

Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain

Zhe Wang¹, Weihao Wang¹, Yee Jun Tham^{1,a}, Qinyi Li¹, Hao Wang², Liang Wen², Xinfeng Wang², and Tao Wang¹

¹Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China ²Environment Research Institute, Shandong University, Jinan, China ^anow at: Department of Physics, University of Helsinki, Helsinki, Finland

Correspondence to: Zhe Wang (z.wang@polyu.edu.hk) and Tao Wang (cetwang@polyu.edu.hk)

Received: 23 May 2017 – Discussion started: 29 May 2017 Revised: 23 August 2017 – Accepted: 16 September 2017 – Published: 17 October 2017

Abstract. Dinitrogen pentoxide (N2O5) and nitryl chloride (ClNO₂) are key species in nocturnal tropospheric chemistry and have significant effects on particulate nitrate formation and the following day's photochemistry through chlorine radical production and NO_x recycling upon photolysis of ClNO₂. To better understand the roles of N₂O₅ and ClNO₂ in the high-aerosol-loading environment of northern China, an intensive field study was carried out at a high-altitude site (Mt. Tai, 1465 m a.s.l.) in the North China Plain (NCP) during the summer of 2014. Elevated CINO₂ plumes were frequently observed in the nocturnal residual layer with a maximum mixing ratio of 2.1 ppbv (1 min), whilst N₂O₅ was typically present at very low levels (< 30 pptv), indicating fast heterogeneous N2O5 hydrolysis. Combined analyses of chemical characteristics and backward trajectories indicated that the ClNO₂-laden air was caused by the transport of NO_xrich plumes from the coal-fired industry and power plants in the NCP. The heterogeneous N₂O₅ uptake coefficient (γ) and ClNO₂ yield (ϕ) were estimated from steady-state analysis and observed growth rate of ClNO₂. The derived γ and ϕ exhibited high variability, with means of 0.061 ± 0.025 and 0.28 ± 0.24 , respectively. These values are higher than those derived from previous laboratory and field studies in other regions and cannot be well characterized by model parameterizations. Fast heterogeneous N2O5 reactions dominated the nocturnal NO_x loss in the residual layer over this region and contributed to substantial nitrate formation of up to $17 \,\mu g \, m^{-3}$. The estimated nocturnal nitrate formation rates ranged from 0.2 to $4.8 \,\mu g \,m^{-3} \,h^{-1}$ in various plumes, with a mean of 2.2 $\pm 1.4 \,\mu g \,m^{-3} \,h^{-1}$. The results demonstrate the significance of heterogeneous N_2O_5 reactivity and chlorine activation in the NCP, and their unique and universal roles in fine aerosol formation and NO_x transformation, and thus their potential impacts on regional haze pollution in northern China.

1 Introduction

Nitrogen oxides (NO_x = NO + NO₂) play central roles in the oxidative capacity of the atmosphere and photochemical air pollution. Dinitrogen pentoxide (N₂O₅) is an important reactive intermediate in the oxidation of NO_x and exists in rapid thermal equilibrium with nitrate radical (NO₃) formed via the reaction between NO₂ and O₃. The heterogeneous hydrolysis of N₂O₅ has been recognized as a key step in nocturnal NO_x removal and can affect regional air quality by regulating the reactive nitrogen budget and nitrate aerosol formation (e.g., Brown et al., 2006; Abbatt et al., 2012). The heterogeneous reaction of N₂O₅ on and within atmospheric aerosols, fog, or cloud droplets produces soluble nitrate (HNO₃ or NO₃⁻) and nitryl chloride (CINO₂) when chloride is available in the aerosols (Finlayson-Pitts et al., 1989).

$$N_2O_5 + H_2O(het) \rightarrow 2HNO_3(aq)$$
 (R1)

$$N_2O_5 + Cl(het) \rightarrow NO_3(aq) + ClNO_2$$
 (R2)

The rate coefficient of the heterogeneous N_2O_5 reactions is governed by the available reaction surface and N_2O_5 reaction probability (also known as the uptake coefficient $\gamma_{N_2O_5}$), and it can be described by the following expression when the gasphase diffusive effect is negligible.

$$k(N_2O_5)_{het} = \frac{1}{4} c_{N_2O_5} \gamma_{N_2O_5} S_a$$
(1)

Here, $c_{N_2O_5}$ is the mean molecular speed of N_2O_5 , and S_a is the aerosol (or cloud) surface area density. The yield of ClNO₂ (ϕ) is defined as the amount of ClNO₂ formed per loss of N₂O₅, representing the fraction to ClNO₂ formation. Hence, the net reaction of Reactions (R1) and (R2) can be written as follows:

$$N_2O_5 + (H_2O \text{ or } Cl) (het) \rightarrow (2 - \phi)NO_3^-(aq) + \phi ClNO_2.$$
 (R3)

The $\gamma_{N_2O_5}$ has been experimentally measured on various types of aerosols surfaces (including sulfate, nitrate, black carbon, organic carbon, organic coating sulfate, sea salts, and dust) in the laboratory, and different parameterizations based on aerosol composition have been proposed in varying degrees of complexity (e.g., Evans and Jacob, 2005; Anttila et al., 2006; Davis et al., 2008; Bertram and Thornton, 2009; Griffiths et al., 2009; Riemer et al., 2009; Roberts et al., 2009; Simon et al., 2009; Foley et al., 2010; Chang et al., 2011; Ammann et al., 2013; Tang et al., 2014). Recently, field studies have been carried out to measure ambient N2O5 and to derive $\gamma_{N_2O_5}$ from atmospheric observations (e.g., Bertram et al., 2009b; Brown et al., 2009, 2016; Morgan et al., 2015; Chang et al., 2016; Phillips et al., 2016). These field-derived/measured $\gamma_{N_2O_5}$ values were found to vary considerably, and the observed range was found to be significantly larger than that from laboratory studies using synthetic aerosols (Chang et al., 2011; Phillips et al., 2016). Furthermore, inconsistencies between $\gamma_{N_2O_5}$ values derived from field measurements and parameterizations were observed in some locations, which implies that $\gamma_{N_2O_5}$ has a complex dependence on the aerosol composition, physicochemical characteristics, and environmental parameters (Chang et al., 2011, and references therein). Similarly, for the ClNO₂ yield, the field-determined values exhibited significant variability, ranging from 0.01 to close to unity (Thornton et al., 2010; Riedel et al., 2013; Wagner et al., 2013; Phillips et al., 2016), which could not be well reproduced (exhibiting a 10-fold difference in some cases) by parameterization based on only aerosol chloride and water content (Wagner et al., 2013; X. Wang et al., 2017). There are only few studies on the determination of ϕ from field measurement, and the possible effects of real atmospheric aerosols (including organic composition, mixing state, and chloride partitioning between particle sizes) have not been well characterized (Mielke et al., 2013; Phillips et al., 2016). This incomplete understanding suggests the necessity of more field measurements of γ and ϕ in various environments to facilitate the validation and construction of parameterizations suitable for use in air quality models.

CINO₂ formed from nocturnal heterogeneous N₂O₅ uptake can potentially affect the atmospheric oxidative capacity via the production of highly reactive chlorine radicals (Cl) and the recycling of NO_x after photolysis (Simpson et al., 2015). Elevated ClNO₂ mixing ratios were firstly observed in several polluted coast regions (for instance, the coasts of Texas and California, and the Los Angeles Basin), resulting from the strong emission of NO_x and abundant chloride from sea salt aerosols (Osthoff et al., 2008; Riedel et al., 2012; Mielke et al., 2013; Tham et al., 2014). Recently, significant ClNO2 production was also observed in some inland areas (such as Colorado, Hessen, and Alberta), with a mixing ratio of up to several hundreds of pptv or even exceeding 1.0 ppbv (e.g., Thornton et al., 2010; Mielke et al., 2011, 2016; Phillips et al., 2012; Riedel et al., 2013; Faxon et al., 2015). Anthropogenic sources of chlorine including coal combustion in power plants, industries, and biomass burning may potentially facilitate ClNO₂ production (Riedel et al., 2013). The highest ClNO₂ mixing ratio yet reported $(4.7 \pm 0.8 \text{ ppbv}, 1 \text{ min average})$ was recently observed in the regional plumes at a mountaintop site in southern China, indicating the importance of N₂O₅/ClNO₂ chemistry in polluted environments (Wang et al., 2016).

Large anthropogenic emissions of NO_x and increasing O_3 concentrations have been reported in many urban cluster regions in China (Wang et al., 2006; T. Wang et al., 2017). Hence, in these regions, nocturnal nitrogen chemistry may be particularly important in the transformation of NO_x and the subsequent effects on daytime photochemistry and secondary aerosol formation. In the areas downwind of Beijing and Shanghai, high concentrations of particulate nitrate (up to $40 \,\mu g \,\mathrm{m}^3$) have been observed and attributed to heterogeneous N2O5 uptake on acidic aerosols (Pathak et al., 2009, 2011). During a more recent field study in a rural site in the North China Plain (NCP), elevated fine nitrate concentrations were observed at night and in the early morning, with hourly maxima of up to 87.2 μ g m⁻³ and a 30% contribution to PM_{2.5}, which was mainly attributed to the heterogeneous hydrolysis of N₂O₅ (Wen et al., 2015). Active heterogeneous N₂O₅ chemistry has been recently characterized in both rural and urban areas of the NCP via direct measurements of N₂O₅ and ClNO₂. Rapid heterogeneous N₂O₅ loss and efficient ClNO₂ production were observed, with a maximum ClNO₂ mixing ratio of 2.07 ppbv at Wangdu and 0.77 ppbv at Jinan (Tham et al., 2016; X. Wang et al., 2017). Moreover, sustained ClNO₂ peaks were observed after sunrise in the region, and the downward mixing of ClNO₂-rich air in the residual layer was proposed to be the cause of morning peaks (Tham et al., 2016). To confirm these findings and better characterize the chemistry of N2O5/ClNO2 and their impacts on regional air quality, it is of great interest to conduct direct field measurements of N2O5/CINO2 in the polluted residual layer.

In the present study, we measured the concentrations of N_2O_5 , ClNO₂, and related species at a mountaintop site in

Figure 1. (a) Map of northern China showing the location of the mountaintop measurement site (Mt. Tai) in the North China Plain, (b) expanded topographic view of Mt. Tai and surrounding areas, and (c) a wind rose for the study period of summer 2014.

the NCP during the summer of 2014 and characterized the nighttime nitrogen chemistry within the residual layer over a polluted region of northern China. We examined the frequently intercepted ClNO₂-rich plumes at this high-elevation site and investigated nocturnal N₂O₅ reactivity to determine the heterogeneous N₂O₅ uptake coefficients and ClNO₂ yields in a variety of air masses, which were also compared to parameterizations utilized in existing models. The effects of heterogeneous N₂O₅ chemistry on particulate nitrate formation and nocturnal NO_x loss were then evaluated based on the observation data.

2 Methodology

2.1 Field study site

The measurement site was located on Mount Tai (36.25° N, 117.10° E, 1465 m a.s.l. – above sea level) in Shandong Province, China. Mt. Tai is located between the two most developed regions in China (Jing-Jin-Ji and the Yangtze River Delta), and its peak (1545 m a.s.l.) is the highest point within the NCP. Figure 1 shows the location of the measurement site in relation to the surrounding topography. Mt. Tai is 230 km away from the Bohai and Yellow seas, and the cities of Tai'an and Jinan (the capital of Shandong Province) are located 15 km south and 60 km north of the measurement site, respectively. The altitude of the measurement site is near the top of the boundary layer in the daytime during the summer and is typically in the residual layer or, occasionally, in the free troposphere at night. This mountaintop site has been previously used in many atmospheric chemistry field studies (e.g., Gao et al., 2005; Wang et al., 2011; Guo et al., 2012; Sun et al., 2016). Previous studies at this site indicated that the site is regionally representative without significant local anthropogenic emissions and affected by the regional aged air masses and occasional combustion plumes from fossil fuel or biomass in the region (e.g., Zhou et al., 2009; Wang et al., 2011; Guo et al., 2012). Intensive measurements were performed from 24 July to 27 August 2014. During this period, the prevailing winds originated from the northeast and northwest. Shandong province is the largest producer of thermal power in China, and dozens of coal-fired industry and power plants are situated within a radius of 200 km from the mountain site.

2.2 Instrumentation

N₂O₅ and ClNO₂ were measured concurrently using iodide ion chemical ionization mass spectrometry (CIMS) with a quadrupole mass spectrometer (THS Instruments Inc., USA). The principle and detailed calibration of this CIMS system have been described previously by Wang et al. (2016) and Tham et al. (2016). The same configuration was used in the present study. Briefly, N2O5 and ClNO2 were detected as $I(N_2O_5)^-$ and $I(CINO_2)^-$ clusters via reaction with iodide ions (I⁻), which were generated from a mixture of CH₃I (0.3 % in volume) and N₂ using an alpha radioactive source, 210 Po (NRD, P-2031-2000). The inlet was installed ~ 1.5 m above the roof of a single-story building, and the sampling line was a 5.5 m PFA-Teflon tubing (1/4 in o.d.) which was replaced daily in the afternoon before sunset and washed in the ultrasonic bath to minimize wall loss caused by deposited particles (Wang et al., 2016). A small proportion (1.7 SLPM) of total sampling flow (~ 11 SLPM) was diverted to the CIMS system to reduce the residence time of the air samples in the sampling line. A standard addition of N₂O₅ into

the ambient inlet was performed before and after the tubing replacement to monitor the transmission efficiency, and this practice limited the loss of N_2O_5 in the inlet to < 10% in the "clean" tubing and about 30% in the next afternoon. Manual calibrations of N2O5 and ClNO2 were conducted daily to determine the instrument sensitivity, the average of which was 2.0 ± 0.6 for N_2O_5 and $2.2\pm0.6\,\text{Hz}\,\text{pptv}^{-1}$ for $\text{ClNO}_2,$ respectively, during the observation period. The N2O5 standard was synthesized online from the reaction between NO2 and O₃, and the produced N₂O₅ was determined from the decrease in NO2 (Wang et al., 2014). This method has been validated with a cavity ring-down spectrometer (CRDS) measurement in a previous campaign (Wang et al., 2016). The CINO₂ was produced by passing a known concentration of N2O5 through a NaCl slurry, assuming unity conversion efficiency (Roberts et al., 2009) and negligible CINO₂ loss in the system (Wang et al., 2016). The field background was determined by passing the ambient sample through a filter packed with activated carbon, with average levels of 7.8 ± 1.9 and 6.0 ± 1.6 Hz for N₂O₅ and ClNO₂, respectively. The reported concentrations were derived by subtracting the background levels. The detection limit was 4 pptv for both N₂O₅ and ClNO₂ (2σ , 1 min averaged data), and the uncertainty of the nighttime measurement was estimated to be ± 25 % (Tham et al., 2016).

The related trace gases and aerosol compositions were also measured concurrently during the campaign. All of the instruments were used in our previous field studies, and the setup, precision, and accuracies of these instruments were described previously (Wen et al., 2015; Tham et al., 2016; Wang et al., 2016; X. Wang et al., 2017). Briefly, NO and NO₂ were measured using a chemiluminescence analyzer equipped with a blue-light converter (TEI, Model 42I-TL). Total gaseous reactive nitrogen (NO_{ν}) was determined using a chemiluminescence analyzer with an external molybdenum oxide (MoO) catalytic converter (TEI, Model 42CY) with an inlet filter. The NO_{ν} described here is different from that in previous reports (Tham et al., 2016; Wang et al., 2016), because the particulate nitrate was not included but removed by the filter in the present study. O₃, SO₂, and CO were measured using the ultraviolet photometry, pulsed-UV fluorescence, and IR (infrared) photometry techniques (TEI, Model 49I, 43C, and 48C), respectively. Zero and span calibrations for trace gases were performed weekly during the campaign. Water-soluble ionic compositions of PM2.5 (including NH_4^+ , Na^+ , Ca^{2+} , Mg^{2+} , Cl^- , SO_4^{2-} , and NO_3^-) were measured hourly by a monitor for aerosols and gases in ambient air (MARGA ADI 2080, Applikon-ECN) using online ion chromatography.

The particle number and size distribution (5 nm to $10 \mu m$) were measured using a wide-range particle spectrometer (WPS, model 1000XP, MSP Corporation, USA). The particle diameters were corrected for particle hygroscopicity to determine the actual ambient aerosol surface density, and the wet diameters were calculated using growth factors from a

size-resolved κ -Köhler function obtained in a rural site in the NCP (Ma et al., 2016; Tham et al., 2016). The uncertainties associated with the aerosol surface area determination was estimated to be around 30 % (Liu et al., 2010; Tham et al., 2016). Meteorological data, including temperature, relative humidity (RH), wind vectors, and photolysis frequency of NO₂ (J_{NO_2}), were measured by an automated meteorological station (PC-4, JZYG) and a filter radiometer (Metcon, Germany). In addition, a Lagrangian particle dispersion model, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Hess, 1998; Wang et al., 2016), driven by high spatial and temporal meteorological fields from the Weather Research and Forecasting (WRF) Model, was used to investigate potential source regions of the air masses intercepted at the measurement site. The HYS-PLIT model was run 12h backward with 2500 particles released at the measurement site. Detailed parameterization and setup of the HYSPLIT and WRF models were previously described by Wang et al. (2016) and Tham et al. (2016).

3 Results and discussion

3.1 Overview of N₂O₅ and CINO₂ measurement

The temporal variations of CINO₂, N₂O₅, related trace gases, aerosol properties, and selected meteorological parameters during the field study at Mt. Tai are depicted in Fig. 2. Overall, the observed mixing ratios of ClNO₂ were higher than those of N2O5 and exhibited significant variations. The average mixing ratios of N₂O₅ and ClNO₂ were 6.8 ± 7.7 and 54 ± 106 pptv, respectively. The maximum mixing ratio of N₂O₅ (167 pptv) was observed at 21:00 LT on 26 August 2014, and most of the other nights during the observation period exhibited peak N₂O₅ mixing ratios below 30 pptv. The average nighttime mixing ratios of O_3 and NO_2 were 77 and 3.0 ppbv, respectively, with an average nitrate radical production rate $p(NO_3)$ of 0.45 ± 0.40 ppbv h⁻¹, which is indicative of potentially active NO3 and N2O5 chemistry during the study period. However, the low N₂O₅ mixing ratios observed during most of the nights suggest a rapid loss of N2O5, which is consistent with the observed high aerosol surface area (S_a), which varied from ~ 100 to $7800 \,\mu\text{m}^2 \,\text{cm}^{-3}$ with a mean value of $1440 \,\mu m^2 \, cm^{-3}$. The higher RH during nighttime and the frequent occurrence of clouds at the mountaintop site could also account for low N2O5 concentrations, because of the rapid heterogeneous loss of N₂O₅ on cloud droplets.

The highest ClNO₂ mixing ratio of 2065 pptv was observed on 8 August 2014, and on 8 of the 35 nights the peak ClNO₂ mixing ratios were higher than 500 pptv. The simultaneous increases of SO₂, NO_x, and CO with the ClNO₂ peaks suggest these air masses originated from coal combustion sources, such as industry and power plants, which will be further discussed in the next section. The elevated ClNO₂

Figure 2. Time series for N₂O₅, ClNO₂, related trace gases, aerosol properties, and meteorological data measured at Mt. Tai from 24 July to 27 August 2014.

levels observed at Mt. Tai are similar to recent measurements at a surface rural site (Wangdu) in northern China (Tham et al., 2016) and a mountain site (Tai Mo Shan) in southern China (Wang et al., 2016) but are slightly higher than previous measurements conducted in coastal (e.g., Osthoff et al., 2008; Riedel et al., 2012; Mielke et al., 2013) and inland sites (e.g., Thornton et al., 2010; Phillips et al., 2012; Riedel et al., 2013) in other regions of the world. During the campaign at Mt. Tai, the average concentrations of aerosol sulfate and nitrate were 14.8 ± 9.0 and $6.0 \pm 4.7 \,\mu g \, m^{-3}$, accounting for 29.5 and 12.0 % of PM2.5 mass, respectively. The aerosol organic-to-sulfate ratio, a parameter that potentially affects the uptake process (Bertram et al., 2009b), was 0.74 on average and much lower than those from studies mentioned above in Europe and the USA. Moreover, the nighttime averaged Cl⁻ concentration was $0.89 \pm 0.86 \,\mu g \,cm^{-3}$, and was an order of magnitude higher than Na⁺, indicating abundant non-oceanic sources of chloride (e.g., from coal combustion and biomass burning in the NCP) (Tham et al., 2016), which could enhance the production of ClNO₂.

The mean diurnal variations of N_2O_5 , $CINO_2$, and other relevant chemical species during the study period are shown

in Fig. 3. Ozone exhibited a typical diurnal pattern for a polluted mountaintop site (Sun et al., 2016), and it began to increase in the late morning and reached an afternoon peak of 88.6 (\pm 16.6) ppbv, with a daily average rise of 24.4 ppbv. The average O₃ remained at elevated levels after sunset and did not begin to decrease until 22:00 LT, and NO_x exhibited a diel maximum of 6.1 ppbv before sunset, resulting in a peak in $p(NO_3)$ just before sunset and relatively high levels in the early night. Gaseous NO_v reached a maximum of 16.4 (± 6.1) ppbv in the morning and remained stable at a high level during the daytime; the air masses were more aged during the daytime, as indicated by the persistent low NO_x/NO_y ratios (0.2–0.25). Small N₂O₅ peaks were observed immediately after sunset, resulting from the abundant O₃ and NO₂, and N₂O₅ was present at low levels near the detection limit of the CIMS throughout the rest of the night. CINO₂ exhibited clear nighttime elevations resulting from the heterogeneous production after sunset and reached a diel maximum around midnight. The low N₂O₅ and high ClNO₂ concentrations observed at Mt. Tai are similar to the measurement at a rural surface site within the NCP (Tham et al.,

Figure 3. Diurnal variations of N₂O₅, ClNO₂, NO_x, NO_y, O₃, particulate nitrate, nitrate radical production rate $p(NO_3)$, and meteorological parameters during the study period at Mt. Tai. Shaded area in O₃ shows 2σ variation, and vertical bars in N₂O₅ and ClNO₂ represent 10–90th percentile ranges.

2016), suggesting rapid heterogeneous loss of N_2O_5 and production of ClNO₂ in this region.

It was also noted that a small N₂O₅ peak (\sim 10 pptv) with larger variability was present in the early afternoon. A simplified photostationary analysis following Brown et al. (2005, 2016) was performed to predict the daytime steady-state N₂O₅ concentrations for the few cases with daytime peaks. The predicted concentrations all showed increasing trends in the afternoon, similar to the observation pattern. However, for individual cases, the predicted values around 15:00 LT were much lower than the observation under clean sky condition, but of the same magnitude as the observation for reduced photolysis and foggy conditions with higher NO₃ production rate (cf. Fig. S1 in the Supplement). Daytime N₂O₅ signals with few pptv have also been observed by a CRDS at a mountain site in southern China (Brown et al., 2016), where the concentrations were in accord with steady-state estimation in an average sense. Because daily maintenance and calibrations of the CIMS were usually performed during early afternoon periods, the limited daytime data in the present study were not sufficient to make clear whether there were any daytime interferences or sensitivity fluctuations. Thus, additional studies are needed to validate the daytime phenomenon and examine the potential reasons, and the following analysis in the present work will mostly focus on nocturnal processes.

3.2 High-ClNO₂ plumes from power plants and industry

As described above, several plumes with elevated ClNO2 concentrations (> 500 pptv) were observed during the measurement period. Figure 4a illustrates the high-ClNO₂ case observed during the night of 30–31 July 2014. The ClNO₂ concentration peaked sharply at 1265 pptv, which was accompanied by a steep rise in the concentrations of SO_2 , NO_x , and CO. The SO_2/NO_v ratio increased from ~ 0.1 to 0.6 in the plume center, with a $\Delta SO_2/\Delta NO_v$ slope of 0.57, indicating the coal combustion source of the plume. The coincident increase in CO / NO_y ratio from \sim 30 to 90 suggests that it likely originated from coal-fired industry facilities, such as cement and steel production plants, which is the largest emitting sector of CO in north China (Streets et al., 2006; Zhang et al., 2009). The 12h backward particle dispersion trajectories calculated from the HYSPLIT model revealed that the air masses mostly moved slowly from the west and passed over the region with the cement and steel production industry and power plants before arriving at the measurement site. Figure 5a shows the highest ClNO₂ case (2065 pptv) observed on the night of 8 August 2014. The simultaneous increases in SO_2 , NO_x , and CO concentrations, together with the higher SO_2/NO_v ratio (~0.5) compared to that outside of the plume (~ 0.1) and the campaign average (0.24), again indicate the coal combustion origin of the plume. The relatively lower CO / NO_v ratio (\sim 50) possibly suggests the plume affected by power plant emission, as shown by the derived backward particle dispersion trajectories. Table 1 summarizes the chemical characteristics of the eight cases of high-ClNO₂ plumes from power plants and industry during the study period. In these cases, the average SO₂ mixing ratios ranged from 2.3 to 18.7 ppbv, and the maximum ClNO₂ and N₂O₅ mixing ratios ranged from 534 to 2065 pptv and 7.3 to 40.1 pptv, respectively, with corresponding $CINO_2/N_2O_5$ ratios of 25 to 118. The mixing ratios for O₃ and NO₂ ranged from 60 to 106 ppbv and 2.8 to 11.8 ppbv, respectively, resulting in high $p(NO_3)$ values of 0.60 to 1.59 ppbv h^{-1} . The aerosol chloride concentration ranged from 1.01 to $2.34 \,\mu g \, cm^{-3}$, which was higher than the nighttime average $(0.89 \,\mu g \, cm^{-3})$ and conducive to ClNO₂ production from Reaction (R3).

 NO_x emissions from the coal combustion sources contain abundant NO, which is oxidized rapidly to NO_2 by ambient O_3 . Thus, the anti-correlation between O_3 and NO_2 within the observed plumes (cf. Figs. 4b and 5b) can be another indicator of the large combustion sources (such as coal-fired power or industry plants). Furthermore, the slope of a plot of O_3 vs. NO_2 for nighttime plumes can be considered as an **Table 1.** Chemical characteristics of coal-fired power plant and industrial plumes exhibiting high levels of ClNO₂ observed at Mt. Tai during the summer of 2014.

Date	Duration	N ₂ O ₅ (pptv)		ClNO ₂ (pptv)		03	NO_X	$NO_X/$	$\Delta SO_2/$	$\Delta CO/$	Cl-	t _{plume}	ϕ_{CINO_2}
		Mean	Maximum	Mean	Maximum			NO_y	ΔNO_y^a	ΔNO_y^b	(μgcm^{-3})		
30–31 Jul	23:40-00:45	5.9	14.2	528	1265	70	6.5	0.49	0.57	83	2.34	3.2	0.57
3–4 Aug	23:30-00:00	20.1	23.8	506	833	106	2.8	0.22	2.43	108	NA ^c	4.9	0.64
7 Aug	21:30-23:30	10.5	14.9	606	976	91	5.8	0.36	1.36	50	2.24	5.5	0.35 ^d
8 Aug	22:00-23:10	11.0	15.1	841	2065	76	8.5	0.45	0.65	45	NA	2.1	0.90
8–9 Aug	23:40-01:15	6.8	12.6	315	599	77	4.3	0.41	0.54	85	NA	4.4	0.23
10 Aug	00:00-02:00	10.5	15.5	692	1684	72	6.2	0.43	1.67	50	1.10	4.6	0.55
17–18 Aug	22:00-01:30	3.5	7.7	409	802	60	9.5	0.55	0.48	33	1.01	4.6	0.26 ^d
25–26 Aug	00:00-05:00	12.1	40.1	301	534	74	11.8	0.62	2.10	NA	1.88	3.0	0.20

^a Slope of SO₂ vs. NO_y in plumes; the overall slope for entire campaign was 0.31 with r^2 of 0.31. ^b Same as previous note but with the campaign overall slope of 15.7 and r^2 of 0.23. ^c Data not available in the case. ^d For t_{plumes} longer than the nocturnal processing period since sunset, the time since sunset was used in the CINO₂ yield calculation.

Figure 4. (a) Time series for $CINO_2$, N_2O_5 , and related trace gases observed within the high- $CINO_2$ plume from power plants and industry during the night of 30–31 July 2014. (b) Plot of O_3 vs. NO_2 concentrations for the plume; plume age was determined from the plot using Eq. (2). (c) 12 h HYSPLIT backward particle dispersion image depicting air masses arriving at the measurement site (blue triangle) at the time of the plume, and red dots indicating the location of major coal-fired facilities in cement and steel production and power plants in the region.

approximate measure of the plume age, with the assumption of pseudo-first-order kinetics and when the input of NO_x is small compared to the excess O_3 (Brown et al., 2006). The estimated plume age can be determined as follows:

$$t_{\text{plumes}} \approx \ln(1 - S(m+1)) / (SkO_3), \qquad (2)$$

where *m* is the derived slope, *k* is the rate coefficient for the reaction of NO₂ with O₃, $\overline{O_3}$ is the average O₃ concentration in the plume, and *S* is a stoichiometric factor that varies between 1 for dominant NO₃ loss and 2 for dominant N₂O₅ loss (Brown et al., 2006). In the present study, heterogeneous

N₂O₅ uptake dominated the reactive nitrogen loss; therefore, S = 2 was used in the calculation. The plume ages for the 30–31 July and 8 August cases were calculated to be 3.2 and 2.1 h, respectively, which are consistent with the moderate NO_x/NO_y ratios of 0.4–0.5 and comparable to those observed in nocturnal power plant plumes in the eastern coast of the USA (Brown et al., 2006, 2007). The slopes of O₃ vs. NO₂ in Figs. 4b and 5b steeper than –1.0 also indicate the further reactions of NO₂ with O₃, which favor the formation of NO₃ and N₂O₅. However, the N₂O₅ concentrations only showed a slight increase (Fig. 4 case) or no apparent

Figure 5. Same as Fig. 4 but for a plume observed during the night of 8–9 August 2014.

change (Fig. 5 case), in contrast to the significant increases in ClNO₂ and high $p(NO_3)$ values, which suggests rapid heterogeneous loss of N₂O₅ and significant ClNO₂ production during transport of these plumes from their sources.

The elevated ClNO₂ concentrations in the coal-fired power plant and industry plumes (here referred to collectively as coal-fired plumes) here are comparable to previous observations of power plant plumes via tower measurements in Colorado (Riedel et al., 2013) and at a mountain site in southern China (Wang et al., 2016), but the observed N₂O₅ within the plumes is significantly lower than those in other coal-fired plumes observed via aircraft, tower, and at mountain sites (Brown et al., 2007, 2016; Riedel et al., 2013). The previous measurement at a surface site in the NCP has observed sustained CINO₂ peaks after sunrise, which was proposed to be the cause of the downward mixing of CINO2-rich air (estimated values of 1.7-4.0 ppbv) in the residual layer (Tham et al., 2016). In the present study, the frequent intercepts of coal-fired power plant and industrial plumes with elevated ClNO₂ concentrations at Mt. Tai, which was typically above the nocturnal boundary layer, affirm this hypothesis and provide direct evidence that significant CINO2 production occurred in the residual layer from the abundant nocturnal NO_x , chloride, and background O_3 over the NCP. The similar ClNO₂-laden air frequently observed at high-elevation sites in northern and southern China suggests ubiquitous ClNO2 in the polluted residual layer and its importance in the daytime production of ozone in China (Tham et al., 2016; Wang et al., 2016). Moreover, the concurrent nitrate production from heterogeneous N_2O_5 reactions (cf. Reaction R3) may also contribute to the formation of haze pollution in these regions.

3.3 N₂O₅ reactivity and heterogeneous uptake coefficient

3.3.1 Reactivity of N₂O₅ and NO₃

The mixing ratios of N_2O_5 depend on the nitrate radical production rate and on the reactivity of N_2O_5 and NO_3 , including the individual loss rates for N_2O_5 or NO_3 that contribute to the removal of the pair. N_2O_5 reactivity can be assessed using the inverse N_2O_5 steady-state lifetime, which is the ratio of $p(NO_3)$ to the observed N_2O_5 mixing ratios (e.g., Brown et al., 2006, 2009, 2016):

$$\tau (N_2 O_5)^{-1} = \frac{p (NO_3)}{[N_2 O_5]} \approx \frac{k (NO_3)}{K_{eq} [NO_2]} + k (N_2 O_5)_{het}.$$
 (3)

The steady-state inverse lifetime of N₂O₅, τ (N₂O₅)⁻¹, is the sum of the N₂O₅ loss rate via heterogeneous loss (k(N₂O₅)_{het}) and NO₃ reactions with volatile organic compounds (VOCs) (k(NO₃)) with a ratio of K_{eq} [NO₂]. K_{eq} is the temperature-dependent N₂O₅–NO₃ equilibrium coefficient. High N₂O₅ reactivity was observed in the present study, with average nighttime τ (N₂O₅)⁻¹ of 1.41 × 10⁻² s⁻¹ before midnight and 1.30 × 10⁻² s⁻¹ after midnight, corresponding to a nighttime N₂O₅ lifetime of 1.2–1.3 min. This rapid N₂O₅ loss rate is comparable to the results from surface measurements in both urban and rural sites in the NCP (Tham et al., 2016; X. Wang et al., 2017). However, this loss rate is

Figure 6. (a) Fractions of N_2O_5 loss rate coefficients through NO_3 loss and the heterogeneous reaction of N_2O_5 before (19:00–24:00 LT) and after midnight (01:00–05:00 LT); (b) pie chart showing the average nighttime contributions of different categories of VOCs to NO_3 reactivity during the study period.

significantly higher than those determined from a mountain site in southern China (Brown et al., 2016) and from tower and aircraft measurements in the USA (e.g., Brown et al., 2009; Wagner et al., 2013).

The NO₃ reactivity, or loss rate coefficient $k(NO_3)$, can be estimated from the sum of the products of measured VOC concentrations and the bimolecular rate coefficients for the corresponding NO₃–VOC reactions (Atkinson and Arey, 2003):

$$k(\text{NO}_3) = k_{\text{NO}+\text{NO}_3}[\text{NO}] + \sum_i k_i [\text{VOC}_i].$$
(4)

Because of the lack of concurrent VOC measurements in the present study, we used the average VOC speciations measured before sunrise and in the evening at Mt. Tai during our previous study in 2007 (cf. Table S1 in the Supplement) to estimate $k(NO_3)$. The determined nighttime $k(NO_3)$ was $1.33 \times 10^{-2} \text{ s}^{-1}$ for the first half of the night and $1.07 \times 10^{-2} \text{ s}^{-1}$ for the period after midnight, which is equivalent to an NO₃ lifetime of approximately 1.5 min. The estimated $k(NO_3)$ could be considered as an upper limit for coal-fired plumes because of potential lower biogenic VOC levels within the plumes. The estimation here does not account for the VOC changes between years and the night to night variability, which may result in uncertainties. The $k(NO_3)$ derived by another approach, i.e., from the nighttime steady-state fits, provides a consistency check and evaluation of the errors, as described below.

The heterogeneous loss rate, $k(N_2O_5)_{het}$, can be obtained by subtracting the $k(NO_3)/K_{eq}[NO_2]$ from the determined $\tau(N_2O_5)^{-1}$ in Eq. (3). Figure 6a shows the averaged total N₂O₅ reactivity and fractions of N₂O₅ loss via NO₃ $(k(NO_3)/K_{eq}[NO_2])$ and heterogeneous N₂O₅ loss during the study period. As shown, the heterogeneous loss was dominant, accounting for 70–80% of total N₂O₅ reactivity, with a higher fraction before midnight. Figure 6b shows the contribution of different VOC categories to the average firstorder NO₃ loss rate coefficients, $k(NO_3)$. Biogenic monoter-

Figure 7. Example fits of inverse N₂O₅ steady-state lifetimes according to Eq. (5) for two cases observed on the nights of 2 and 21 August 2014. The best fit values of γ and k_{NO_3} are shown.

penes accounted for more than half of the NO₃ reactivity, followed by anthropogenic alkenes (such as butene), isoprene, and dimethyl sulfide (DMS). Aromatics and alkanes made small contributions (< 1%) to the total NO₃ reactivity. Although some unmeasured organic species (e.g., peroxy radicals) could also contribute to a small fraction of NO₃ loss (Brown et al., 2011; Edwards et al., 2017), the dominant NO₃ reactivity by biogenic VOCs is similar to that observed at a mountain site in southern China (Brown et al., 2016) and in aircraft measurement in residual layer in the southeast USA (Edwards et al., 2017), whereas the anthropogenic contribution is much higher in the present study. The estimated NO₃ activity is slightly lower than that obtained from surface site measurements in the NCP (Tham et al., 2016; X. Wang et al., 2017), which is in line with the higher abundances of VOCs in the polluted boundary layer.

3.3.2 N₂O₅ uptake coefficient

Because the N₂O₅ uptake coefficient γ is related to the firstorder loss rate coefficient of N₂O₅, $k(N_2O_5)_{het}$ (Eq. 1), then Eq. (3) can be expressed as follows:

$$\tau (N_2 O_5)^{-1} K_{eq} [NO_2] \approx k (NO_3) + \frac{1}{4} c_{N_2 O_5} S_a K_{eq} [NO_2] \gamma_{N_2 O_5}.$$
(5)

The linear relationship between the left-hand side of Eq. (5) and $1/4c_{N_2O_5}S_aK_{eq}[NO_2]$ will give the N₂O₅ uptake coefficient γ as the slope and the NO₃ loss rate coefficient $k(NO_3)$ as the intercept (Brown et al., 2009). We selected data for periods in which $d[N_2O_5]/dt$ is close to zero and the lifetime is relatively stable, which best corresponds to steady-state conditions. Figure 7 shows two examples of $\tau(N_2O_5)^{-1}K_{eq}[NO_2]$ vs. $1/4c_{N_2O_5}S_aK_{eq}[NO_2]$ for cases observed on the nights of 2 and 21 August 2014. The γ and $k(NO_3)$ values derived from the linear fits are $\gamma = 0.040$ and

	$\gamma_{N_2O_5}$	k _{NO3}	ϕ_{CINO_2}	NO_3^- formation rate (pptv s ⁻¹)	NO_{3}^{-} formation rate (µg m ⁻³ h ⁻¹)	NO_x removal rate (ppbv h ⁻¹)	NO_x loss rate coefficient (h ⁻¹)
Mean	0.061	0.015	0.28	0.29	2.2	1.12	0.24
SD	0.025	0.010	0.24	0.18	1.4	0.63	0.08
Median	0.070	0.011	0.20	0.26	2.0	0.98	0.24
Min	0.021	0.003	0.02	0.02	0.2	0.19	0.05
Max	0.102	0.034	0.90	0.62	4.8	2.34	0.38

Table 2. Statistical summary of determined N₂O₅ uptake coefficients γ , ClNO₂ yields ϕ , nitrate formation rates, and nocturnal NO_x removal rates at Mt. Tai during the study period.

 $k(NO_3) = 0.025 \text{ s}^{-1}$ for the 2 August case and $\gamma = 0.078$ and $k(NO_3) = 0.011 \text{ s}^{-1}$ for the 21 August case. Similar analyses were performed for 11 additional cases during the campaign, and the derived results are summarized in Table 2. The determined γ values range from 0.021 to 0.102, with a mean value of 0.061 ± 0.025 . The average $k(NO_3)$ derived from the steady-state fits is $0.015 \pm 0.010 \,\text{s}^{-1}$, which is comparable to that predicted from the VOC concentrations described above, indicating that the estimated results in the present study are reliable and likely representative of averaged conditions in the region. The agreement between these two methods also corroborates the determination of the uptake coefficient from steady-state analysis. The estimated uncertainty in each individual determination varied from 35 to 100 %, including statistical errors and uncertainty associated with measurements of gaseous and aerosol species (Tham et al., 2016).

Compared with the previous field-determined N₂O₅ uptake coefficients (0.002-0.04) from aircraft, tower, and mountaintop measurements in the USA and southern China (e.g., Brown et al., 2006, 2016; Morgan et al., 2015), the observed γ values in the present study are significantly higher. The large variability of γ at Mt. Tai is similar to that observed at a rural high-elevation site in Germany and a tower measurement in Colorado, with γ ranging from 10^{-3} to 0.11 (Wagner et al., 2013; Phillips et al., 2016). The overall higher averaged γ value at Mt. Tai is likely associated with the high RH and aerosol composition with high sulfate but low organic fractions, the condition of which favors more efficient N₂O₅ uptake (Brown et al., 2006; Wagner et al., 2013; Phillips et al., 2016). A recent laboratory study has reported high γ (> 0.05) of isotope-labeled N₂O₅ into aqueous nitrate-containing aerosols and largely enhancement of uptake at higher RH conditions (Gržinić et al., 2017), which help rationalize our field results with a larger uptake coefficient than many previous studies. Moreover, a measurement at an urban surface site in Jinan close to Mt. Tai gave similarly high values of γ (0.042–0.092) (X. Wang et al., 2017). This may suggest a unique feature of the reactive nitrogen chemistry, with rapid heterogeneous N2O5 loss over this region, and is consistent with the observed low N2O5 levels but relatively high ClNO₂ and particulate nitrate produced from the heterogeneous reactions.

Previous laboratory studies have investigated the dependence of γ on aerosol compositions and have developed mechanistic parameterizations of γ that can be employed in air quality models (Chang et al., 2011, and references therein). A commonly used parameterization was proposed by Bertram and Thornton (2009) and considered the aerosol volume-to-surface ratio (V/S), concentrations of nitrate, chloride, and water. For comparison, γ values were calculated using this parameterization based on the measured aerosol composition and molarity of water determined from the thermodynamic model with inputs of NH_4^+ , Na^+ , SO_4^{2-} , NO₃⁻, and Cl⁻ (E-AIM model IV, http://www.aim.env.uea. ac.uk/aim/model4/model4a.php) (Wexler and Clegg, 2002). An error estimation showed that a 3% change in RH implies an uncertainty in the particle liquid water content of \sim 5 %. In the calculation, mean values of V/S (64.8 - 77.2 nm) measured in the present study instead of empirical prefactor A were used, and the reaction rate coefficients were employed as the empirical values suggested by Bertram and Thornton (2009).

Figure 8 shows a comparison of the γ values (with total uncertainty) determined from parameterization and measurements. Overall, the parameterized γ shows good correlation (r = 0.87) with the observation-determined values and gives an average of 0.063 ± 0.006 , which is in good agreement with the average of 0.061 ± 0.025 derived from steady-state analysis. However, the γ values from the parameterization are in the range of 0.052-0.070, with much lower variability than the measurement-determined values. Similar results with compatible averaged γ values between measurements and parameterization predictions but higher variability for measurement-derived γ have been reported at a mountain measurement in Germany (Phillips et al., 2016). A distinct difference of γ between the steady-state analysis and the parameterization has also been reported by Chang et al. (2016), who suggested that the uncertainty in determining aerosol water content would introduce errors in the parameterization. Bertram and Thornton (2009) suggested that predicted γ val-

Figure 8. Comparison of field-determined γ with that derived from the parameterization of Bertram and Thornton (2009). The colors of the markers indicate the corresponding concentration ratio of particulate chloride to nitrate. The error bars represent the total aggregate uncertainty associated with measurement and derivation.

ues would plateau and be independent of particulate chemical composition at particle water molarity above 15 M. In the present study, the particle water molarity in these cases was consistently above 25 M because of the high RH and frequent cloud cover at the mountain site, which may explain the lower variability of γ values predicted by parameterization.

A moderate negative dependence (r = 0.54) of determined γ on aerosol nitrate concentration can be inferred, with lower values of γ associated with higher nitrate content (cf. Fig. S2a). This pattern is consistent with the nitrate suppress effect on N₂O₅ uptake identified in previous laboratory studies (Mentel et al., 1999) and is also similar to the anti-correlation of γ and nitrate from tower measurements in the USA and aircraft measurements over the UK (Wagner et al., 2013; Morgan et al., 2015). The relationship between the γ with the aerosol water to nitrate ratio also exhibits a consistent trend with the previous observations and parameterizations (e.g., Bertram and Thornton, 2009; Morgan et al., 2015), with increasing uptake as the ratio increases (Fig. S2b).

Furthermore, as suggested by Bertram and Thornton (2009), the presence of chloride can offset the suppression of N₂O₅ uptake by nitrate. The determined γ values in the present study also show positive dependence on aerosol chloride concentration (r = 0.59), indicating the enhancement of N₂O₅ uptake by increased chloride contents in aerosols. This can be better described by the clear positive dependence (r = 0.84) of γ on the molar ratio of particulate chloride to nitrate, as illustrated by the color-coded data in Figs. 8 and S3b. The variation in γ values determined in the present study appears to be controlled largely by the particulate chloride-to-nitrate ratio, broadly following the competing effects of nitrate and chloride in the parameterization (Bertram and Thornton, 2009; Ryder et al., 2014). However, the discrepancy between the measurementand parameterization-derived values may imply that some mechanisms and factors affecting γ under conditions of high humid and pollution (e.g., reacto-diffusive length, salting effects) (Gaston and Thornton, 2016; Gržinić et al., 2017) should be further explicitly considered in the parameterization. The in situ $\gamma_{N_2O_5}$ measurement technique developed by Bertram et al. (2009a) may be useful in directly investigating the complex dependence of γ on different factors in a range of environments.

3.4 CINO₂ production yield

To characterize the formation of ClNO₂ from rapid heterogeneous N₂O₅ uptake and sufficient particulate chloride, the yields of ClNO₂ (ϕ) were examined for different plumes. For regional diffuse pollution cases, the ϕ defined in Reaction (R3) can be estimated from the ratio between ClNO₂ production rate and N₂O₅ loss rate, as the first term in below equation.

$$\Phi = \frac{d\text{CINO}_2/dt}{k(N_2O_5)_{\text{het}}[N_2O_5]} = \frac{[\text{CINO}_2]}{\int k(N_2O_5)_{\text{het}}[N_2O_5]dt}$$
(6)

 $k(N_2O_5)$ values can be determined using the inverse steadystate lifetime analysis described above in Eq. (3), and the production rate of ClNO₂ can be derived from the near-linear increase in ClNO₂ mixing ratio observed during a period when the related species (e.g., NO_x , SO_2) and environmental variables (e.g., temperature, RH) were roughly constant. The approach here assumes that the relevant properties of the nocturnal air mass are conserved and neglects other possible sources and sinks of ClNO₂ in the air mass history. For the intercepted coal-fired plumes exhibiting sharp ClNO₂ peaks, the ClNO₂ yield can be estimated from the ratio of the observed ClNO₂ mixing ratio to the integrated N₂O₅ uptake loss over the plume age (i.e., the second term in Eq. 6). The analysis assumes that no ClNO₂ was present at the point of plume emission from the combustion sources and no ClNO₂ formation before sunset, and that the γ and ϕ within the plumes did not change during the transport from the source to the measurement site. The potential variability in these quantities likely bias the estimates, but these assumptions are a necessary simplification to represent the averaged values that best describe the observations. It should be noted that the steady-state N₂O₅ loss rate is crucial in the yield estimation, which could be underestimated by potentially overestimating the loss rate in some cases with large uncertainties in N_2O_5 measurement and NO₃ reactivity analysis. Therefore, an alternative approach suggested by Riedel et al. (2013) was also applied to derive the CINO2 yield from the ratio of enhancements of ClNO₂ and total nitrate (aerosol $NO_3^- + HNO_3$) in the cases. Given the low time resolution of nitrate data that could potentially introduce large uncertainties, this approach

Figure 9. Examples of $CINO_2$ yields determined for two cases on 27 July and 6 August 2014. The $CINO_2$ mixing ratios increased steadily, while those of NO_x , O_3 , and SO_2 did not change significantly during the studied periods.

will only be used as a reference to validate the former analysis based on Eq. (6).

Two examples of the yield analysis are shown in Fig. 9, which indicate the time periods in which ClNO₂ concentration increased while other parameters (such as N_2O_5 , NO_x , O_3 , and SO_2 concentrations) were relatively stable. The ϕ values obtained for these two cases were 0.26 and 0.05 for 27 July and 6 August, respectively. Similar analyses were performed for all of other selected cases in which the CINO₂ concentration increased and other relevant parameters were relatively constant for a short period, typically 2-3 h, and the obtained results were summarized in Table 2. The determined ϕ for the seven coal-fired plumes are also listed in Table 1. During the measurement period, ϕ varied from 0.02 to 0.90, with an average of 0.28 ± 0.24 and a median of 0.22. In comparison, the ϕ derived from the production ratio approach showed comparable results with an average of 0.25 ± 0.17 , and the ϕ values from two different approaches match reasonably well with a reduced major axis regression (RMA) slope of 0.78 ± 0.08 and r^2 of 0.73 (cf. Fig. S4), which corroborates the yield analysis and indicates that the differences are within the overall uncertainty of 40 %. The large variability of ϕ is similar to field-derived values in most previous studies, and the mean value is comparable to that in the nocturnal residual layer over continental Colorado (0.18) (Thornton et al., 2010), but lower than that observed at a mountain site in Germany (0.49) (Phillips et al., 2016). The ϕ values for the coal-fired plumes (range of 0.20–0.90; average of 0.46 ± 0.24) are generally higher than the campaign average and those from regional diffuse pollution cases. The maximum ϕ (0.90) corresponds to the plume with the highest ClNO2 mixing ratio observed during the campaign. This is consistent with a tower measurement in Colorado, in which higher ClNO₂ yields were also observed in inland power plant plumes (Riedel et al., 2013). Similar to that developed for γ , a parameterization of ClNO₂ yield as a function of aerosol water and chlorine composition has been proposed based on laboratory studies (Bertram and Thornton, 2009; Roberts et al., 2009):

$$\Phi = \frac{\left[\mathrm{Cl}^{-}\right]}{k'\left[\mathrm{H}_{2}\mathrm{O}\right] + \left[\mathrm{Cl}^{-}\right]}.$$
(7)

We compared the field-derived values to the parameterization for cases with available aerosol compositions, using an empirical k' of 1/450, as recommended by Roberts et al. (2009). The particle liquid water content [H₂O] was calculated from the thermodynamic model (E-AIM model IV) based on measured aerosols composition, as described above. As shown in Fig. 10a, the ϕ values predicted by the parameterization are generally higher than those determined from observed CINO₂ production rates, especially at low measurementdetermined yields. For measured ϕ values higher than 0.4, smaller differences (< 20 %) were observed between the two methods, which are within the aggregate uncertainty associated with measurement and derivation. The parameterized ϕ values exhibit positive dependence on the aerosol chloride concentration and the Cl⁻/H₂O ratio, as shown by the color code in Fig. 10a. The measurement-determined values only exhibit such measurable dependence at low yields, implying the possible biased relationship due to higher aerosol water conditions in the present work. The discrepancy between the parameterization ϕ based upon aerosol composition and those derived from measured CINO₂ concentrations has been found previously (e.g., Wagner et al., 2013), and the underlying causes have not been resolved.

Figure 10. (a) Comparison of field-determined ϕ with that derived from parameterization (Eq. 7) – the colors of the markers represent the corresponding Cl⁻/H₂O ratio; (b) relationship between field-determined ϕ and measured nitrate concentrations in aerosols – the colors of markers represent the corresponding NO_x/NO_y ratio. The error bars represent the total aggregate uncertainty similar to Fig. 8.

By examining the relationships between the determined yield and other parameters, we found a slightly negative relationship between ϕ and particulate nitrate concentration, as depicted in Fig. 10b. Although the data are scattered, the high-yield cases are mostly associated with lower nitrate concentrations, while the ϕ values for the high nitrate cases $(> 15 \,\mu g \, m^{-3})$ are smaller. A similar trend was observed for the NO_x/NO_y ratio, which indicates the "age" of the air masses, suggesting that higher ϕ values are usually associated with relatively "young" air masses exhibiting low nitrate concentrations. More secondary and dissolved organic matters in aged aerosols could be a possible factor contributing to the reduction of ClNO₂ production efficiency (Mielke et al., 2013; Ryder et al., 2015; Phillips et al., 2016). Further studies are needed to characterize the combined effects of various parameters on ClNO₂ yields, in particular the influences of the aerosol mixing state, chloride availability distribution among particle sizes, organic matter, acidity, other possible loss ways of ClNO₂, and potential factors affecting in high humid and polluted conditions (Laskin et al., 2012; Mielke et al., 2013; Wagner et al., 2013; Ryder et al., 2015; Li et al., 2016; Phillips et al., 2016).

3.5 Effects of heterogeneous N₂O₅ reactions on nitrate formation and NO_x processing

In addition to abundant ClNO₂ formation, rapid heterogeneous N₂O₅ uptake may also lead to the production of a large amount of nitrate, which is one of the main components of fine particles contributing to haze pollution in northern China (e.g., Huang et al., 2014). Based on the reactions described above, the formation rate of soluble nitrate from N₂O₅ reactions, $p(NO_3^-)$, can be determined from the ClNO₂ yield and N₂O₅ heterogeneous loss rate as follows:

$$p(\mathrm{NO}_{3}^{-}) = (2 - \phi)k_{\mathrm{N}_{2}\mathrm{O}_{5}}[\mathrm{N}_{2}\mathrm{O}_{5}].$$
 (8)

The $p(NO_3^-)$ values obtained for the select cases during the study period ranged from 0.02 to 0.62 pptv s⁻¹, with a

mean value of 0.29 ± 0.18 pptv s⁻¹, corresponding to 0.2– $4.8 \,\mu g \,m^{-3} \,h^{-1}$ and $2.2 \pm 1.4 \,\mu g \,m^{-3} \,h^{-1}$ (Table 2). The derived rates are comparable to the observed increases in nitrate concentrations $(2-5 \,\mu g \, m^{-3} \, h^{-1})$ during haze episodes in summer nights at a rural site in the NCP (Wen et al., 2015). By assuming that produced nitrate is conserved and neglecting the deposition and volatilization loss (e.g., via ammonium nitrate), the in situ NO_3^- formation could be predicted by integrating each derived formation rate over the corresponding analysis period. Similar to the N₂O₅ uptake coefficient and CINO2 yield determination above, the nitrate formation estimation here assumes a conserved air mass with a constant formation rate over the study period. For coalfired plumes, we equated the measured nitrate concentrations with the increases by assuming that no aerosol nitrate was directly emitted from the nocturnal point sources. As shown in Fig. 11, the predicted nitrate formation shows reasonable agreement with the measured increases in nitrate concentrations (ΔNO_3^-) (RMA slope of 1.14 and r of 0.81). This consistency also can serve as a check to validate the reliability of the above-determined heterogeneous N2O5 reactivity and parameters of γ and ϕ . The in situ nitrate formation from heterogeneous N₂O₅ reactions was predicted to be as high as $17 \,\mu g \, m^{-3}$, with a mean value of $4.3 \pm 4.5 \,\mu g \, m^{-3}$, accounting for 32 (± 27) % of the observed average nitrate concentration during the cases. This is consistent with the maximum nitrate increase of $14.9 \,\mu g \, m^{-3}$ over south China (Li et al., 2016) and the 21 % nitrate increase in polluted episodes in Beijing (Su et al., 2017) after considering the heterogeneous N₂O₅ uptake in the regional model simulation. As for a plume undergoing continuous chemical processing from dusk to sunrise, the heterogeneous N2O5 reactions would lead to substantial nitrate formation (e.g., $22 \,\mu g \,m^{-3}$ production for a 10h night) and could contribute significantly to secondary fine aerosols as the main driver of the persistent haze pollution in northern China.

The formation of nitrate (including HNO₃) and its subsequent removal by deposition is the predominant removal

Figure 11. Comparison of predicted nitrate production based on integrating the derived nitrate formation rate with the measured increase in nitrate concentrations (ΔNO_3^-) over the analysis time period.

mechanism of nitrogen oxides from the atmosphere (Chang et al., 2011). The nocturnal NO_x removal rate depends on the NO₃ radical production rate, heterogeneous N₂O₅ loss rate, NO₃ reaction rate with VOCs, the partitioning between N_2O_5 and NO_3 concentrations, and $CINO_2$ yield. $CINO_2$ mainly functions as a reservoir of NO_x , rather than as a sink, because the formation of ClNO₂ throughout the night with subsequent morning photolysis recycles NO2 (Behnke et al., 1997). The reactions of NO₃ with VOCs would predominantly produce organic nitrate products (Brown and Stutz, 2012, and references therein), but some fraction of NO_2 can be regenerated in the NO₃ reactions, i.e., with terpenes (e.g., Wängberg et al., 1997), or released from the decomposition of organic nitrate during the transport (e.g., Francisco and Krylowski, 2005). For simplicity, we neglect the recycling of NO₂ from NO₃-VOC reactions by assuming the complete removal of reactive nitrogen (Wagner et al., 2013). This would overestimate the NO_x loss since the monoterpenes contribute to around half of NO₃ reactivity in the present study, but this assumption does not significantly affect the conclusion because the NO₃ loss with VOCs was the minor path compared to N_2O_5 heterogeneous loss. Thus, the nocturnal NO_x loss rate can be quantified by the following equation:

$$L(\text{NO}_{x}) = (2 - \phi)k_{\text{N}_{2}\text{O}_{5}}[\text{N}_{2}\text{O}_{5}] + k_{\text{NO}_{3}}[\text{NO}_{3}]$$

= (1 - \phi)k_{\text{N}_{2}\text{O}_{5}}[\text{N}_{2}\text{O}_{5}] + p[\text{NO}_{3}]. (9)

Using the coefficients described above, we calculated the nocturnal loss rate of NO_x for each case, as summarized in Table 2. The NO_x removal rate varied from 0.19 to 2.34 ppbv h⁻¹, with a mean of 1.12 ± 0.63 ppbv h⁻¹, which corresponds to a pseudo-first-order loss rate coefficient of 0.24 ± 0.08 h⁻¹ on average for the studied cases. This loss rate is higher than that determined from a mountain site measurement in Taunus, Germany (~ 0.2 ppbv h⁻¹ with typical NO₂ level of 1–2 ppbv) (Crowley et al., 2010), and the results from aircraft measurements in the USA over Ohio, Penn-

Figure 12. Relationship between determined NO_x loss rate and observed ambient NO_x concentration at the measurement site during the study period.

sylvania, and the downwind region of New York (90 and 50 % NO_x loss in a 10 h night, respectively) (Brown et al., 2006). For reference, this nocturnal average loss rate is approximately equivalent to NO₂ loss via reaction with OH in afternoon condition assuming an OH concentration of around 2×10^6 molecules cm⁻³, indicating the importance of nocturnal heterogeneous reactions on NO_x processing and budget. Figure 12 shows the relationship between determined NO_x loss rate and observed ambient NO_x concentration at the measurement site. NO_x loss rate appears to be strongly dependent upon NO_x concentrations below 6 ppbv (slope = $0.32 h^{-1}$; r = 0.93); the loss rate became more scattered at higher NO_x conditions, which were typically observed in the coal-fired power plant and industrial plumes. This result implies that for low-NO_x conditions (< 6 ppbv), 96 % of NO_x would be removed after 3 h of nocturnal processing, if no additional NO_x emissions affect the plume during this period.

Comparing NO_x loss to the nitrate formation rates, it can be inferred that the nitrate formation from heterogeneous N_2O_5 uptake is predominant in reactive NO_x loss and accounts for an average of 87 % of the NO_x loss, although this fraction of individual cases varied between 35 and 100 %. A box model simulation based on tower measurements at Colorado also reported that the largest proportion of the nitrate radical chemistry is N₂O₅ hydrolysis, which typically accounted for 80% of nitrate radical production, whereas the losses to NO₃-VOC reactions are less than 10 % (Wagner et al., 2013). A recent model simulation for southern China also suggested that considering the N₂O₅ uptake and subsequent Cl activation could decrease regional NO_x by more than 16 % (Li et al., 2016). The results obtained in the present study demonstrate the significance of fast heterogeneous N_2O_5 chemistry on nocturnal NO_x removal and fine nitrate formation in the polluted residual layer over the NCP.

4 Summary and conclusions

An intensive field study was conducted at a high-altitude site to characterize the reactive nitrogen chemistry in the polluted nocturnal residual layer over the NCP. The results revealed the frequently elevated ClNO2 mixing ratios (maximum of 2065 pptv) and efficient ClNO₂ yields (0.46 ± 0.24) resulting from power plant and industrial plumes in the residual layer. The presence of ClNO2-laden air in the nocturnal residual layer confirms our previous hypothesis, based on a measurement in a rural site in the NCP, that the downward mixing of ClNO₂-rich air into the surface in the next morning would have large impacts on early morning photochemistry and ozone production. Rapid heterogeneous N2O5 uptake and efficient ClNO2 and nitrate formation were observed during the study period. The γ values determined in the present study (average of 0.061 ± 0.025) exhibited a clear dependence on the particulate chloride-to-nitrate ratio and are higher than those observed in other locations, but consistent with those obtained at a surface site in the same region of the NCP. Laboratory-derived parameterizations predicted comparable mean γ values, but did not represent the high variability of the measured values, and tended to overestimate ϕ in the low yields. These discrepancies suggest that various aerosol physicochemical parameters have complicated effects on N₂O₅ uptake and ClNO₂ yield, in particular in a high-humidity and polluted residual layer, which requires further investigation.

Fast heterogeneous N2O5 uptake dominated and accounted for a mean of 87 % of the regional nocturnal NO_x loss during the study periods in the NCP. The estimated nocturnal loss rate of NO_x is higher than that previously observed in the USA and Europe, with an averaged loss rate and rate coefficient of 1.12 ± 0.63 ppbv h⁻¹ and 0.24 ± 0.08 h⁻¹, respectively. Moreover, heterogeneous reactions contributed to substantial nitrate production of up to $17 \,\mu g \, m^{-3}$, with a mean nocturnal formation rate of $2.2 \pm 1.4 \,\mu g \, m^{-3} \, h^{-1}$, and in situ production could account for $32 \pm 27\%$ of the observed nitrate concentrations in the studied cases. The results may help explain the previously observed rapid nighttime growth of fine nitrate aerosols in the NCP and demonstrate the importance of heterogeneous N2O5-ClNO2 chemistry on NO_x and aerosol budgets in the polluted residual layer over the NCP, which underpins the need for further studies regarding their roles in the formation of complex haze pollution in northern China.

Data availability. The data used in this study are available upon request from the corresponding author (z.wang@polyu.edu.hk).

The Supplement related to this article is available online at https://doi.org/10.5194/acp-17-12361-2017-supplement.

Competing interests. The authors declare that they have no conflict of interest.

Special issue statement. This article is part of the special issue "Regional transport and transformation of air pollution in eastern China". It is not associated with a conference.

Acknowledgements. The authors would like to thank Fu Xiao for help in providing the location information of power plants in Shandong. The HYSPLIT model was made available by the NOAA Air Resources Laboratory. This work was funded by the National Natural Science Foundation of China (91544213, 41505103, 41275123), PolyU Project of Strategic Importance (1-ZE13), and the National Key R & D Program of China (No. 2016YFC0200503). The authors also acknowledge the support of the Research Institute for Sustainable Urban Development (RISUD).

Edited by: David Parrish

Reviewed by: three anonymous referees

References

- Abbatt, J., Lee, A., and Thornton, J.: Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges, Chem. Soc. Rev., 41, 6555–6581, 2012.
- Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013.
- Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the Reactive Uptake of Gaseous Compounds by Organic-Coated Aqueous Aerosols: Theoretical Analysis and Application to the Heterogeneous Hydrolysis of N₂O₅, J. Phys. Chem. A, 110, 10435–10443, 2006.
- Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, 2003.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res.-Atmos., 102, 3795–3804, https://doi.org/10.1029/96jd03057, 1997.
- Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351–8363, https://doi.org/10.5194/acp-9-8351-2009, 2009.
- Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct measurement of N₂O₅ reactivity on ambient particles, Atmos. Meas. Tech., 2, 231–242, https://doi.org/10.5194/amt-2-231-2009, 2009a.
- Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and Coffman, D. J.: Direct observations of N₂O₅ reactivity on am-

bient aerosol particles, Geophys. Res. Lett., 36, L19803, https://doi.org/10.1029/2009GL040248, 2009b.

- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem. Soc. Rev., 41, 6405–6447, https://doi.org/10.1039/C2CS35181A, 2012.
- Brown, S. S., Osthoff, H. D., Stark, H., Dubé, W. P., Ryerson, T. B., Warneke, C., de Gouw, J. A., Wollny, A. G., Parrish, D. D., and Fehsenfeld, F. C.: Aircraft observations of daytime NO₃ and N₂O₅ and their implications for tropospheric chemistry, J. Photochem. Photobiol. A, 176, 270–278, 2005.
- Brown, S. S., Ryerson, T., Wollny, A., Brock, C., Peltier, R., Sullivan, A., Weber, R., Dube, W., Trainer, M., and Meagher, J.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67–70, 2006.
- Brown, S. S., Dubé, W. P., Osthoff, H. D., Stutz, J., Ryerson, T. B., Wollny, A. G., Brock, C. A., Warneke, C., de Gouw, J. A., Atlas, E., Neuman, J. A., Holloway, J. S., Lerner, B. M., Williams, E. J., Kuster, W. C., Goldan, P. D., Angevine, W. M., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Vertical profiles in NO₃ and N₂O₅ measured from an aircraft: Results from the NOAA P-3 and surface platforms during the New England Air Quality Study 2004, J. Geophys. Res.-Atmos., 112, D22304, https://doi.org/10.1029/2007JD008883, 2007.
- Brown, S. S., Dubé, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N₂O₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, J. Geophys. Res.-Atmos., 114, D00F10, https://doi.org/10.1029/2008JD011679, 2009.
- Brown, S. S., Dubé, W. P., Peischl, J., Ryerson, T. B., Atlas, E., Warneke, C., de Gouw, J. A., te Lintel Hekkert, S., Brock, C. A., Flocke, F., Trainer, M., Parrish, D. D., Feshenfeld, F. C., and Ravishankara, A. R.: Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study, J. Geophys. Res.-Atmos., 116, D24305, https://doi.org/10.1029/2011JD016544, 2011.
- Brown, S. S., Dubé, W. P., Tham, Y. J., Zha, Q., Xue, L., Poon, S., Wang, Z., Blake, D. R., Tsui, W., Parrish, D. D., and Wang, T.: Nighttime Chemistry at a High Altitude Site Above Hong Kong, J. Geophys. Res.-Atmos., 121, 2457–2475, https://doi.org/10.1002/2015jd024566, 2016.
- Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model Calculations of N₂O₅: A Review, Aerosol Sci. Tech., 45, 665–695, https://doi.org/10.1080/02786826.2010.551672, 2011.
- Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L., Dubé, W. P., Pollack, I. B., Ryerson, T. B., and Riemer, N.: Evaluating N₂O₅ heterogeneous hydrolysis parameterizations for CalNex 2010, J. Geophys. Res.-Atmos., 121, 5051–5070, https://doi.org/10.1002/2015JD024737, 2016.
- Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., and Lelieveld, J.: Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany, Atmos. Chem. Phys., 10, 2795–2812, https://doi.org/10.5194/acp-10-2795-2010, 2010.

- Davis, J. M., Bhave, P. V., and Foley, K. M.: Parameterization of N₂O₅ reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmos. Chem. Phys., 8, 5295– 5311, https://doi.org/10.5194/acp-8-5295-2008, 2008.
- Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
- Edwards, P. M., Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., Graus, M. G., Hanisco, T. F., Holloway, J., Hubler, G., Kaiser, J., Keutsch, F. N., Lerner, B. M., Neuman, J. A., Parrish, D. D., Peischl, J., Pollack, I. B., Ravishankara, A. R., Roberts, J. M., Ryerson, T. B., Trainer, M., Veres, P. R., Wolfe, G. M., Warneke, C., and Brown, S. S.: Transition from high- to low-NO_x control of night-time oxidation in the southeastern US, Nat. Geosci., 10, 490–495, https://doi.org/10.1038/ngeo2976, 2017.
- Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N₂O₅ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813, https://doi.org/10.1029/2005GL022469, 2005.
- Faxon, C., Bean, J., and Ruiz, L.: Inland Concentrations of Cl₂ and ClNO₂ in Southeast Texas Suggest Chlorine Chemistry Significantly Contributes to Atmospheric Reactivity, Atmosphere, 6, 1487, https://doi.org/10.3390/atmos6101487, 2015.
- Finlayson-Pitts, B. J., Ezell, M. J., and Pitts, J. N.: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N₂O₅ and ClONO₂, Nature, 337, 241–244, 1989.
- Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev., 3, 205–226, https://doi.org/10.5194/gmd-3-205-2010, 2010.
- Francisco, M. A. and Krylowski, J.: Chemistry of Organic Nitrates: Thermal Chemistry of Linear and Branched Organic Nitrates, Indust. Eng. Chem. Res., 44, 5439–5446, https://doi.org/10.1021/ie049380d, 2005.
- Gao, J., Wang, T., Ding, A., and Liu, C.: Observational study of ozone and carbon monoxide at the summit of mount Tai (1534 m a.s.l.) in central-eastern China, Atmos. Environ., 39, 4779–4791, 2005.
- Gaston, C. J. and Thornton, J. A.: Reacto-Diffusive Length of N₂O₅ in Aqueous Sulfate- and Chloride-Containing Aerosol Particles, J. Phys. Chem. A, 120, 1039–1045, 2016.
- Griffiths, P. T., Badger, C. L., Cox, R. A., Folkers, M., Henk, H. H., and Mentel, T. F.: Reactive Uptake of N_2O_5 by Aerosols Containing Dicarboxylic Acids. Effect of Particle Phase, Composition, and Nitrate Content, J. Phys. Chem. A, 113, 5082–5090, 2009.
- Gržinić, G., Bartels-Rausch, T., Türler, A., and Ammann, M.: Efficient bulk mass accommodation and dissociation of N₂O₅ in neutral aqueous aerosol, Atmos. Chem. Phys., 17, 6493–6502, https://doi.org/10.5194/acp-17-6493-2017, 2017.
- Guo, J., Wang, Y., Shen, X., Wang, Z., Lee, T., Wang, X., Li, P., Sun, M., Collett, J., Wang, W., and Wang, T.: Characterization of cloud water chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and cloud processing, Atmos. Environ., 60, 467–476, https://doi.org/10.1016/j.atmosenv.2012.07.016, 2012.

- Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prevot, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, 2014.
- Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang, B., Nigge, P., and Shutthanandan, J.: Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids, J. Geophys. Res.-Atmos., 117, D15302, https://doi.org/10.1029/2012JD017743, 2012.
- Li, Q., Zhang, L., Wang, T., Tham, Y. J., Ahmadov, R., Xue, L., Zhang, Q., and Zheng, J.: Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China, Atmos. Chem. Phys., 16, 14875–14890, https://doi.org/10.5194/acp-16-14875-2016, 2016.
- Liu, B. Y. H., Romay, F. J., Dick, W. D., Woo, K.-S., and Chiruta, M.: A Wide-Range Particle Spectrometer for Aerosol Measurement from 0.010 μm to 10 μm, Aerosol Air Qual. Res., 10, 125– 139, https://doi.org/10.4209/aaqr.2009.10.0062, 2010.
- Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., Größ, J., Liu, H., Bian, Y., Kuang, Y., Teich, M., Spindler, G., Müller, K., van Pinxteren, D., Herrmann, H., Hu, M., and Wiedensohler, A.: Variation of CCN activity during new particle formation events in the North China Plain, Atmos. Chem. Phys., 16, 8593–8607, https://doi.org/10.5194/acp-16-8593-2016, 2016.
- Mentel, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols, Phys. Chem. Chem. Phys., 1, 5451–5457, https://doi.org/10.1039/A905338G, 1999.
- Mielke, L. H., Furgeson, A., and Osthoff, H. D.: Observation of ClNO₂ in a Mid-Continental Urban Environment, Environ. Sci. Technol., 45, 8889–8896, 2011.
- Mielke, L. H., Stutz, J., Tsai, C., Hurlock, S. C., Roberts, J. M., Veres, P. R., Froyd, K. D., Hayes, P. L., Cubison, M. J., Jimenez, J. L., Washenfelder, R. A., Young, C. J., Gilman, J. B., de Gouw, J. A., Flynn, J. H., Grossberg, N., Lefer, B. L., Liu, J., Weber, R. J., and Osthoff, H. D.: Heterogeneous formation of nitryl chloride and its role as a nocturnal NO_x reservoir species during CalNex-LA 2010, J. Geophys. Res.-Atmos., 118, 10638–10652, 2013.
- Mielke, L. H., Furgeson, A., Odame-Ankrah, C. A., and Osthoff, H. D.: Ubiquity of ClNO₂ in the urban boundary layer of Calgary, Alberta, Canada, Can. J. Chem., 94, 414–423, https://doi.org/10.1139/cjc-2015-0426, 2016.
- Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol chemical composition on N₂O₅ uptake: airborne regional measurements in northwestern Europe, Atmos. Chem. Phys., 15, 973–990, https://doi.org/10.5194/acp-15-973-2015, 2015.
- Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn,

P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328, 2008.

- Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711– 1722, https://doi.org/10.5194/acp-9-1711-2009, 2009.
- Pathak, R. K., Wang, T., and Wu, W. S.: Nighttime enhancement of PM_{2.5} nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous hydrolysis of N₂O₅ and HNO₃ partitioning, Atmos. Environ., 45, 1183–1191, https://doi.org/10.1016/j.atmosenv.2010.09.003, 2011.
- Phillips, G. J., Tang, M. J., Thieser, J., Brickwedde, B., Schuster, G., Bohn, B., Lelieveld, J., and Crowley, J. N.: Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions, Geophys. Res. Lett., 39, 10.1029/2012GL051912, 2012.
- Phillips, G. J., Thieser, J., Tang, M., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake coefficients using ambient measurements of NO₃, N₂O₅, ClNO₂and particle-phase nitrate, Atmos. Chem. Phys., 16, 13231–13249, https://doi.org/10.5194/acp-16-13231-2016, 2016.
- Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M., Vlasenko, A., Li, S. M., Gilman, J., de Gouw, J., Bon, D. M., Wagner, N. L., Brown, S. S., and Thornton, J. A.: Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer, Environ. Sci. Technol., 46, 10463–10470, 2012.
- Riedel, T. P., Wagner, N. L., Dubé, W. P., Middlebrook, A. M., Young, C. J., Öztürk, F., Bahreini, R., VandenBoer, T. C., Wolfe, D. E., Williams, E. J., Roberts, J. M., Brown, S. S., and Thornton, J. A.: Chlorine activation within urban or power plant plumes: Vertically resolved ClNO₂ and Cl₂ measurements from a tall tower in a polluted continental setting, J. Geophys. Res.-Atmos., 118, 8702–8715, https://doi.org/10.1002/jgrd.50637, 2013.
- Riemer, N., Vogel, H., Vogel, B., Anttila, T., Kiendler-Scharr, A., and Mentel, T. F.: Relative importance of organic coatings for the heterogeneous hydrolysis of N₂O₅ during summer in Europe, J. Geophys. Res.-Atmos., 114, D17307, https://doi.org/10.1029/2008JD011369, 2009.
- Roberts, J. M., Osthoff, H. D., Brown, S. S., Ravishankara, A. R., Coffman, D., Quinn, P., and Bates, T.: Laboratory studies of products of N₂O₅ uptake on Cl⁻ containing substrates, Geophys. Res. Lett., 36, L20808, https://doi.org/10.1029/2009gl040448, 2009.
- Ryder, O. S., Ault, A. P., Cahill, J. F., Guasco, T. L., Riedel, T. P., Cuadra-Rodriguez, L. A., Gaston, C. J., Fitzgerald, E., Lee, C., Prather, K. A., and Bertram, T. H.: On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N₂O₅ to Ambient Aerosol Particles, Environ. Sci. Technol., 48, 1618–1627, https://doi.org/10.1021/es4042622, 2014.
- Ryder, O. S., Campbell, N. R., Shaloski, M., Al-Mashat, H., Nathanson, G. M., and Bertram, T. H.: Role of Organics in Regulating ClNO₂ Production at the Air–Sea Interface, J. Phys. Chem. A, 119, 8519–8526, 2015.

- Simon, H., Kimura, Y., McGaughey, G., Allen, D. T., Brown, S. S., Osthoff, H. D., Roberts, J. M., Byun, D., and Lee, D.: Modeling the impact of ClNO₂ on ozone formation in the Houston area, J. Geophys. Res.-Atmos., 114, D00F03, https://doi.org/10.1029/2008JD010732, 2009.
- Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and v. Glasow, R.: Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts, Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015.
- Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y., Tang, Y., and Carmichael, G. R.: Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations, J. Geophys. Res.-Atmos., 111, D14306, https://doi.org/10.1029/2006JD007118, 2006.
- Su, X., Tie, X., Li, G., Cao, J., Huang, R., Feng, T., Long, X., and Xu, R.: Effect of hydrolysis of N₂O₅ on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation, Sci. Total. Environ., 579, 221–229, 2017.
- Sun, L., Xue, L., Wang, T., Gao, J., Ding, A., Cooper, O. R., Lin, M., Xu, P., Wang, Z., Wang, X., Wen, L., Zhu, Y., Chen, T., Yang, L., Wang, Y., Chen, J., and Wang, W.: Significant increase of summertime ozone at Mount Tai in Central Eastern China, Atmos. Chem. Phys., 16, 10637–10650, https://doi.org/10.5194/acp-16-10637-2016, 2016.
- Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson, I. M., Cox, R. A., and Kalberer, M.: Heterogeneous reaction of N₂O₅ with airborne TiO₂ particles and its implication for stratospheric particle injection, Atmos. Chem. Phys., 14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014, 2014.
- Tham, Y. J., Yan, C., Xue, L., Zha, Q., Wang, X., and Wang, T.: Presence of high nitryl chloride in Asian coastal environment and its impact on atmospheric photochemistry, Chinese Sci. Bull., 59, 356–359, https://doi.org/10.1007/s11434-013-0063-y, 2014.
- Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16, 14959–14977, https://doi.org/10.5194/acp-16-14959-2016, 2016.
- Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dubé, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature, 464, 271–274, 2010.
- Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dubé, W. P., Kim, S., Middlebrook, A. M., Öztürk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal NO₂ removal rates determined from ambient wintertime measurements, J. Geophys. Res.-Atmos., 118, 9331–9350, https://doi.org/10.1002/jgrd.50653, 2013.

- Wang, T., Ding, A. J., Gao, J., and Wu, W. S.: Strong ozone production in urban plumes from Beijing, China, Geophys. Res. Lett., 33, L21806, https://doi.org/10.1029/2006gl027689, 2006.
- Wang, T., Tham, Y. J., Xue, L., Li, Q., Zha, Q., Wang, Z., Poon, S. C. N., Dubé, W. P., Blake, D. R., Louie, P. K. K., Luk, C. W. Y., Tsui, W., and Brown, S. S.: Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China, J. Geophys. Res.-Atmos., 121, 2476–2489, https://doi.org/10.1002/2015jd024556, 2016.
- Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Scl. Total. Environ., 575, 1582–1596, 2017.
- Wang, X., Wang, T., Yan, C., Tham, Y. J., Xue, L., Xu, Z., and Zha, Q.: Large daytime signals of N₂O₅ and NO₃ inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon?, Atmos. Meas. Tech., 7, 1–12, https://doi.org/10.5194/amt-7-1-2014, 2014.
- Wang, X., Wang, H., Xue, L., Wang, T., Wang, L., Gu, R., Wang, W., Tham, Y. J., Wang, Z., Yang, L., Chen, J., and Wang, W.: Observations of N₂O₅ and ClNO2 at a polluted urban surface site in North China: High N₂O₅ uptake coefficients and low ClNO₂ product yields, Atmos. Environ., 156, 125–134, 2017.
- Wang, Z., Wang, T., Gao, R., Xue, L., Guo, J., Zhou, Y., Nie, W., Wang, X., Xu, P., Gao, J., Zhou, X., Wang, W., and Zhang, Q.: Source and variation of carbonaceous aerosols at Mount Tai, North China: Results from a semi-continuous instrument, Atmos. Environ., 45, 1655–1667, 2011.
- Wängberg, I., Barnes, I., and Becker, K. H.: Product and Mechanistic Study of the Reaction of NO₃ Radicals with α -Pinene, Environ. Sci. Technol., 31, 2130–2135, https://doi.org/10.1021/es960958n, 1997.
- Wen, L., Chen, J., Yang, L., Wang, X., Caihong, X., Sui, X., Yao, L., Zhu, Y., Zhang, J., Zhu, T., and Wang, W.: Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone, Atmos. Environ., 101, 294–302, 2015.
- Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for systems including the ions H⁺, NH₄⁺, Na⁺, SO₄²⁻, NO₃⁻, Cl⁻, Br⁻, and H₂O, J. Geophys. Res.-Atmos., 107, ACH 14-11–ACH 14-14, https://doi.org/10.1029/2001JD000451, 2002.
- Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
- Zhou, Y., Wang, T., Gao, X. M., Xue, L. K., Wang, X. F., Wang, Z., Gao, J. A., Zhang, Q. Z., and Wang, W. X.: Continuous observations of water-soluble ions in PM_{2.5} at Mount Tai (1534 m a.s.l.) in central-eastern China, J. Atmos. Chem., 64, 107–127, https://doi.org/10.1007/s10874-010-9172-z, 2009.