de-
position and the riming processes (since particle shape is a
function of temperature and relative humidity; Magono and
Lee, 1966; Pruppacher and Klett, 1997). The simulated ice
particle shape, mass, and fall speed are in good agreement
with observational data from wind tunnel experiments on ice
crystal growth.

The computation of rime mass (an increase in ice particle
mass by riming) in models is performed by calculating the
accretional mass growth rate (Heymsfield, 1982; Mitchell,
1995; JH15). When an ice particle falls in a cloud of super-
cooled cloud droplets, the increase in its mass due to accre-
tion depends on ice particle features (e.g., fall speed and pro-
jected area), droplet characteristics (e.g., mass and number
concentration of droplets), and the collision efficiency (Ec)

between an ice particle and droplet. More details on mass
growth rates are provided in Sect. 6, and Ec is described in
the next section.

1.3 Collision efficiency

One important factor in the modeling of riming is the cal-
culation of the Ec between ice particles and cloud droplets
(Pruppacher and Klett, 1997). Ec was calculated as a func-
tion of ice particle D and cloud droplet diameter (d) via
both experimental measurements (Sasyo and Tokuue, 1973,
hereafter ST73; Kajikawa, 1974, hereafter K74; Murakami et
al., 1985) and theoretical–numerical calculations (Beard and
Grover, 1974; Pitter and Pruppacher, 1974; Schlamp et al.,
1975; Pitter, 1977; Wang and Ji, 2000, hereafter WJ00). The
difference in Ec between various studies is due to the strong
sensitivity of Ec to the ice particle shape as well as the as-
sumptions and limitations in different studies. Experimental
measurements of Ec have been conducted in vertical wind
tunnels. Such studies are rare due to the difficulty and lim-
itations of experiments, and were limited to only planar ice
crystals or circular disks with D > 1 mm (Reynolds number
(Re) > 40). Murakami et al. (1985) studied the Ec between
polystyrene latex spheres (d < 6 µm) and freely falling planar
ice crystals (1.5 mm <D < 5 mm, and 70 <Re < 300). ST73
investigated fixed hexagonal plates (5 mm <D < 20 mm) that
were exposed to water droplets contained in airflow in a
vertical wind tunnel. Although d ranged from 19 to 41 µm,
more than 80 % of droplets had d between 20 and 25 µm.
K74 measured Ec via collection of water droplets (2.5 µm
< d < 17.5 µm) by freely falling particles (both natural snow
crystals and ice crystal models made of non-water substance)
of various shapes (e.g., circular disks, hexagonal plates, and
broad-branched plates) with Re < 100 in a wind tunnel.

Numerical studies calculate the flow field around particles
by solving the Navier–Stokes equation via numerical meth-
ods. The challenges for numerical studies are the complex
shapes of ice crystals as well as the effect of turbulence. Early
studies assumed steady-state flow with simplified shapes
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such as an oblate spheroid with 2≤Re≤ 20 as an approx-
imation for planar crystals (Pitter and Pruppacher, 1974; Pit-
ter, 1977), and an infinite cylinder with 0.2≤Re≤ 20 as an
approximation for columnar crystals (Schlamp, 1975). The
main difference in Ec between experimental and numerical
studies is observed for small droplets (d < 10 µm), where nu-
merical Ec is zero in this range, but the experimental results
indicate finiteEc. As explained by K74, this difference might
be due to the assumption of a steady flow field around the
ice particle in the early numerical studies. WJ00 developed
a numerical model of 3-D non-steady flow around pristine
crystals (such as hexagonal plates with 1≤Re≤ 120 and
columnar crystals of finite length and with 0.2≤Re≤ 20)
and water droplets (d < 200 µm). Contrary to early numeri-
cal studies and in agreement with experimental results, they
showed that Ec for small droplets has finite values for hexag-
onal plates (hexagonal columns) with Re≥ 10 (Re≥ 0.2).

Due to its expensive computation, Ec is sometimes as-
sumed to be constant in the models (e.g.,Ec = 0.75 in MG08;
Ec = 1 in Rutledge and Hobbs, 1984; Ferrier, 1994; Fowler
et al., 1996; Morrison and Milbrandt, 2015). Hall (1980;
hereafter H80) provided an equation for Ec representative
of hexagonal plates by fitting ellipse curves to the data of
Pitter and Pruppacher (1974) and Pitter (1977). Although
this relationship is practical and was used by several mod-
els (Morrison and Grabowski, 2010; JH15; Kalesse et al,
2016), it has limitations due to the natural shortcomings of
the original numerical studies (assumptions of steady flow,
ice oblate spheroids with Re < 20 as an approximation for
hexagonal plates, water droplets with d < 20 µm, and zero
Ec for d < 10 µm). WJ00 improved the computation of Ec by
solving these issues, but did not provide an equation for use
in the models. JH15 modified the equation from Beard and
Grover (1974) for spherical raindrops in steady flow, and cal-
culated Ec between prolate spheroids (as an approximation
for hexagonal columns) and small water droplets. Ec calcu-
lated in this way compares well with the numerical study of
WJ00 for 5 µm < d < 20 µm.

Another challenge exists in the calculation of Ec between
graupel and cloud droplets. Most studies used Ec from Beard
and Grover (1974), and therefore assumed that this Ec is
equal to the collision efficiency between raindrops and wa-
ter drops (Reisin et al., 1996; Pinski et al., 1998; Khain et
al., 1999; Morrison and Grabowski, 2010). The justification
for this assumption was the similar shape between graupel
and raindrops. However, such particles have different natu-
ral features (e.g., density and surface roughness). To solve
this issue, Rasmussen and Heymsfield (1985) suggested that
Ec between graupel and cloud droplets can be calculated
by modification of the results of Beard and Grover (1974)
for Ec between raindrops and water droplets. Similar to
Beard and Grover (1974), they employed the superposition
method for collision between particles, but they assumed
that the small cloud droplets do not change the graupel fall
speed, and therefore they used Stokes number instead of

mixed Froude number in the non-dimensionalized momen-
tum equation (see Eqs. 1–6 in Rasmussen and Heymsfield,
1985). On the other hand, von Blohn et al. (2009) investi-
gated experimental Ec between freely falling spherical ice
particles (initially 580 µm <D < 760 µm) and water droplets
(20 µm < d < 40 µm) in a vertical wind tunnel with laminar
flow. They showed that collection kernels of ice particles are
higher than that of raindrops, and therefore calculated a cor-
rection factor to account for the error in Ec, when assuming
raindrops instead of graupel.

The objective of this study is to develop various empir-
ical and theoretical approaches to represent the continuous
and gradual growth of ice particle mass and projected area
during riming in a realistic and yet simple way, suitable for
models. Section 2 of this study explains the data and method.
In Sect. 3, results from a ground-based field campaign are ap-
plied to investigate m−D relationships during riming. Sec-
tion 4 introduces a method to parameterize riming. In Sect. 5,
new practical equations are presented to calculate Ec for
hexagonal plates and hexagonal columns. Calculations of the
mass growth rate due to riming are given in Sect. 6, and con-
clusions are provided in Sect. 7.

2 Data and methods

Ground-based direct measurements of m and D from the
Sierra Cooperative Pilot Project (SCPP; see M90) during
winter storms in the Sierra Nevada are utilized in this study.
SCPP was a field campaign on cloud seeding from 1986 to
1988, and for one part of that project, natural ice particles
were collected during snow storms in a polystyrene petri dish
and then the particles were photographed using a microscope
equipped with a camera. Then a heat lamp was used to melt
these ice particles, and immediately after melting another
photograph was taken of the hemispheric water drops (con-
tact angle on polystyrene= 87.4◦). The images were used
later in the lab to measure the maximum dimension (D) of in-
dividual ice particles (defined as diameter of a circumscribed
circle around the particle). In addition, the diameter of the
water hemispheres was measured, and from this the volume
and mass of individual ice particles were computed. Also
recorded were individual ice particle shapes, which were
classified using the Magono and Lee (1966) nomenclature
scheme. The level of riming (i.e., light, moderate, heavy rim-
ing, or graupel) was indicated based on this scheme, and
the temperature range over which the observed ice parti-
cle shape originated was recorded (e.g., for long columns,
−8 ◦C < T <−6 ◦C). These riming levels are indicated (with
rimed crystal illustrations) in the Magono and Lee (1966) ice
particle classification scheme with the prefixes R1, R2, R3,
and R4 (see Pruppacher and Klett, 1997). Photographic ex-
amples of these rimed particle types are shown in Fig. 2 of
Locatelli and Hobbs (1974). Software was developed to ex-
tract all combinations of particle shapes (for a detailed expla-

Atmos. Chem. Phys., 17, 1241–1257, 2017 www.atmos-chem-phys.net/17/1241/2017/



E. Erfani and D. L. Mitchell: Growth of ice particle mass 1245

Table 1. Description of the bin intervals of PSD.

Bin Bin lower Bin upper Bin width
number point (µm) point (µm) (µm)

1 100 200 100
2 200 300 100
3 300 400 100
4 400 500 100
5 500 600 100
6 600 700 100
7 700 800 100
8 800 900 100
9 900 1000 100
10 1000 1200 200
11 1200 1400 200
12 1400 1800 400
13 1800 2400 600
14 2400 3000 600
15 3000 4000 1000

nation of sampling and measurements, see M90). SCPP is a
unique dataset that measures both ice particle size and mass
and also determines the degree of riming. As explained in
EM16, the important problem with airborne measurements
is that they are unable to measure single ice particle mass.
Nonetheless, we compare our results with m−D relation-
ships from previous studies (Heymsfield et al., 2010; Cotton
et al., 2013; EM16) that are based on airborne measurements.

EM16 provided m−D curve fits based on cloud parti-
cle imager (CPI) measurements from the Department of En-
ergy (DOE)-Atmospheric Radiation Measurement (ARM)-
funded Small Particles In Cirrus (SPartICus) field campaign
for D < 100 µm and a subset of SCPP data for D > 100 µm.
Since CPI does not measure ice particle mass, EM16 de-
veloped a method that calculates mass from the measure-
ments of the ice particle projected area, D, and aspect ra-
tio by assuming that small ice particles can be approximated
as hexagonal columns (for more details, see Appendix B in
EM16). The subset of SCPP used in EM16 includes only un-
rimed ice particles that have habits identical to those in cirrus
clouds (selected based only on ice particles that have habits
formed in the temperature range between −40 and −20 ◦C).
There are 827 ice particles that are categorized in this subset.
Hereafter, this subset of SCPP data is referred to as “cold-
habit SCPP”. The SCPP data have a total of 4869 ice par-
ticles, consisting of 2341 unrimed or lightly rimed particles
(such as plates, dendrites, columns, needles, bullets, bullet
rosettes, side planes, and aggregates and fragments of these
shapes), 1440 moderately or heavily rimed particles (such as
rimed plates, rimed dendrites, rimed columns, and graupel),
and 1088 unclassified particles. There were 118 unrimed
dendrites, including ordinary, stellar, and fern-like dendrites,
classified using the Magono and Lee (1966) scheme as P1e,
P1d, and P1f, respectively, as well as fragments and aggre-

gates of these shapes. 80 % of unrimed dendrites were P1e.
Columnar crystals consisted of 262 N1e (long solid columns)
and 337 C2b (combination of long solid columns) crystals.
Some ice crystals classified as unrimed may be lightly rimed
due to limitations in the magnification used. Moreover, 852
particles were classified as heavily rimed dendrites, consist-
ing of graupel-like snow of hexagonal type (R3a), graupel-
like snow of lump type (R3b), and graupel-like snow with
nonrimed extensions (R3c), of which 99 % were R3b. These
correspond to heavily rimed dendrites having graupel-like
centers but with rimed branches extending outwards reveal-
ing the dendritic origin. Also classified were a total of 67
lump graupel (R4b), cone-like graupel (R4c), and hexagonal
graupel (R4a); R4b and R4c are graupel with non- discern-
able original habit, whereas R4a forms just prior to R4b or
R4c, with its hexagonal origin still recognizable.

In order to represent the natural variability of ice particle
mass, all identifiable particles are initially shown with their
actual mass and maximum dimension. Thereafter, to quan-
tify the variability and to further investigate m−D power
laws and the rimed-to-unrimed mass ratio, the ice PSDs were
divided into size bins with intervals of 100 µm between 100
and 1000 µm, and with subsequent intervals of 200, 200, 400,
600, 600, and 1000 µm (up to 4000 µm) at larger sizes to sup-
ply sufficient sampling numbers in each size bin (for more
details on bin intervals, see Table 1). In order to investigate
the riming effect, all identifiable particles were sorted into
either one of three rimed categories or an unrimed category.
Both unrimed and lightly rimed ice particles are included
in the unrimed category, whereas the three rimed categories
consist of densely rimed, heavily rimed, and graupel parti-
cles.

3 Measurements of ice particle mass and dimension in
frontal clouds

The purpose of this section is to demonstrate how the cold-
habit SCPP curve fit from EM16 (based on unrimed ice crys-
tals) compares with all the SCPP data, since this shows how
the EM16 curve fit appears representative for all ice parti-
cles sampled during SCPP and thus may be representative for
Sierra Nevada snowfall. This comparison is shown in Fig. 1a
for all ice particles that could be classified (3781 ice parti-
cles). The curve fit appears to bisect the data well. Moreover,
it is seen that rimed ice particles tend to have larger mass
on average, compared to unrimed ice particles of the same
size. We discuss this with more details in Sect. 4.1. Also dis-
played are the m−D power law expressions from Cotton et
al. (2013) and Heymsfield et al. (2010) which were acquired
from synoptic ice clouds for −60 ◦C < T <−20 ◦C and from
both synoptic and anvil ice clouds for −60 ◦C < T < 0 ◦C, re-
spectively. The grey line, corresponding to spherical parti-
cles having density equal to 0.917 g m−3 (solid ice density),
serves as an upper limit to ice particle mass. The Cotton et
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Figure 1. (a) Comparing the m−D curve fit based on the CPI and
cold-habit SCPP data (EM16) with SCPP ice particle m−D mea-
surements corresponding to all classifiable shapes. Unrimed and
rimed particles are indicated by blue and red dots, respectively.
The m−D power laws from two other studies are also displayed.
(b) Similar to (a), except that all the SCPP data (including unclas-
sifiable ice particles) have been grouped into size bins; mean (red
cross-intersection points) and standard deviation (red bars) in each
size bin are shown.

al. (2013) expression is composed of two power laws that dif-
fer from the EM16 curve fit by less than 50 % (over its size
domain). The Heymsfield et al. (2010) expression is based
on a single power law and it also estimates the curve fit well,
except for the size ranges D > 1000 and D < 100 µm, where
the differences in mass can reach about 100 %.

Figure 1b displays the EM16 curve fit along with all SCPP
data (including those that could not be classified), where the
ice PSDs were divided into size bins, as explained in Sect. 2.
In this way, mean D and m in each size bin, and also the

Figure 2. Ice particle m−D measurements corresponding to rimed
(pink dots) and unrimed (blue dots) dendrites using SCPP data.
Mean (circles) and standard deviations (bars) in each size bin are
also displayed for both rimed (red) and unrimed (black) dendrites.
Green filled circles indicate dendrites from BL06.

standard deviation (σ ) in each size interval for D and m,
are shown. Figure 1b shows that the EM16 curve fit is well
within the σ of SCPP mass and is close to the mean m for
all size bins. The same is valid for the Cotton et al. (2013)
m−D line over its size domain. The Heymsfield et al. (2010)
line is within the σ of SCPP for 250 µm <D < 1400 µm.
In order to be even more quantitative, the percent differ-
ence between the total SCPP mean ice particle mass in each
size bin of Fig. 1b and the corresponding mass from the
cold-habit SCPP curve fit from EM16 are computed (fig-
ure not shown). For D > 200 µm, percent differences are no
more than 22 %, with the curve fit slightly overestimating
masses for D greater than 1000 µm. This agreement might
result partially from the riming of the planar ice crystals
and aggregates thereof (adding mass with little change in
size) and partially from an abundance of unrimed and rimed
high-density compact ice particles. Indeed, 38 % of the ice
particles were moderately-to-heavily rimed. To summarize,
it appears that the EM16 synoptic ice cloud curve fit for
−40 ◦C < T ≤−20 ◦C provides a realistic bulk estimate for
ice particle masses in Sierra Nevada winter snowstorms at
ground level.

4 Parameterization of riming

4.1 Dependence of β and α on riming

A long-standing problem in cloud modeling is the treatment
of α, β, γ , and δ as a function of ice particle riming. Since
riming leads to graupel formation and graupel tends to be
quasi-spherical, it is intuitive to assume that β and δ will
approach limiting values of 3 and 2, respectively (corre-
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sponding to ice spheres), as more and more supercooled liq-
uid water is accreted by an ice particle to produce graupel.
One common approach in many cloud models (that use an
m−D relationship) is to assume that β is equal to ∼ 2 for
unrimed crystals and is equal to ∼ 3 for graupel. This im-
plies that riming enhances β. This assumption is tested in
this section by using SCPP data with the objective of devel-
oping observation-based guidelines for modeling the process
of riming. To test this assumption for β, the size-resolved
masses of rimed and unrimed ice particles from the same ba-
sic shape category are needed. In this section, we used heav-
ily rimed dendrites (R3a, R3b, and R3c) and unrimed den-
drites (P1e, P1d, and P1f). In addition, these data were parti-
tioned into the same size intervals described earlier to calcu-
late the mean m and D in each size interval for unrimed and
heavily rimed dendrite crystals, along with their σ . All these
results are shown in Fig. 2. Size intervals having less than
three measurements are not represented. Most of the data for
unrimed crystals is associated with D > 600 µm. One can see
quantitatively how the mean masses for rimed dendrites are
substantially greater than those for unrimed dendrites on av-
erage for the same size interval, in agreement with the hy-
pothesis of Heymsfield (1982).

Using only the size intervals containing at least three mea-
surements, them−D power law for the unrimed dendrites is
as follows:

m= 0.001263D1.912. (3)

For heavily rimed dendrites it is as follows:

m= 0.001988D1.784, (4)

where all variables have cgs (centimeter–gram–second)
units. If the size interval corresponding to the largest unrimed
dendrites is not used in the least-square fit calculation, the
m−D expression for unrimed dendrites becomes the follow-
ing:

m= 0.0009393D1.786, (5)

having an exponent nearly identical to that in Eq. (4) for
heavily rimed dendrites. This is contrary to most cloud mod-
els that assume different ice categories (snowfall with β ∼ 2
and graupel with β ∼ 3) and an abrupt increase in β upon
a change in ice category (autoconversion). Based on SCPP
observations, it is apparent that the traditional hypothesis
that β increases with riming is not correct, at least not be-
fore the graupel onset. This can be understood by noting
that β does not necessarily indicate the morphology of an
ice particle within a given size interval, but rather indicates
the mass rate-of-change with respect to size (since β is the
slope of the m−D line in log–log space). This can also be

seen qualitatively in Fig. 2, where the rimed and unrimed
data points represent the same slope for the m−D line in
log–log space. Assuming that unrimed dendrite mass con-
forms to the formula m = ρi π D3/6, where ρi is a reduced
density, such ρi is equal to 0.07 g cm−3 for D= 500 µm.
Note that this assumption would lead to a fit parallel to
the ice spheres fit in Fig. 2, with a relatively low coeffi-
cient of determination (R2

= 0.68), compared to power law
fit withR2

= 0.97. In addition, them−D power law for lump
graupel (R4b) and cone-like graupel (R4c) has the form of
m= 0.0078D2.162, which represents a slight increase in β
for graupel which is significantly less than spherical β (which
is equal to 3). By assuming that initial graupel mass can be
calculated as m = ρi π D3/6 where ρi is a reduced density,
such ρi is equal to 0.18 g cm−3 for D= 500 µm, which is
lower than the ρi for heavily rimed graupel in the dry growth
regime (ρi = 0.4 g cm−3; Rutledge and Hobbs, 1984; Ferrier,
1994). This assumption would produce a fit parallel to the
ice spheres fit in Fig. 2, and is poorly fitted to the SCPP
R4b and R4c data (R2

= 0.67), compared to the power law
fit (R2

= 0.94).
All these observations are in agreement with the exper-

iment of Rogers (1974) in which β was similar for un-
rimed and rimed snowflakes. The results of Rogers (1974)
were used in the modeling work of MG08 and Morrison
and Grabowski (2010) to support the assumption that rim-
ing does not change β for planar ice crystals. Morrison and
Milbrandt (2015) used a similar assumption based on the ob-
servations of Rogers (1974) and Mitchell and Erfani (2014),
and they explained that the reason for the conservation of β
during riming is the fact thatD does not significantly change
by riming while m does increase significantly. This reason-
ing appears valid for both planar and columnar ice crystals.
The impact of moderate to heavy riming on β for hexago-
nal columns was demonstrated in M90 (see their Table 1 and
Sect. 4d). For these columnar crystals, riming had no effect
on β (i.e., β was 1.8 for both rimed and unrimed columns),
indicating that riming can be modeled by only increasing
α for these crystals. Thus, it appears justified to treat β as
constant during the riming process (until spherical shape) for
both dendritic and columnar ice crystals:

β = βu, (6)

where subscript u denotes unrimed conditions. The IWC is
defined as follows:

IWC=
∫
m(D)n(D)dD = α

∫
Dβn(D)dD, (7)

where n(D) is number distribution. We explained that β and
D do not change during riming. Also unchanged is n(D),
because the number of ice particles in each size bin is not
affected by riming. Therefore, the dependence of α on riming
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Figure 3. Rimed-to-unrimed mass ratio mr/mu (violet lines) for
each common size bin in Fig. 2, based on heavily rimed and unrimed
dendrites. The pink line indicates the weighted mean ofmr/mu. The
numbers on the top (bottom) of each violet line show the number of
rimed (unrimed) particles in that size bin.

can be calculated by knowing the contribution of riming to
the IWC:

α

αu
≈

IWC
IWCu

. (8)

Since β is essentially the same in Eqs. (4) and (5), their pref-
actor ratio (α in Eq. 4 divided by α in Eq. 5, which is equal
to 2.12) indicates that riming contributed slightly more than
half the mass of the rimed dendrites. This can be confirmed
by calculation of the ratio of mean rimed dendrite mass (mr)

to mean unrimed dendrite mass (mu) for each common size
interval, as shown in Fig. 3. This riming ratio (mr/mu) for
each size bin varies from ∼ 0.5 to 3 with many values close
to 2. The weighted average ofmr/mu is equal to 2.0, support-
ing the first estimate of 2.12. The largest deviation from the
mean for 300 µm <D < 400 µm may be due to only a single
unrimed ice crystal of anomalous mass in this size bin.

Equations (4) and (5) also suggest a means of adapting
the m−D curve fit in Fig. 1 for modeling the riming pro-
cess in mixed-phase clouds. Since this curve fit is represen-
tative of ice particle populations in frontal clouds (containing
a mixture of unrimed and rimed particles), it can be adapted
for modeling the riming process in frontal clouds. Since β
should be essentially the same for both unrimed and the mix-
ture of unrimed plus rimed SCPP ice particles, the ratio of
their corresponding prefactors (i.e., αu/αmix) can be multi-
plied by the mass predicted by the curve fit equation to yield

the masses appropriate for unrimed particles. For the ice par-
ticles plotted in Fig. 1a, mu/mmix is equal to 0.650 (where
mmix includes all these particles andmu/mmix was calculated
by the same method that calculated mr/mu in Fig. 3). This
implies that multiplying the mass predicted by the curve fit
in Fig. 1 by a factor of 0.65 will yield masses proper for un-
rimed ice particles. To model the riming process in frontal
clouds, these unrimed particles can be subjected to the rim-
ing growth equations described below as well as Eq. (8).

4.2 Dependence of δ and γ on riming

MG08 used different A−D power laws in each riming step,
but such a method led to discontinuities in projected area dur-
ing the transition from one ice category to another one. It
seems that the A−D andm−D that they used were not self-
consistent (e.g., they were from different studies based on
different datasets). Here, we suggest an approach to avoid the
discontinuity in the projected area. Since there are no SCPP
A−D measurements that correspond with the m−D mea-
surements used in Sect. 4.1, a purely empirical evaluation of
the dependence of δ and γ on riming was not possible. How-
ever, Fontaine et al. (2014) simulated numerous ice particles
(pristine crystals, aggregates, and rimed particles) with vari-
ous 3-D shapes and also their projected area (assuming ran-
dom orientation). By this, they were able to develop a linear
expression between β and δ. This linear expression implies
that δ is constant during the riming process, since β has no
riming dependency (see Sect. 4.1):

δ = δu. (9)

The reason for this can be explained by noting that the riming
process often affects A but does not change D (by filling
the space between ice particle branches) significantly prior
to graupel formation. This is also evident from observations,
as shown in Table 1 of M96, where δ is equal to 2 for both
hexagonal plates and lump graupel. For constant δ, only γ
depends on riming, and to express γ as a function of riming,
we developed a method that estimates the change in A by
riming as a function of the change in m:

A= (Amax−Au)R+Au, (10)

where Amax is the maximum projected area due to riming in
the phase 1 (which is the graupel A), and R is the riming
factor defined as follows:

R =
m−mu

mmax−mu
, (11)

where mmax is the graupel m (having the same D as m and
mu). R is between 0 and 1, with 0 denoting no riming and 1
indicating graupel formation. In other words, when an ice
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Figure 4. (a) Same as Fig. 3, but rimed particles are now graupel.
(b) Same as (a), but unrimed particles are now columnar crystals
and R4a (hexagonal graupel) is not included.

crystal is unrimed, m=mu and A= Au; when m=mmax
and A= Amax, the ice crystal attains graupel status at the
end of phase 1. For a given D, γ = A/Dδ , and in this way
the riming dependence of α and γ can be treated, while β
and δ are independent of riming. Note that Eq. (10) assumes
a linear relationship between m and A during riming. This
assumption can be justified, becausem∝ α

γ
A (note that β, δ,

and D do not change during the phase 1 of riming); this can
be investigated through future research.

4.2.1 Planar ice crystals

Using the approach above,m (in particular, α) should first be
determined as a function of riming using conventional the-
ory (this will be discussed in Sect. 6), and then Eqs. (8),
(10), and (11) can be applied to calculate A. In order to de-
termine mmax, we calculated the mr/mu that corresponds to
graupel (R4a, R4b, and R4c) and unrimed dendrites (P1d,
P1e, and P1f), as shown in Fig. 4a. Small variability is seen
for D < 1200 µm (ranges from 3 to 3.8, with the exception
of smallest size bin), whereas large variability exists (be-
tween 1.6 and 8.4) for larger sizes due to the small number
of graupel in each size bin. The weighted average for this
mr/mu ratio is equal to 3.3, which can be used to estimate
mmax: mmax ≈ 3.3×mu for the dendrites. Since R4a occurs
just before hexagonal features are completely obscured by
additional rime deposits, R4a graupel is ideal for estimat-
ing mmax. Unfortunately, there are only 14 R4a particles in
the entire SCPP data, withD < 1200 µm. They exhibit a large
variability in themr/mu ratio (ranging from 1.6 to 4.5) with a
weighted average of mr/mu equal to 3.1 (figure not shown).
Nonetheless the close agreement with the above mr/mu ratio
of 3.3 is encouraging for us to conclude that initial graupel
mass (at the end of phase 1) is 3.3 times larger than unrimed
dendrites. Since the SCPP observations show that D and β
are conserved during the phase 1 of riming, graupel density is
also∼ 3.3 times larger than unrimed dendrite mass. A similar
observational analysis was conducted by Rogers (1974), who
found that α for heavily rimed snowflakes was 4 times larger
than that for unrimed snowflakes (and β was similar for both
rimed and unrimed snowflakes). Since there is no observa-
tion to indicate Amax, it can be approximated as the area of
a circle having the same D (Asphere); but since graupel is not
perfectly spherical, Amax can be better estimated as a frac-
tion ofAsphere:Amax = kAsphere, where k is correction factor.
Heymsfield (1978) analyzed graupel particles in northeastern
Colorado, and found that their aspect ratio does not exceed
0.8. Using this value, JH15 showed good agreement between
their model and observational data from a wind tunnel. Based
on such analysis, k is equal to 0.8. Further observational data
are needed to determine the value of Amax more accurately.

So far, we discussed the phase 1 of riming growth (before
the formation of graupel), where m and A increases while D
and therefore β and δ are conserved. Once the graupel stage
is attained, phase 2 of riming starts and the graupel contin-
ues to grow through riming, and a different methodology is
required to describe riming growth at this growth stage, be-
cause graupel D increases by riming. Once m=mmax, then
a graupel bulk density is defined as follows:

ρg =
mmax

Vg
, (12)

where Vg = (π/6)D3
g and Dg is graupel D when m =mmax.

For subsequent riming growth, ρg remains constant. For this
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growth stage, riming does increase D and A, which are de-
termined as a function of riming as follows:

D =

(
6m
πρg

) 1
3
, (13)

wherem is calculated as described in Sect. 6. As before, for a
givenD, γ = A/Dδ , and in this way riming growth is treated
for all conditions.

4.2.2 Columnar ice crystals

Figure 4b represents mr/mu between graupel (R4b and R4c)
and unrimed columnar crystals (N1e and N2c) in order to
determine mmax for columnar crystals (initial graupel at the
end of phase 1). Relatively small variability of mr/mu (be-
tween 1.6 and 3) is found for D < 1400 µm, with larger vari-
ability (from 1.4 to 9.4) found for larger ice particles, with
the weighted average of mr/mu equal to 2.4, and therefore
mmax ≈ 2.4×mu. The higher variability for D > 1400 µm is
likely due to a single graupel particle per size bin. Based on
the SCPP dataset, we showed thatD and β are constants dur-
ing the phase 1 of riming, and since initial graupel mass is
2.4 times larger than unrimed column mass, these mean that
graupel density is ∼ 2.4 times larger than unrimed column
density.

4.3 Testing the Baker and Lawson (2006) m−A

expression with unrimed dendrites

Some of the data shown in Fig. 2 describes an experiment
investigating the ability of the Baker and Lawson (2006;
hereafter BL06) m−A power law to reproduce the masses
of unrimed dendrites that presumably have relatively low
area ratios (the ratio of the actual ice particle projected area
to the area of a circle having a diameter equal to D). A
study by Avramov et al. (2011) found that this power law
overestimated the masses of low-density dendrites (P1b),
high-density dendrites (P1c), and low-density dendrite ag-
gregates, but that the BL06 power law yielded masses con-
sistent with high-density dendrite aggregates at commonly
observed sizes. It is important to understand the potential
limitations of this power law for dendrites due to their abun-
dance in Arctic mixed-phase clouds and for the modeling of
these clouds. BL06 used a subset of SCPP data (e.g., 865 ice
particles), of which 550 were identifiable, and 36 % of such
identifiable particles were moderately or heavily rimed. They
then developed software to calculate ice particle projected
area from their magnified images. Thereafter, they calculated
a m−A power law expression. Since BL06 used only a sub-
set of the SCPP data to produce a m−A relationship (i.e.,
not a m−D relationship), comparison of their work and our
study is meaningful. Unfortunately, there were only seven
unrimed and two lightly rimed dendrites in the BL06 dataset
to investigate this finding. These are represented in Fig. 2 by

green circles; their masses were calculated from the BL06
m−A expression using their measured projected areas. For
D < 1.4 mm, the BL06 unrimed dendrite masses are consis-
tent with the unrimed dendrite masses from all SCPP data
evaluated in this study (e.g., are within ±1σ of mean m for
each size bin), but at larger sizes the BL06 unrimed dendrite
masses conform with rimed dendrite masses evaluated in this
study. This suggests that for D > 1.4 mm, the BL06 m−A
expression might overestimate the masses of unrimed den-
drites by about a factor of 2. This is broadly consistent with
Avramov et al. (2011) for the size range considered. How-
ever, there is insufficient data here to draw any firm conclu-
sions.

Although A is more strongly correlated with ice particle
m than D is (based on BL06), inferring m or volume from
a 2-D measurement is still ambiguous since different crys-
tal habits exhibit different degrees of ice thickness or volume
for a given A. Thus, the BL06 m−A expression is not ex-
pected to be universally valid for all ice crystal habits. On
the other hand, when applied to A measurements in cirrus
clouds, it yields ice particle mass estimates that are very con-
sistent with two other studies that estimated m−D expres-
sions for cirrus clouds (Heymsfield et al., 2010; Cotton et
al., 2013), as described in Sect. 3. In addition, a comparison
with a cold-habit SCPP dataset provided additional evidence
that the BL06m−A expression yields masses appropriate for
ice particles found in cirrus clouds. It also yields masses that
are very consistent with the mean masses obtained for all ice
particles sampled during the SCPP, indicating that the BL06
m−A expression appears to be representative of ice particle
masses characteristic of Sierra Nevada snow storms. As ex-
plained by EM16 and references therein, there is only about
a 20 % difference between IWCs calculated from PSD using
the BL06 m−A power law and collocated direct measure-
ments of IWC in tropical regions; however, such differences
can be as high as 100 % in polar regions.

5 Collision efficiencies

As mentioned in Sect. 1.2, there is a lack of practical methods
in the literature for computing Ec for plates, columns, and
graupel. In this section, equations are provided that calculate
Ec for hexagonal plates and hexagonal columns, based on
the data of WJ00. Such equations can be used in cloud and
climate models to treat the riming process.

5.1 Hexagonal plates

The numerical study of WJ00 is valid for unsteady
flow, hexagonal ice plates with 1 <Re < 120 and
160 µm <D < 1700 µm, and water droplets having di-
ameter d between 1 and 100 µm. Re for hexagonal plates is
calculated based on D (e.g., Replates =DV/ε, where ε is
kinematic viscosity). Since there is not sufficient agreement

Atmos. Chem. Phys., 17, 1241–1257, 2017 www.atmos-chem-phys.net/17/1241/2017/



E. Erfani and D. L. Mitchell: Growth of ice particle mass 1251

between the historical H80 relationship and the data of
WJ00, we provided best fits to the data of WJ00 that has the
form of the following:

Ec =



(
0.787K0.988)(0.263lnRe− 0.264) ,

0.01≤K ≤ 0.35 & 2<Re ≤ 120
(0.7475logK + 0.620)(0.263lnRe− 0.264) ,
0.35<K ≤Kthres & 2<Re ≤ 120√

1−
1
5

[
log(

K

Kcrit
)−
√

5
]2

,

Kthres <K < 35 & 1≤ Re ≤ 120
(14)

where K is a mixed Froude number of the system of water
drop-ice particle, and is calculated as follows:

K =
2(V − v)v

Dg
, (15)

where v is water-drop fall speed, and g is gravitational accel-
eration. Since cloud water drops are in the Stokes regime,
v is calculated as the Stokes fall speed (e.g., v = g(ρw−

ρa)d
2/18µ, where ρw is water density, ρa is air density, and

µ is dynamic viscosity), and K is the same as the Stokes
number in this flow regime. Kcrit is the critical value of K
(where Ec equals 0 in the third line in Eq. 15) and is ex-
pressed as a function of ice particle Re:

Kcrit =


1.250Re−0.350, 1<Re ≤ 10
1.072Re−0.301, 10<Re ≤ 40
0.356Re−0.003, 40<Re ≤ 120

, (16)

Based on Eq. (15), Ec in the third line is physically mean-
ingful only when K ≥Kcrit. When K <Kcrit, Ec in the third
is imaginary and must be set to zero in order to avoid errors.
Kthres is the threshold of K between small and large cloud
droplets, and is calculated as Kthres =−5.07× 10−10Re5

+

1.73×10−7Re4
−2.17×10−5Re3

+0.0013Re2
−0.037Re+

0.8355, and has values between 0.4 and 0.7. Alternatively, it
can be calculated for a desired Re by equating Ec from the
second line with Ec from the third line in Eq. (15) (e.g., find-
ing the intersection of curves defined by the second and the
third lines of Eq. 15) to avoid any discontinuity. The third line
in Eq. (15) is an ellipse fit similar to H80 equation, but such a
fit cannot represent finite values of Ec for small drops (when
K <Kthres), and therefore this ellipse fit is not valid for small
drops. To overcome this issue, curve fits are developed (the
first and second lines in Eq. 15) similar to Mitchell (1995;
hereafter M95). M95 provided curve fits to experimental Ec
data described in ST73, K74 and Murakami et al. (1985) that
showed slight sensitivity to Re. Here, those equations are
modified and additional terms are employed to account for
the Re dependence of Ec for small droplets, based on the
data of WJ00.

Figure 5. (a) Collision efficiency for hexagonal plates as a func-
tion of the mixed Froude number. Circles show the data of WJ00
based on numerical calculations, and curves show the best fits to
this data for various values of Re. Also displayed are experimental
data of ST73 for Re= 97 (squares), K74 for 200 ≤Re≤ 640 (dia-
monds), and K74 for 10 ≤Re≤ 35 (triangles). (b) Same as (a), but
for hexagonal columns and no experimental data.

The resulting curve fits for Ec (Fig. 5a) show that the pro-
vided equations can represent the data of WJ00 very well in
various ranges ofK and Re. The percent error in Ec between
curve fits and WJ00 data has a mean value of 6.65 % with
standard deviation of 3.67 % for all Re and K . For a given
K , Ec for planar crystals increases with an increase in Re
because of the increase in the plate’s fall speed. In addition,
Ec has a slight sensitivity to Re for Re≥ 60. Ec for small
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Re (Re≤ 2) appears to have a different pattern than that for
larger Re, since Ec has zero values for small water drops
(K ≤ 1). This implies that smaller ice particles that have sizes
slightly larger than the Dthres are incapable of collecting the
smaller drops. For a given Re, Ec increases with increasing
K , associated with an increase in droplet diameter, but it does
not exceed a value of unity. For comparison, historical exper-
iments by ST73 and K74 are also shown in this graph. K74
data for 10≤Re≤ 35 is in good agreement with the curve fit
for Re= 10. Values of Ec from K74 for 200 ≤Re≤ 640 are
slightly lower than curve fit forRe= 120. This does not seem
to be a discrepancy, because it is observed from the curve fits
(based on WJ00) thatEc is not sensitive toRe whenRe≥ 60.
This is also observed in K74 for large Re (their Fig. 14). Ec
from ST73 for Re= 97 is in good agreement with the curve
fit for K ∼ 1.5, but is larger than the curve fit for K ∼ 0.3.
It is noteworthy to explain the shortcomings of these exper-
iments, as mentioned by Pruppacher and Klett (1997). For
the experiment of K74, when Re > 100, the flow is unsteady
and leads to the eddy shedding and formation of wakes at
the top of the particle, which increases the uncertainty in fall
speed. For the study of ST73, there is an extra problem: the
air stream speed was not in agreement with the fall speed that
the fixed collectors would have, if they were to fall freely.

For K > 1.0, M95 modified the relationship by Lang-
muir (1948) for Ec between spherical water raindrops and
cloud droplets, and provided an expression as Ec = (K +

1.1)2/(K + 1.6)2. However, this relationship underestimates
the best fits to the data of WJ00 (figure not shown). This con-
firms the findings of von Blohn et al. (2009) who observed
smaller Ec for raindrops relative to graupel, and highlights
the need for using Ec for ice particles with realistic shapes
and avoiding Ec surrogates suitable for spherical raindrops.

Note that Eqs. (15)–(17) are derived for the range over
which the data of WJ00 is valid (e.g., 1 <Re < 120), and they
should not be used for extrapolation to Re values larger or
smaller than this range. Since Re < 1 corresponds to ice par-
ticles smaller than Dthres, it is justified to assume that Ec = 0
in this Re range. When considering the range Re > 120, val-
ues of Ec for Re= 120 should be used; this is reasonable
based on the experiments of K74 for 200 <Re < 640, and the
theoretical study of WJ00 for 60≤Re≤ 120.

5.2 Hexagonal columns

H80 and M95 did not provide any Ec equation for colum-
nar crystals. To the best of our knowledge, there is not any
practical Ec equation for such crystals in the literature, suit-
able for use in cloud-resolving models, except for the study
of JH15 that calculated Ec for prolate spheroids based on
their aspect ratio. In addition to hexagonal plates, WJ00 stud-
ied Ec between hexagonal columns (with width w between
47 and 292.8 µm, length l between 67.1 and 2440 µm and
0.2 <Re < 20) and water drops of 1 µm < d < 100 µm. Note
that WJ00 calculated Re for columns in a different way than

was done for plates. Re for columns was calculated from
their width, whereas Re for plates was computed from D

(e.g., Recolumns = wV/ε). If the values of Re were calcu-
lated from the column maximum dimension, they would have
values comparable to those for plates. In formulating Ec for
columns, we have followed theRe convention of WJ00. Sim-
ilar to hexagonal plates, we provide the best fits to the data
of WJ00 for hexagonal columns:

Ec =



(
0.787K0.988

)(
−0.0121Re2

+ 0.1297Re + 0.0598
)
,

0.01≤K ≤Kthres & 0.2≤ Re ≤ 3(
0.787K0.988

)(
−0.0005Re2

+ 0.1028Re + 0.0359
)
,

0.01≤K ≤Kthres & 3<Re ≤ 20

r

√
1−

1
3.5

[
log(

K

Kcrit
)−
√

3.5
]2

,

Kthres <K < 20 & 0.2≤ Re ≤ 20

,

(17)

where K is calculated from Eq. (16), and Kcrit is calculated
as follows.

Kcrit =

{
0.7797 Re−0.009, 0.2≤ Re ≤ 1.7
1.0916 Re−0.635, 1.7<Re ≤ 20

(18)

Also, r is a parameter related to the major radius of the ellipse
fit and is determined as follows.

r =

{
0.8025Re0.0604, 0.2≤ Re ≤ 1.7
0.7422Re0.2111, 1.7<Re ≤ 20

, (19)

and Kthres is calculated as follows:

Kthres =


0.0251Re 2

− 0.0144Re + 0.811 ,
0.2≤ Re ≤ 2
−0.0003Re 3

+ 0.0124Re2
−0.1634Re + 1.0075 ,

2<Re ≤ 20
(20)

The results are shown in Fig. 5b. Similar to hexagonal plates,
the curve fits are able to represent the data of WJ00 very well
over various ranges of K and Re. The percent error in Ec
between the curve fits and the WJ00 data has a mean value
of 10.28 % with a standard deviation of 5.81 % for all Re and
K . There are no experimental estimates of Ec for hexagonal
columns in the literature for comparison. For a given K , Ec
of columnar ice crystals increases with increasing Re (due to
the increase in fall speed). For a given Re, Ec increases with
increasing K (because of increasing droplet diameter), but it
does not exceed 0.95. Unlike plates, the increase in Re does
not decrease the sensitivity of Ec to Re.
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Again, Eqs. (18)–(21) should not be used for Re < 0.2 and
Re > 20. In the range Re < 0.2, the column size does not ex-
ceed the Dthres, and therefore Ec = 0. For Re > 20, values of
Ec are unknown, but we suggest using Ec for Re= 20 as a
conservative underestimate of Ec.

6 Mass growth rate by riming

In Sect. 4, the dependence of α on IWC was explained. Un-
rimed IWC can be derived from α and β pertaining to un-
rimed ice crystals (see EM16). The riming rate for a single
ice particle of sizeD can be calculated by using the definition
of riming mass growth rate, similar to Heymsfield (1982),
M95, and JH15:

(
dm
dt

)
riming

=

dmax∫
0

Ag(D,d) |V (D)

−v(d)|E(D,d)m(d)n(d)dd, (21)

where t is time, d is diameter of a cloud droplet, Ag(D,d)

is the geometrical cross-section area of the ice particle–
cloud droplet collection kernel, E(D,d) is collection ef-
ficiency between the cloud droplet and ice particle, m(d)
is the cloud droplet mass, n(d) is the cloud droplet num-
ber distribution, and dmax is diameter of the largest cloud
droplet. Note that the cloud droplet sedimentation veloc-
ity v(d) is negligible compared to the ice particle fall
speed V (D) and was neglected in the similar equation by
Heymsfield (1982), M95, and Zhang et al. (2014). Zhang
et al. (2014) used a different equation, which has the form
of dm/dt = A(D)V (D)E(D)LWC, where LWC is equal to∫ dmax

0 m(d)n(d)dd . For this equation, the riming rate is not
sensitive to the droplet distribution.

Based on the observations of Locatelli and Hobbs (1974),
many cloud and climate models use a V −D power law to
predict ice mass sedimentation rates (V = avDbv , with con-
stant av and bv for each specific particle habit; Rutledge and
Hobbs, 1984; Ferrier, 1994; Fowler et al., 1996; Pinski et al.,
1998; Morrison and Gettelman, 2008; Gettelman and Morri-
son, 2015). However, such a relationship cannot represent the
evolution of ice particle size and shape, and is often incon-
sistent with the realistic dependence of V on the ice particle
m/A ratio. This increases uncertainty in the microphysical
and optical properties of such models. To overcome this is-
sue, M96 introduced a method that derives V by using m
and A, and also by a power law for the Best number (X) and
Re relationship (Re = AxXBx , where Ax and Bx are con-
stant coefficients in specific ranges of X). In this method,
the V calculation depends on the m/A ratio. Mitchell and
Heymsfield (2005) followed the same method, but they used
a Re−X power law with variable coefficients (A and B are
not constant anymore) to produce a smooth transition be-
tween different flow regimes. Such an approach is shown to

represent the evolution of V realistically (MG08; Morrison
and Grabowski, 2010; JH15; Morrison and Milbrandt, 2015).
In addition, Heymsfield and Westbrook (2010) developed an
alternative method to improve M96 method, and calculated
X as a function ofm/Ar ratio, where Ar is area ratio (defined
as the ratio of ice particle projected area to the projected area
of a circumscribed circle around the particle; see Eq. 15 in
Erfani and Mitchell, 2016).

Since the contribution of the cloud droplet projected area
to Ag(D,d) is negligible, Ag(D,d) can be approximated
as the maximum ice particle cross-section area projected
normal to the air flow. Ice particles fall with their major
axis perpendicular to the fall direction, therefore Ag(D,d)
is approximated as the ice particle A, which is calculated in
Sect. 4.2. The m(d) is calculated from spherical geometry as
m(d)= π d3ρw/6. E(D,d) is equal to EcEs where Ec was
discussed in Sect. 5, andEs is the sticking efficiency (fraction
of the water droplets that stick to the ice particle after colli-
sion), and is presumed to be unity since supercooled cloud
droplets freeze and bond to an ice particle upon collision.
Conditions under which Es may be less than unity are ad-
dressed in Pruppacher and Klett (1997). It is noteworthy that
by using the above calculations, riming growth will be rep-
resented in a self-consistent, gradual, and continuous way.
Based on the explanations in this section, Eq. (22) can be
reduced to the following:

(
dm
dt

)
riming

= A(D)V (D)

dmax∫
0

E(D,d)m(d)n(d)dd. (22)

Differentiating Eq. (1) with respect to t corresponds to
dm/dt =Dβdα/dt+αβDβ−1dD/dt , but the second term on
the RHS should be relatively small (riming has little impact
onD prior to graupel formation). Therefore, to a first approx-
imation, the following applies:

(
dα
dt

)
riming

=
1
Dβ

(
dm
dt

)
riming

, (23)

and together with Eq. (23), a change in α due to riming can be
determined. Since D and β do not change by riming, dα/dt
is linearly proportional to dm/dt .

Figure 6 shows dm/dt calculated from Eq. (23) for hexag-
onal ice plates and hexagonal columns for different values of
LWC and droplet median-mass diameter (MMD: the droplet
diameter that divides the droplet PSD mass into equal parts).
Ec is calculated from Eqs. (15) and (18) for hexagonal plates
and hexagonal columns, respectively, and a sub-exponential
PSD is assumed for cloud droplets that has the following
form:

n(d)=Nod
ν exp(−λd), (24)
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Figure 6. Riming mass growth rate versus ice particle maximum
dimension D for various LWCs (0.05, 0.1, and 0.2 g m−3) and dif-
ferent droplet median-mass diameters (8 and 16 µm) for (a) hexag-
onal plates and (b) hexagonal columns. Additional curves (dashed
red and dashed black curves) are produced by assuming that Ec
conforms to the ellipse curves and is zero for smaller droplets.

where λ is the PSD slope parameter, ν is the PSD dis-
persion parameter and No is intercept parameter. M95
used observational droplet spectra from Storm Peak lab
(Steamboat Springs, Colorado, USA), and calculated var-
ious PSD parameters: ν = 9, λ= (ν+ 1)/d , andNo = 4×
104LWC/ρwd

13
, where d is droplet mean diameter, and is

related to MMD as MMD = 1.26d for this dataset. Note that
all variables are in units of cgs. It is seen in Fig. 6a that
dm/dt for riming increases with increasing ice particle D.
The dm/dt is linearly proportional to LWC when MMD and
D are constant. In addition, when LWC is constant, dou-

bling MMD (from 8 to 16 µm) leads to a quadrupling of
dm/dt . One important feature is the contribution of small
droplets (d < 10 µm) to dm/dt , when K < 0.7 and Ec < 0.3.
It is seen in this figure that when MMD is relatively small
(= 8 µm), ignoring such small droplets results in values of
(dm/dt)riming at the largest crystal sizes that are ∼ 40 (for
plates) and ∼ 70 % (for columns) of those obtained when
all droplets are included. That is, small droplets contribute
about 60 and 30 %, respectively, to the (dm/dt)riming values
at the largest sizes. This surprising contribution from small
droplets is partly due to half of the LWC being associated
with d < 8 µm. However, when MMD is larger (= 16 µm),
the contribution from small droplets is only ∼ 5 %. The size-
dependence of dm/dt for hexagonal columns (Fig. 6b) shows
that dm/dt for columns is larger than that for hexagonal
plates for a specific crystal size when droplet MMD is 8 µm,
partly because columns fall faster than plates (see Fig. 6 in
M96) and partly due to higher Ec for columns encountering
larger droplets. Moreover, when LWC is constant, doubling
MMD (from 8 to 16 µm) leads to at least a doubling of dm/dt
(greater for plates).

The collection kernel (Kc) can be calculated as
A(D)V (D)E(D,d), which is alternatively equal to dm/dt
divided by the ice particle mass due to riming (see Eq. 23).
MG08 approximated this variable by using simple assump-
tions, and found that it is proportional to D2. Here, we
showed by more accurate analysis that Kc has a form
of a second-order polynomial fit, and is represented for
MMD= 8 µm and hexagonal plates byKc = 7× 10−6D2

−

0.0002D+ 0.0008.

7 Conclusions

In most atmospheric models, riming is treated as an abrupt
change between precipitation classes: from snow to grau-
pel, which occurs at an arbitrary threshold size. Such pa-
rameterizations are not realistic and lead to uncertainty in
the simulation of snowfall. In this study, a combination of
various empirical and theoretical approaches is utilized to
shed light on the riming process. SCPP ground-based mea-
surements of m and D for rimed and unrimed ice particles
are used in this study; such particles represent ice clouds
for −40 ◦C < T < 0 ◦C. The findings presented here suggest
a fundamental shift in our way of representing ice particle
mass and projected area in atmospheric models for riming. It
is common in most models to assume that riming increases
β (Eq. 1) from values of ∼ 2 (for dendrites) to values of ∼ 3
(for graupel). However, we showed that this assumption is
not supported by observations. To a good approximation un-
der most conditions, riming does not increase (or decrease)
β and D in an m−D power law and the treatment of riming
is simplified, with riming increasing only α during the phase
1 of riming (before the formation of graupel). To represent
unrimed particles in frontal clouds, one could enlist the poly-
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nomial fit for synoptic ice clouds (−40 ◦C < T <−20 ◦C, see
EM16) but adjust this equation to conform to the observed
power laws for unrimed dendrites. To treat riming for den-
drites, this fit equation could be multiplied by the riming
fraction mr/mu or alternatively IWC/IWCu. A similar strat-
egy could be adopted for other ice particle shapes or shape
mixtures in frontal clouds, as is done for columnar particles
in this study. By using this method, there is no discontinuity
in the growth of m and A; rather, the particles grow gradu-
ally during the riming process. Phase 2 of riming starts when
graupel with quasi-spherical shape forms. In this phase, the
increase in m and A causes an increase in D.

It is straightforward for models with multiple ice cate-
gories to utilize our new method. This can be done by de-
scribing riming growth as two phases and removing the au-
toconversion process. Phase 1 simulates riming growth from
an unrimed ice crystal to the onset of graupel formation. In
this phase, ice particle mass and projected area gradually in-
crease, but size is unchanged (Eqs. 6–11). Phase 2 represents
graupel growth. In this phase, the shape is unchanged, but
mass, projected area, and size gradually increase (Eqs. 12–
14). By using the method introduced in this study, models
may still use multiple categories (e.g., ice crystal, rimed par-
ticle, graupel), but within each category the rimed mass frac-
tion can gradually increase, thus preventing an abrupt change
in ice particle attributes between categories.

Prior to this work, there was only one rigorous practical
method for calculating the droplet size-dependence of Ec for
use in models. As described in JH15, this method when ap-
plied to prolate spheroids modified the equation from Beard
and Grover (1974) for spherical raindrops in steady flow,
and calculated Ec between a cloud droplet and a prolate
spheroid based on the spheroid aspect ratio. Many cloud-
resolving models use the H80 equation to calculate Ec for
planar crystals, but this equation has important drawbacks
inherited from the early numerical studies (See Sect. 1.2).
To solve this problem, new equations for the calculation of
Ec are developed based on the numerical study of WJ00 for
both hexagonal plates and hexagonal columns that account
for dependence of Ec on cloud droplet d and ice particle D
in non-steady flow. In the future, this treatment of the rim-
ing process will be employed in a new snow growth model
that predicts the vertical evolution of ice particle size spectra,
mass, projected area, fall speed, and snowfall rate in terms
of the growth processes of vapor diffusion, aggregation and
riming. These results will be compared with airborne mea-
surements from two spiral descents.

List of symbols and their definitions

av prefactor in fall speed-dimension power law
A projected area
Ag geometrical cross-section area
Amax graupel projected area

Ar projected area ratio
Ax prefactor in Reynolds number-Best number power law
bv exponent in fall speed-dimension power law
Bx exponent in Reynolds number-Best number power law
d water drop diameter
d drop mean diameter
D maximum dimension of ice particle
Dg maximum dimension of initial graupel (at the end of

phase 1 of riming)
E collection efficiency
Ec collision efficiency
Es sticking efficiency
g gravitational constant
k correction factor for graupel projected area
K mixed Froude number
Kcrit critical value of mixed Froude number
Kc collection kernel
Kthres threshold of K
l length of columnar crystals
m mass of ice particle
mr rimed mass
mu unrimed mass
mmax graupel mass
mmix mass of mixture of rimed and unrimed particles
Mf ice mass flux
n number distribution
No intercept parameter of a gamma PSD
P air pressure
r parameter related to the major radius of the ellipse fit
Re Reynolds number
t time
T temperature
v terminal fall speed of water drop
V terminal fall speed of ice particle
Vg volume of initial graupel (at the end of phase 1 of rim-

ing)
Vm mass-weighted terminal fall speed
w width of columnar crystals
X Best number
α prefactor in mass-dimension power law
β exponent in mass-dimension power law
γ prefactor in projected area-dimension power law
δ exponent in projected area-dimension power law
ε kinematic viscosity
µ dynamic viscosity
λ slope parameter of a gamma PSD
ν dispersion parameter of a gamma PSD
ρa air density
ρg initial graupel bulk density (at the end of phase 1 of

riming)
ρi ice density
ρw water density
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8 Data availability

The SCPP data used in this study and associated software
is freely available to interested researchers; those interested
should contact the second author.
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