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Abstract. Observations of stratospheric ozone from multiple
instruments now span three decades; combining these into
composite datasets allows long-term ozone trends to be es-
timated. Recently, several ozone composites have been pub-
lished, but trends disagree by latitude and altitude, even be-
tween composites built upon the same instrument data. We
confirm that the main causes of differences in decadal trend
estimates lie in (i) steps in the composite time series when the
instrument source data changes and (ii) artificial sub-decadal
trends in the underlying instrument data. These artefacts in-
troduce features that can alias with regressors in multiple lin-
ear regression (MLR) analysis; both can lead to inaccurate
trend estimates. Here, we aim to remove these artefacts us-
ing Bayesian methods to infer the underlying ozone time se-
ries from a set of composites by building a joint-likelihood
function using a Gaussian-mixture density to model outliers
introduced by data artefacts, together with a data-driven prior
on ozone variability that incorporates knowledge of prob-
lems during instrument operation. We apply this Bayesian
self-calibration approach to stratospheric ozone in 10◦ bands
from 60◦ S to 60◦ N and from 46 to 1 hPa (∼ 21–48 km) for
1985–2012. There are two main outcomes: (i) we indepen-
dently identify and confirm many of the data problems previ-
ously identified, but which remain unaccounted for in exist-
ing composites; (ii) we construct an ozone composite, with
uncertainties, that is free from most of these problems – we

call this the BAyeSian Integrated and Consolidated (BASIC)
composite. To analyse the new BASIC composite, we use
dynamical linear modelling (DLM), which provides a more
robust estimate of long-term changes through Bayesian in-
ference than MLR. BASIC and DLM, together, provide a
step forward in improving estimates of decadal trends. Our
results indicate a significant recovery of ozone since 1998 in
the upper stratosphere, of both northern and southern midlati-
tudes, in all four composites analysed, and particularly in the
BASIC composite. The BASIC results also show no hemi-
spheric difference in the recovery at midlatitudes, in contrast
to an apparent feature that is present, but not consistent, in
the four composites. Our overall conclusion is that it is pos-
sible to effectively combine different ozone composites and
account for artefacts and drifts, and that this leads to a clear
and significant result that upper stratospheric ozone levels
have increased since 1998, following an earlier decline.

1 Introduction

The ozone layer in the stratosphere protects the Earth’s bio-
sphere from harmful solar ultraviolet (UV) radiation. The
use of ozone-depleting substances (ODSs), including chlo-
rofluorocarbons (CFCs), led to a decline in ozone globally
over the latter half of the 20th century (Johnston, 1971;
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Crutzen, 1971; Molina and Rowland, 1974), particularly in
the polar regions (WMO, 2011, 2014). The implementation
of the Montreal Protocol (MP), which banned the use of most
ODSs, has halted this decline, and in some regions there has
been a recovery in total column ozone (Solomon et al., 2016).
However, there is large uncertainty in the sign and magni-
tude of recent trends depending on altitude and latitude, and
a clear signal is difficult to determine (Harris et al., 2015).

Ozone responds to forcings from below, e.g. injections
of aerosols from volcanoes (Robock, 2000) or wave activity
from the troposphere (Kidston et al., 2015), and from above,
e.g. from solar sources such as UV radiation (Haigh, 1994)
and particles (Funke et al., 2011; Mironova et al., 2015). In
order to quantify and understand the variability forced by a
particular driver, and long-term trends in ozone – not just in
terms of the total column ozone (TCO) but also resolved ver-
tical profiles – observations spanning multiple decades are
needed. Such a dataset can only be provided by combin-
ing data from multiple sources (Harris et al., 2015; Tummon
et al., 2015). The method used to combine the data needs
to consider different inherent attributes, the most important
of which include temporal resolution, vertical and horizontal
spatial resolution (Kramarova et al., 2013a), time of day and
geolocation of observations (Sofieva et al., 2014), absolute
calibration (Frith et al., 2014), and stability estimates and
instrument uncertainty (DeLand et al., 2012). All of these
factors, if not well accounted for, can introduce additional
(artificial) trends, uncertainties, and errors, which may leak
into statistical analyses of decadal trends (Harris et al., 2015;
Tummon et al., 2015) and estimates of the magnitude of the
response to drivers such as the Sun (Maycock et al., 2016).
This can lead to conflicting results from different datasets
(WMO, 2014).

Observational records of atmospheric ozone began with
ground-based observations in 1921 (Staehelin et al., 1998)
and were joined by satellite observations in the 1960s
(Krueger et al., 1980). These records are an invaluable tool
to understand not only the long-term trends in ozone but also
how the middle atmosphere operates. Ground-based observa-
tions have the advantage of being longer records and can be
recalibrated on a continuous basis, but they are point-source
observations and thus cannot account for large differences in
ozone concentration and variability with latitude and longi-
tude. The introduction of satellite observations has allowed
for near-global, continuous observations over many decades
but has the disadvantages of typically only operating for a
limited number of years and being subject to space-based
degradation.

Creating an accurate record of stratospheric ozone profiles
is a non-trivial task and much work has been done at every
stage, from design, construction, and operation during flight,
to post-processing and combining datasets into composites
(Kyrölä et al., 2013; McPeters et al., 2013; Sofieva et al.,
2013; Sioris et al., 2014; Froidevaux et al., 2015; Davis et al.,
2016). Recently, several composites were published by mul-

tiple groups in connection with the SI2N initiative (SPARC
(Stratosphere-troposphere Processes And their Role in Cli-
mate)/IO3C (International Ozone Commission)/IGACO-O3
(Integrated Global Atmospheric Chemistry Observations –
Ozone)/NDACC (Network for the Detection of Atmospheric
Composition Change)) (Tummon et al., 2015). Nevertheless,
even when problems are flagged and uncertainties are min-
imized, the fact that different composites can lead to trend
estimates that differ by more than their uncertainties (e.g.
Fig. 6 of Harris et al., 2015 and Fig. 8 of Tummon et al.,
2015) means that at least one, if not all, are insufficiently
stable during some periods to provide a robust estimate of
changes in ozone throughout the stratosphere. Tummon et al.
(2015) further notes that the choice of instruments to merge
has more impact on trends than the merging technique used,
that the construction approach needs careful consideration of
the method used to avoid contaminating trends with artefacts,
and that so far it has not been possible to remove biases from
any individual, vertically resolved dataset.

Despite these difficulties, it is possible to account for many
of these problems. There is common information within
all the composites, e.g. the annual variability is similar in
most composites (Tummon et al., 2015), and the differences
between composite datasets due to the issues listed above
should, in principle, point to where potential artefacts such
as steps and drifts are located in time and by latitude and al-
titude. This can be especially effective in the case of an unex-
pected or erroneous change occurring in one dataset, which
is absent in all the others. Once the instrument or composite
at fault is identified, there is the possibility of flagging, re-
moving, or rectifying an error, and confidence in applying a
correction increases if the deviation or fault can be linked to
a known issue. Thus, together with this prior knowledge and
an unbiased uncertainty estimate, one can evaluate the likeli-
hood of an observation being correct or, indeed, estimate the
most likely value.

Our goal here is to provide a technique whereby the most
likely ozone variability throughout the stratosphere can be
identified by using the information embedded within multi-
ple datasets simultaneously. The natural approach with which
to tackle such a problem is using Bayesian inference (Cox,
1946; Lee et al., 2005; Arnold et al., 2007). In adopting
a Bayesian approach, we develop a detailed probabilistic
model for the (multiple) datasets, carefully allowing for out-
liers and accounting for all knowledge (and ignorance) of
measurement uncertainties and any known problems during
instrument operation. Additionally, by incorporating (data-
driven) prior information about the underlying ozone vari-
ability, we are able to identify – using only the data and
knowledge of the instruments – where some datasets are sys-
tematically biased due to measurement artefacts whilst others
are consistent with the anticipated month-to-month variabil-
ity. In this way, our approach combines the multiple datasets
in such a way that they “self-calibrate” each other, resulting
in a single ozone time series that is cleaned of many of the
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artefacts affecting any individual dataset (although if a prob-
lem is common to all datasets, it cannot be identified).

This paper has three main parts. In the first part (Sect. 2),
we introduce the composite datasets we use (Sect. 2.1) by
explicitly presenting the problems we will later attempt to
fix. Ozone composites have been updated since important
intercomparison papers by Harris et al. (2015) and Tum-
mon et al. (2015), so our results cannot be directly com-
pared with theirs; we briefly present some of these differ-
ences (Sect. 2.2). The ozone composites, described in Sect. 2,
form a good starting point from which to combine infor-
mation and account for differences, since the effort put into
producing them already considers and accounts for many in-
strument and observational issues. However, some remaining
problems are clear in the composites. In the second part, we
present the Bayesian method to self-correct the ozone com-
posites (Sect. 3), construct uncertainty estimates (Sect. 3.1),
form the Gaussian-mixture likelihood (Sect. 3.2), develop
transition priors to estimate how ozone is expected to vary
on monthly timescales (Sect. 3.3), and discuss how we in-
clude additional prior information that we have available
(Sect. 3.1). We call this combined set of steps and algo-
rithms the BAyeSian Integrated and Consolidated (BASIC)
approach. The resulting BASIC composite time series are
presented and compared with the composites in Sect. 4.2
and 4.3. In the final part (Sect. 5), we primarily use dynam-
ical linear modelling (DLM) to evaluate long-term trends
(Sect. 5.2), although we compare our results with multiple
linear regression (MLR) analysis, and present our results for
ozone changes over the 1985–2012 period in Sect. 5.3. We
conclude in Sect. 6.

2 Data

2.1 Ozone composites

The SI2N project promoted seven ozone composites of satel-
lite observations, summarized in Tummon et al. (2015),
along with detailed comparisons that were expanded upon
by Harris et al. (2015). Three of the datasets, named SAGE-
GOMOS1 (Kyrölä et al., 2013), SAGE-GOMOS2 (Tummon
et al., 2015), and SAGE-OSIRIS (Adams et al., 2014) in
Tummon et al. (2015), have more data missing than the oth-
ers (∼ 57 % for 1985–2012 for 20◦ S–20◦ N), so we do not
consider them in our analysis. Two of the remaining com-
posites have the SAGE-II instrument (Stratospheric Aerosol
and Gas Experiment II) (Damadeo et al., 2013) as a back-
bone: GOZCARDS (Global OZone Chemistry And Related
Datasets for the Stratosphere; Froidevaux et al., 2015) and
SWOOSH (Stratospheric Water and Ozone Satellite Ho-
mogenized; Davis et al., 2016); we will refer to this pair
of composites as “SAGE-based”. The other two “SBUV-
based” composites we consider use the suite of SBUV-
type (solar backscatter ultraviolet) instruments: SBUV-MOD

(SBUV version 8.6 merged ozone data set; Frith et al., 2014)
and SBUV-MER (SBUV Merged Cohesive; Wild and Long,
2017). By using only two pairs of composites containing ap-
proximately equal weighting, we partly avoid the issue of bi-
asing results to SAGE-based composites, a concern raised
in the analysis of Harris et al. (2015) (however, see Ap-
pendix Sect. A5.2).

We consider zonal mean, monthly mean ozone over the
28-year period, January 1985–December 2012, covered by
all datasets. While the correction method we present later
(Sect. 3) could, in principle, be used to deal with data gaps
at higher latitudes, we limit our latitude range to 12 bands
of 10◦ over 60◦ S–60◦ N. We limit the pressure range to 11
levels from 46 to 1 hPa (∼ 21–48 km) to avoid issues of large
diurnal variations at higher altitudes, and because the verti-
cally resolved SBUV data are not available at lower altitudes
(i.e. at higher pressures); note, however, that some diurnal
variability exists down to 5 hPa. In order to treat each com-
posite fairly, we interpolate all four onto the GOZCARDS
pressure–latitude grid since this grid has the lowest resolu-
tion of the four (though the instruments themselves have a
higher resolution); a visualization of the original grids are
shown in Fig. A1 in the Appendix. All considered composites
have data available for more than 80 % of all months at most
latitudes. Finally, for this work, we are interested in relative
variability and trends, so we shift absolute values to agree
with the mean of SWOOSH from August 2005 to December
2012 when the Aura/MLS instrument is used; during this pe-
riod, all the composites show remarkably good agreement on
annual and multi-year timescales, and regression coefficients
using multiple linear regression (see Sect. 5.1) are similar at
all pressure levels and latitudes (not shown). This is impor-
tant since a common reference period we trust improves the
ability for the BASIC approach to estimate relative changes
and reduces uncertainties.

The ozone instrument data and composites are already ex-
tensively detailed and discussed in several recent papers as
listed above, e.g. Tummon et al. (2015) and Harris et al.
(2015); we recommend that interested readers consult these
papers, which also include an exhaustive list of references to
individual instruments. We will discuss relevant points of in-
terest regarding each composite in the discussion that follows
below.

2.2 Inconsistencies between composites

To determine why decadal trends from the various compos-
ites are different requires an understanding of how they have
been constructed with satellite instrument data from mul-
tiple sources. We present a visual reference guide for the
four composites in Fig. 1. Here, we show the timeline of
instruments used to construct the SAGE-based data in the
middle and SBUV below. The colour coding for the four
datasets (GOZCARDS in dark blue, SWOOSH in light blue,
SBUV-MOD in red, and SBUV-MER in yellow) will be used
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47–84° N/31–57° S

Figure 1. A guide to the regression indices used in the trend analysis (upper third) and instrument data used to construct SAGE-based (middle
third: GOZCARDS, dark blue; SWOOSH, light blue) and SBUV-based (lower third: SBUV-MOD, red; SBUV-MER, yellow) composites.
Shading at SBUV-MER instrument changes indicates periods used to determine differences in annual variability and applying bias corrections
between instruments. The full periods of instrument operation for datasets in these pairs are shown with multiple colours between the
composites. Where SBUV data are not used for an interval, dashed lines replace solid. Between the SBUV composites, the local time of
Equator crossing is shown. Where relevant, version numbers are given with instrument names; “O” and “L” indicate the satellite was a limb
viewer or occultation-based instrument; SBUV instruments are all nadir viewing. Grey shading with black text highlights periods discussed
in the article. Periods specifically flagged to increase the SBUV uncertainty estimates in the BASIC approach are labelled black with white
text.

throughout the paper. The operating periods of all the instru-
ment datasets used for either SWOOSH or GOZCARDS are
presented as a spectrum of colours between them; the same
is done for the SBUV composites, where we additionally
show information related to the time of day at which Equa-
tor crossings occur, which will be important later. Instrument
names are given near the start of their operation period. Var-
ious comments and grey shadings litter the plot; these mark
points to be aware of and some of these are discussed later.

2.2.1 SBUV-based composites

The two SBUV composites are built in two different ways:
SBUV-MER uses overlapping time series (shading in Fig. 1)
to calculate offsets (calibration biases) and differences in sea-
sonal and diurnal variation, but only a single dataset is used
without averaging overlapping periods; SBUV-MOD also ac-
counts for offsets, but then overlapping data are averaged.
SBUV-MOD relies on the instrument-to-instrument calibra-
tion done at the wavelength level within the version 8.6 al-
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O3  trend, %  dec.–1

1998–2012

1985–1997
1985–1997
1985–1997

1998–2012

Figure 2. (a) The equatorial (20◦ S–20◦ N) decadal ozone MLR trend profiles for the SBUV-MER version used by Tummon et al. (2015)
(“Tea15”; black) and SBUV-MOD (red). Dots and solid error bars represent the 1985–1997 trends, and open circles and dashed error bars the
1998–2012 period. A single grey dot is plotted at 10 hPa, which follows an adjustment to SBUV-MER as shown in panel (c) as a grey line.
(b) The ozone composite time series for SBUV-MER (Tea15) (black), SBUV-MER (yellow) and SBUV-MOD (red) at 10 hPa, all shifted to
the July 2005–2012 mean of SWOOSH. (c) The difference between the SBUV-MOD and MER (Tea15) time series in panel (b); the grey line
prior to 1998 is a correction applied to SBUV-MER (Tea15) to produce the grey dot in panel (a). (d) The difference between SBUV-MER
(Tea15) and SBUV-MER. The vertical dashed line in panels (b–d) indicates 1 January 1998, which delimits the two periods considered in
the MLR results in panel (a). Error bars are 2σ .

gorithm for absolute calibration (i.e. no additional offsets are
applied before averaging).

The SBUV-based composites use only instruments with
the same design and are the longest single-instrument-type
composites available. Both use the same NOAA and Nimbus
space-based platforms, though not always at the same time,
except that SBUV-MER uses NOAA-9 observations between
1994 and 1997 to increase global coverage and bridge the
gap in NOAA-11 (Fig. 1), which is an update to SBUV-
MER that differs from the previous version considered by
Tummon et al. (2015) (see below); SBUV-MER also uses
NOAA-14 as a backbone to connect biases in NOAA-9 and
-11, but the NOAA-14 data are not used in the final product.
The SBUV instruments infer profile ozone in units of parts
per million (ppm) volume mixing ratio from measurements
of back-scattered UV radiation at wavelengths shorter than
300 nm in a downward, nadir viewing system, which is fun-
damentally different from the limb/occultation instruments
used in the SAGE-based composites; the SBUV instruments
are optimized to low stray light and high signal-to-noise ra-
diance measurements, with an estimated accuracy of 1–2 DU
at solar zenith angles up to 70◦ (McPeters et al., 2013). De-
spite being constructed with essentially the same instrument
data, the two datasets show differences in estimated decadal
trends (Harris et al., 2015; Tummon et al., 2015).

In Fig. 2a, we recreate the SBUV-MOD and SBUV-MER
1985–1997 (dots and solid lines) and 1998–2012 (circles and
dashed lines) linear decadal ozone trend estimates from MLR
(Sect. 5.1) for the equatorial regions 20◦ S–20◦ N as in Figs. 5

and 6 of Harris et al. (2015) and Fig. 8 of Tummon et al.
(2015). SBUV-MER has seen revisions since it was used in
Harris et al. (2015) and Tummon et al. (2015), so we use
the version in those publications to make clear why previous
analyses of the SBUV composites differ (labelled “Tea15”);
after this section, we only consider the latest update. The two
composites show good agreement over the 1998–2012 pe-
riod in both mean value and profile shape. The earlier period
shows different vertical structure; at 10 hPa, the mean values
disagree by more than 5 % per decade (the 10 hPa level is
indicated by the horizontal dashed line). The reason for this
becomes obvious when we plot the absolute, and differences
of, the time series at 10 hPa in Fig. 2b and c, respectively.
Prior to 2002, the difference between SBUV-MER (Tea15)
and SBUV-MOD can be almost as large as the annual vari-
ability. Figure 2c reveals that these are caused by steps, of
which the two largest occur in January 1994 and February–
April 1995. We plot coloured vertical lines when instruments
in either composite change (yellow for SBUV-MER; red for
SBUV-MOD), which immediately reveals that these jumps
are related to offsets in instrument data: the first occurred
in SBUV-MER; the second in SBUV-MOD. To prove it is
these steps that cause the difference in the pre-1998 trend
estimated at 10 hPa in Fig. 2a, we simply subtract the grey
curve indicated in Fig. 2c from SBUV-MER (Tea15) and the
mean MLR estimate for the trend is indicated as a grey dot
in Fig. 2a, now very close to SBUV-MOD. We note that this
subtraction is not intended to indicate that SBUV-MOD is
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correct but is a simple test to understand why the trends dif-
fer.

Figure 2d shows the difference between SBUV-MER
(Tea15) and the updated version, which shows many of the
offsets relative to SBUV-MOD in Fig. 2c have been removed.
However, artefacts still remain in the newer version with re-
spect to SBUV-MOD, and we find that they are not confined
just to the altitude and latitude range shown in these plots.
Ultimately, the remaining differences will lead to the diver-
gent trend estimates. We return to this in Sect. 4.3; further
discussion on the SBUV composites is provided in Sect. A1.

2.2.2 SAGE-based composites

While constructed by two separate teams, GOZCARDS
(Froidevaux et al., 2015) and SWOOSH (Davis et al., 2016)
are similar for two main reasons: (i) the longest single in-
strument record used is SAGE-II (1984–2005) and this acts
as the absolute reference level in both datasets; and (ii) they
are constructed from limb viewers and occultation satellites
(identified as “L” and “O” in Fig. 1), meaning they differ in
operation from the SBUV nadir viewers. Occultation satel-
lites measure ozone by looking at the disk of the rising or set-
ting Sun though the atmosphere (SAGE-II uses the UV and
visible, while, e.g. HALOE and ACE-FTS use infrared wave-
lengths); this makes their vertical profile resolution higher
but at the expense of only observing 15 profiles per day.
Limb sounders observe thermal emission in the infrared or
microwave as volume mixing ratio on pressure levels and can
observe thousands of profiles each day. The composites dif-
fer in several ways, the most relevant of which are (i) they use
different data screening and preprocessing; (ii) data from the
same satellites are used for different periods and/or spatial re-
gions; (iii) SWOOSH contains SAGE-III data and not ACE-
FTS observations, and GOZCARDS vice versa (see Fig. 1);
and (iv) GOZCARDS (v1.0, used here) uses SAGE-II ver-
sion 6.2, while SWOOSH uses version 7.0 – this innocuous
difference has consequences for the trends (and solar signal
analysis; not shown) that we will elaborate on in the follow-
ing.

Because SAGE-II observes ozone number density, knowl-
edge of local temperature is needed to convert to vol-
ume mixing ratio. GOZCARDS uses SAGE-II v6.2, and
SWOOSH SAGE-II v7.0; the former uses NCEP reanaly-
sis temperatures while the latter uses the MERRA reanalysis
(see Damadeo et al., 2013 and references within). It has been
noted by McLinden et al. (2009), and confirmed by Maycock
et al. (2016), that the NCEP temperature data contain spuri-
ous trends. The fact that the trend is not visible in SBUV data
(Sect. 4.3) further supports this. The impact of the different
versions of SAGE-II within the SAGE-based composites is
shown in Fig. 3. We note that, as for SBUV-MER, the cur-
rent SWOOSH release has changed with respect to the afore-
mentioned publications. Therefore, we again initially show
results from the earlier version (2.1) in red (again designated

“Tea15”); following this discussion we will not refer to this
version again. Figure 3a shows the equatorial (20◦ S–20◦ N)
decadal ozone trends similar to Fig. 2 extracted from GOZ-
CARDS and SWOOSH (Tea15) using MLR for two peri-
ods: 1985–1997 (dots and solid lines) and 1998–2012 (cir-
cles and dashed lines). We see that for 1998–2012, except
at 4.6 and 6.8 hPa, the two mean profiles agree well. How-
ever, for 1985–1997 above 5 hPa, the ozone profiles show
very large differences. To clarify why, in Fig. 3b, we plot
their 2.2 hPa time series and their difference in Fig. 3c; the
vertical dashed line indicates where the two periods consid-
ered in Fig. 3a are delimited. After 1991, both composites
show similar long-term variability, though there are clearly
sub-periods containing different scatter characteristics, and
which change between instrument periods (vertical coloured
lines), thus indicating a relationship to either different pre-
processing or instrument usage. Between 1985 and 1991,
GOZCARDS is lower than SWOOSH, and there appears to
be an approximately linear increase over this period. Similar
to the approach taken for SBUV-MER in Fig. 2, correcting
the 1985–1991 period with a simple linear trend line (grey
in Fig. 3c) leads to very good agreement with SWOOSH
(Tea15) in Fig. 3a (grey dot), showing the difference between
the two SAGE composites at 2.2 hPa is mainly caused by the
pre-1991 drift in GOZCARDS; this is a result of the con-
version of SAGE-II version 6.2 data (used in GOZCARDS)
from densities to mixing ratios using NCEP temperatures,
while the version 7 SAGE-II dataset (used in SWOOSH) uses
MERRA and thereby corrects this issue.

Finally, we show in Fig. 3d the difference between
SWOOSH (Tea15) and the latest version (2.6), which sees
only minor step changes and short-term variance that appears
to line up with instrument changes, except for between 1998
and 2004. Again, it is not clear from this difference plot alone
if these changes will lead to a better estimate of ozone vari-
ability and trends or not. Further discussion on the SAGE
composites is provided in Sect. A2.

3 Bayesian inference of the underlying ozone time
series

We want to combine the information from the various com-
posites and correctly account for uncertainties, artefacts, and
drifts. To this end, we adopt a Bayesian approach to infer
constraints on the (unknown) true time series, y, given the
full set of data, d. The data consist of nc composites, indexed
by c; each composite is made up of nt measurements, in-
dexed by t . A single measurement is hence dt,c, where the
index ordering is chosen to match that required for the matrix
manipulations used in Sect. 3.1. The underlying time series
that is to be inferred, y, hence has individual elements yt .

Bayesian inference necessarily involves conditioning on
our knowledge about uncertainties and potential artefacts
and drifts, and any prior assumptions about the month-to-
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SW (Tea15) 1998–2012
GC 1985–1997

GC 1998–2012

SW (Tea15) 1985–1997
GC (adjusted) 1985–1997

O3  trend, % dec–1

Figure 3. (a) The equatorial (20◦ S–20◦ N) decadal ozone MLR trend profiles for SWOOSH from Tummon et al. (2015) (“Tea15”; red)
and GOZCARDS (blue). Dots and solid error bars represent the 1985–1997 trends, and open circles and dashed error bars the 1998–2012
period. A single grey dot is plotted at 2.2 hPa, which follows an adjustment to SWOOSH (Tea15) as shown in panel (c) as a grey line. (b) The
ozone composite time series for SWOOSH (Tea15) (black), SWOOSH v2.6 (light blue), and GOZCARDS (blue) at 2.2 hPa, all shifted to
the July 2005–2012 mean of SWOOSH v2.6. (c) The difference between the GOZCARDS and SWOOSH (Tea15) time series is shown in
panel (b); the grey line prior to 1991 is an adjustment applied to GOZCARDS to produce the grey dot in panel (a). (d) The difference of
SWOOSH-Tea15 and SWOOSH v2.6. The vertical dashed line in panels (b–d) indicates 1 January 1998, which delimits the two periods
considered in the MLR results in panel (a). Error bars are 2σ .

month variability, through our model which we denote asM .
Bayes’s theorem allows us to combine this information in the
form of the posterior distribution of the true time series given
the data, model, and any prior information P(y|d,M):

P(y|d,M)=
P(y|M)P(d|y)

P (d|M)
, (1)

where P(y|M) encodes our prior information and assump-
tions about the month-to-month variability of the underlying
true time series, the likelihood P(d|y) summarizes our prob-
abilistic model for the data given the associated measure-
ment uncertainties (including our knowledge and assump-
tions about the possibility of instrumental artefacts system-
atically biasing the observations at certain times), and the
marginal likelihood P(d|M) in this situation just plays the
role of a normalizing constant.

In order to form the desired posterior distribution, we re-
quire a probabilistic model for the data (Sect. 3.2) that incor-
porates our knowledge and assumptions about the observa-
tional uncertainties (Sect. 3.1), and a clear statement of our
prior assumptions (Sect. 3.3). The resulting posterior density
is a high-dimensional probability density over y, where the
length of the vector y (i.e. the number of time points in the
time series) is typically of order ∼ 102. Whilst direct evalua-
tion of such high-dimensional probability densities on a grid
is computationally unfeasible, they can be effectively recon-
structed through sampling algorithms such as Markov chain
Monte Carlo (MCMC), discussed in Sect. 4.

3.1 Uncertainty estimation

Our method requires uncertainties for each composite that
reflect the actual differences between the reported values and
the true state of ozone at the time of each measurement, as
encoded in the likelihood (Eq. 7). We cannot use the uncer-
tainties published by the composite teams as they are (in
general) not derived in the same way and so they poten-
tially encode information differently. The quoted uncertain-
ties can include (i) uncertainties propagated at each step of
the data and composite processing, e.g. in regression anal-
ysis used to combine individual instruments; (ii) uncertain-
ties in the absolute offsets; (iii) the total number of observa-
tions in each dataset; and (iv) precision and calibration er-
rors. A natural choice might be to scale the uncertainty with
the inverse square root of the number of observations used to
form the monthly ozone value from each instrument, but this
would not correctly deal with systematics such as slow in-
strument drift (as experienced by the SBUV instruments dur-
ing the 1995–2000 period). Using the number of data points
to weight the monthly mean in each composite would lead
to the most likely value simply following the SBUV data al-
most exclusively until 2005 (see Fig. A2), and drifts would
remain in the final product (see Sect. 4.3).

Instead, we seek to estimate the noise level from the data
and in particular from the discrepancies between the differ-
ent composites. Estimating the uncertainties is not the main
focus of this paper, so a simple heuristic method is used
here, but this is clearly an aspect of this overall data analysis
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problem which should be investigated further. Our approach
is based on a principal components analysis (PCA) of the
composites to model the differences between them, with the
time-dependent noise level of each composite then estimated
from the variance of the higher-order components. The start-
ing point of this approach is to treat the full dataset d as an
nt × nc matrix with elements dt,c as defined above. We then
use this to construct the mean-subtracted data matrix d′ with
elements given by

d ′t,c = dt,c−
1
nt

nt∑
t ′=1

dt ′,c, (2)

where each composite is treated separately.
The PCA is implemented via singular value decomposi-

tion (SVD) in which the mean-subtracted data matrix is fac-
torized as

d′ = UWVT , (3)

where U is an nt × nc matrix in which the columns are the
orthogonal component time series, W is an nc× nc matrix
giving the weights of the components, and V is an nc× nc
matrix that encodes the contributions of the components to
the composites. A standard PCA reconstruction of the (mean-
subtracted) composites would then have the form

d ′t,c =

nc∑
c′=1

Ut,c′Wc′,c′ Vc′,c, (4)

where the sum has to go from c′ = 1 but is often truncated to
include only the first few terms with the highest weights.

Our method of estimating the uncertainties in the com-
posites is based on the above reconstruction formula but is
only heuristic in the sense that it does not follow a rigorous
calculation. We start by ignoring the leading, i.e. the high-
est weighted, mode in U as it is common to all composites,
and so it provides no extra information. The various noise
artefacts are separated across the other nc− 1 components,
which must be combined somehow to reconstruct the noise.
We make the natural choice to weight the modes by their re-
spective contributions to each composite and then sum the
resultant variances to obtain uncertainty estimates as

σ 2
t,c =

nc∑
c′=2

(Ut,c′Wc′,c′ Vc′,c)
2. (5)

The steps of this method are illustrated in Fig. 4. The left
set of panels shows the SVD applied to ozone at 10 hPa 0–
10◦ N: the SVD modes (i.e. from matrix U) (black lines;
first four panels), each have a different weight (percentage
value in the lower right of each plot, from matrix W). The
first mode contains most of the variance (84 %) with the re-
mainder split between the other three (13, 1, and 2 %). The
first mode is common to all four datasets, and its relative

weight within each dataset is represented by the coloured
dots (from matrix V) to the right of each mode ranging from
−1 to +1; the weight of the first mode is similar in all four
datasets. The second mode is split roughly equally between
the two pairs of composites as indicated by the dots on the
right, suggesting that it is the difference between the pairs,
and for which the rescaled difference of SBUV-MER and
GOZCARDS confirms, plotted in grey and with an almost
identical variance to the SVD mode. The SBUV composites
have almost zero weight in the third mode, indicating that
the mode represents artefacts only within the SAGE compos-
ites, again confirmed by the difference between SWOOSH
and GOZCARDS (grey). With almost zero weight for the
SAGE pair in the fourth mode, the rescaled difference be-
tween SBUV pairs confirms the mode represents artefacts in
SBUV.

From this, we form the uncertainty estimate for each of
the composites in the bottom panel, σt,c. Unfortunately, the
SVD can only be formed when there are data available in
each composite, which leads to gaps, represented by the grey
shading in the bottom panel. Because composite sub-periods
have different uncertainty characteristics, we fill gaps using
the median of the period between instrument changes in the
composites (vertical lines in the four modes; colours relate to
each composite).

In principle, the time series at each latitude–altitude loca-
tion in the four composites should be the same, and any devi-
ations from the true value should be a result of one or more of
the potential reasons listed in Sect. 4.3. By this assertion, the
composites each contain the real time series and an additional
set of artefacts. The problem is that we do not know for sure
in which dataset a problem might be, especially if the true
trend is only apparent in (or missing from) one composite or
one composite pair (i.e. SAGE or SBUV based). Thus, the
SVD approach allows us to separate the common signal (the
leading mode in U corresponding to the highest weight in W,
from those that form the differences between the composites
(with lower weights) and the real ozone. This leads to an at-
tribution of higher uncertainty for single datasets that exhibit
variance not present in the other three, and allows us to as-
sign higher uncertainties in all the composites when one pair
(e.g. SAGE pair) acts differently to the other pair (e.g. SBUV
pair). In this way, it is a relatively conservative estimate.

The example at 10 hPa was ideal since modes were easy
to associate with artefacts within and between the compos-
ite pairs. Another example of the usefulness of applying
the SVD approach to estimate the uncertainty is shown for
2.2 hPa and 0–10◦ N in the right-hand panels of Fig. 4b. The
first mode is ubiquitous to the composites, and the fourth
mode shows a clear attribution to the SBUV composites
(the rescaled difference is shown in grey). However, it is
not possible to attribute modes two and three as confidently,
though the artefacts are more likely from GOZCARDS and
SWOOSH, respectively. Since complete separation of this
mode from the other composites is not possible (e.g. that
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10 hPa/0–10° N 2.2 hPa/0–10° N

Figure 4. Visualization of the components of the SVD algorithm within the BASIC approach used to estimate the uncertainty on each ozone
composite for two examples at (a) 10 hPa and (b) 2.2 hPa at 0–10◦ N. The left column of the first four rows show the determined singular
value decomposition (SVD) unitless modes (black time series); the mode weighting (%) is given in the bottom right; the right column is the
mode weighting for each composite. All colours represent information related to GOZCARDS (blue), SWOOSH (light blue), SBUV-MER
(yellow), and SBUV-MOD (red). Vertical lines represent dates an instrument change in the composite occurred. The grey time series is the
arbitrarily rescaled difference between SBUV-MER–GOZCARDS, SWOOSH–GOZCARDS, and SBUV-MER–SBUV-MOD in panel (a) in
rows 2–4, and SBUV-MER–SBUV-MOD in panel (b) in row 4. The bottom panel (row 5) in panels (a) and (b) represents the uncertainty
derived from the root sum of the squares of the modes (rows) 2–4, weighted by the mode and composite weight, in units of ppm. Grey vertical
lines represent dates when data in any composite are missing and filled with the median uncertainty for the sub-period in which they lie (i.e.
between the vertical lines in rows 2–4).

SWOOSH is definitely the reason for the third mode), some
uncertainty is given to the other composites. This is an intu-
itive approach to assigning uncertainty to each of the com-
posites.

Satisfyingly, the error estimates display higher uncertainty
to individual composites during periods already known to
have anomalous behaviour (Sect 4.3). For example, in the
lower panel of Fig. 4 at 2.2 hPa (right), GOZCARDS is as-
signed a particularly high uncertainty during the first 5 years,
as expected (Sect. 2.2.2). At 10 hPa (left), the SBUV com-
posites generally have a higher assigned uncertainty, espe-
cially around mid-1995, and until 2000, when we know there
are instrument drifts in the SBUV composites (Sect. 4.3). In
summary, the SVDs allow us to independently and fairly as-
sign an uncertainty to each of the composites.

As the SVD approach is not always able to assign a known
artefact explicitly to a specific composite, it is necessary for
us to provide additional information regarding the composite
uncertainties, whereby in three cases we increase the esti-
mated uncertainty by a factor of 2. These are (i) when an in-
strument changes in a composite, which is appropriate since
there are many examples of jumps in a composite on, or im-
mediately after, these dates (e.g. Fig. 2c in 1994 and 1995);

(ii) during known and significant instrument drifts in SBUV
– the SBUV drift from the SVD uncertainty estimate is typi-
cally assigned equally to both pairs of composites and so ad-
ditional information is needed, and tests show that it is only
partially accounted for when this additional information is
not included – specifically 1995–2000 for both SBUV com-
posites and additionally 1994–1995 in SBUV-MER (these
periods are marked by black shading and white text in Fig. 1);
and (iii) following the eruption of Mount Pinatubo in SBUV-
MER only (see Fig. 1 and Sect. 4.3).

3.2 The likelihood

With estimates of the uncertainties on each composite, we
can construct the joint-likelihood function for the set of com-
posites as a product over the individual likelihoods at each
time step (indicated by t) and composite (indicated by c), so
that

P(d|y)=
∏
t

∏
c

P(dt,c|yt ), (6)

which implicitly assumes that the measurement errors at dif-
ferent time steps and between different composites are un-
correlated.
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Month of the year, n (Jan = 1) Month of the year, n (Jan = 1)

2.2 hPa/0–10° N 10 hPa/0–10° N

(a) (b)

Figure 5. The expected monthly ozone changes (or “transitions”) between month n and the next month, n+1, i.e. index 1 represents a change
between January and February. We show two examples at 0–10◦ N: (a) 2.2 and (b) 10 hPa. The box-and-whisker plots are for all observations
when no change in the underlying instrument of the composites occurred and represent the interquartile range (IQR) covering the 25th to
75th percentiles (box) and 1.5 times the IQR or the maximum, whichever is smallest (whisker); outliers are plotted as dots. Plotted to the
left of the vertical lines at each index are the changes between months for each composite (represented by the different colours); Gaussian
distributions to the right of the vertical lines represent those formed from the mean and standard deviation of all the composite transitions
from 1000 bootstraps. These Gaussians are used as transition prior estimates and are calculated for all pressures and latitudes.

A common assumption would be that, ordinarily, the like-
lihood for a single measurement would be taken to be a nor-
mal distribution with a mean given by the true value, yt , and
a standard deviation of σt,c, the measurement uncertainty in
composite c at this time step. However, it is clear from even
a quick inspection of the data that there are significant dis-
agreements between the different composites, implying sev-
eral of them – and possibly all – are far more prone to ex-
treme errors (i.e. outliers) than would be predicted by a sim-
ple Gaussian likelihood. We hence adopt the model of Box
and Tiao (Box and Tiao, 1968) in which there is a probabil-
ity 0≤ β ≤ 1 that any given measurement has an uncertainty
inflated by a factor of γ ≥ 1, such that the likelihood for a
single measurement is

P(dt,c|yt )=
1

√
2πσt,c

{
β

γ
exp

[
−
(dt,c− yt )

2

2γ 2σ 2
t,c

]
+ (1−β)exp

[
−
(dt,c− yt )

2

2σ 2
t,c

]}
. (7)

Smaller values of β encode more faith that uncertainties, σt,c,
are correct; higher values of γ correspond to more catas-
trophic outliers. The standard normal distribution is recov-
ered if either β = 0 or γ = 1. Both β and γ must either
be fixed by hand or kept as hyperparameters to be inferred.
We fix β = 0.1 and γ = 100, which implies that we con-
sider outliers reasonably rare but extreme should they occur;
this choice leads to multi-modal behaviour as desired (see
Sect. A3 and Fig. A3).

When the multiple measurements of the different compos-
ites are combined in the product over c, the resultant like-
lihood can be multi-modal when considered as function of
yt . In cases where the composites disagree, the implication
is that it is most likely that one of the measurements is good
but not necessarily that which is to be preferred. By contrast,
simply multiplying Gaussian likelihoods together in such a
situation would result in a joint likelihood that sits between
the two (or more) peaks and does not represent likely values
according to any of the composites (left column of Fig A3).
However, under the model prescribed by Eq. (7), the joint
likelihood is multi-modal where subsequent application of
the prior may elicit which of the peaks is representative of
the truth and which observations were likely dominated by
artefacts (or indeed if all composites might be systematically
biased simultaneously but in different ways, in which case
the resulting posterior for that point will have an inflated un-
certainty as desired).

3.3 Transition prior

We factorize the prior into a product of transition priors for
each month-to-month transition, i.e.

P(y)= P(y0)

N−1∏
t=1

P(yt+1|yt ). (8)

The transition prior provides a way to estimate if mea-
surements of ozone values from the composites in the month
being evaluated are more likely or not and hence provide a
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way of assessing anomalous behaviour. The annual, or semi-
annual, variability that makes up the seasonal cycle, is the
largest mode of ozone variability. It is also a relatively con-
sistent mode, so together with information from the obser-
vations, it can provide a way to help differentiate between
artefacts and real anomalous behaviour.

We form the transition prior from all four composites to-
gether. Two examples are given in Fig. 5 at 2.2 and 10 hPa at
0–10◦, where the expected change between month n and n+1
for the whole year is shown, with, e.g. n= 1 being the tran-
sition between January and February. The monthly changes
for all composites are shown with the box-and-whisker plots,
which show the mean (white horizontal line), interquartile
range (IQR, 25–75th percentiles; thick stem), and full range
or 1.5 times the IQR (thin line), with any outliers given as
dots; data in a composite where instruments change are not
included in the estimates. The grey Gaussian distributions are
formed from all the changes between 2 months treated in-
dependently and then performing 1000 bootstraps. We note
that in the examples shown in Fig. 5, the SAGE-based com-
posites typically have a larger range of month-to-month vari-
ance, which we suggest may be due to the higher resolution
of the SAGE composite instruments, but we cannot exclude
the possibility that this is also related to the low sampling and
higher scatter of, e.g. the earlier observations from SAGE-II.

4 Posterior sampling

With the likelihood (Sect. 3.2) and prior in hand, we can con-
struct the posterior density for the true time series given the
data and our prior knowledge and assumptions, i.e. Eq. (1).
The product of the prior (Eq. 8) and the likelihood (Eq. 7)
over all the observations gives the numerator of the poste-
rior density defined in Eq. (1). The normalizing denominator
cannot be calculated analytically, but fortunately the numer-
ator is sufficient to obtain samples from the posterior distri-
bution. We sample the posterior using Hamiltonian Monte
Carlo (HMC) sampling (Neal, 1993) implemented in STAN1

(Carpenter et al., 2016); HMC is an MCMC method that is
particularly effective at sampling high-dimensional densities
(Neal, 1993). The resulting inferred ozone time series forms
the BASIC composite.

4.1 BASIC approach as an approximation to a
Bayesian hierarchical state–space model

When constructing the month-to-month transition prior as
described above, we use the data to estimate and fix the
prior’s hyperparameters, i.e. the means and variances of each
month-to-month transition (January–February, February–
March, etc.). This is using the data twice – once to construct
the transition prior and once in the main posterior inference.
However, we note that estimating and fixing the hyperparam-

1STAN software can be found at http://mc-stan.org.

eters from the data is an approximation, similar to “empiri-
cal Bayes” methods, to a full Bayesian hierarchical treatment
where the parameters of the prior would be kept as free un-
known parameters and inferred jointly with the true ozone
time series. In cases where the hyperparameters are tightly
constrained by the data and do not strongly co-vary with
the parameters of interest (here the underlying ozone time
series), estimating and fixing the hyperparameters from the
data before the main analysis is an excellent approximation
to the full hierarchical model. 2

4.2 Testing BASIC with synthetic data

We designed synthetic tests to evaluate whether the BASIC
approach was effective in retrieving the “true” ozone time
series given a set of four ozone composites that had jumps,
drifts, and noise, similar to those we encounter in the existing
datasets. Overall, we found the BASIC approach to be suc-
cessful at estimating ozone and, in particular, better than any
individual composite that contains artefacts. These synthetic
tests are presented in Sect. A5.1.

The BASIC composite result for the 0–10◦ N 2.2 hPa time
series is given in Fig. 6a, with all four composites, and the
BASIC composite with uncertainties at 2 standard deviations
(dotted lines) and 68, 95, and 99 % credible intervals (dark,
medium, and light grey shading); the differences in Fig. 6a
relative to the BASIC composite are shown in Fig. 6b. It is
clear that the BASIC approach has successfully accounted
for (i) the early drift prior to 1991 in GOZCARDS resulting
from the use of NCEP reanalysis temperatures and (ii) the

2We leave a more careful hierarchical analysis to future work,
expecting this approximation to have a small impact on the results,
but outline the full hierarchical model briefly below for complete-
ness. In the generative hierarchical model, the true ozone time series
are generated from the transition prior as

yt = yt−1+1t

1t ∼N [µm(t),σm(t)],

where the mean µm and variance σm depend only on the month of
the year,m(t), corresponding to the time step t , and broadly capture
the stochastic month-to-month variability as described above. The
individual composite datasets are then generated from the Gaussian-
mixture model described in Eq. (7) as

dt,c ∼ (1−β)N (yt,c,σ 2
t,c)+βN (yt,c,γ 2σ 2

t,c),

where β and γ describe the outlier rate and outlier uncertainty infla-
tion factor, respectively, and σt,c is the assumed measurement un-
certainty. Since in general we do not know the hyperparameters of
the prior (µm and σm) or the Gaussian-mixture nuisance parameters
(β and γ ) a priori, the most principled Bayesian solution is to infer
the joint posterior distribution for the true ozone time series y and
the hyper and nuisance parameters together, and formally marginal-
ize over the latter. We leave this full treatment to future work and
here estimate and fix the prior hyperparameters, and choose the
Gaussian-mixture parameters heuristically.
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high scatter in both the SAGE composites prior to 1991
and mainly in SWOOSH prior to 2004 resulting from the
low sampling of the occultation instruments used. When dis-
agreement between composites increases, or the priors inflate
the uncertainties, the BASIC composite uncertainty estimate
naturally inflates to allow for the higher uncertainty during
that period; on the other hand, the BASIC composite uncer-
tainties reject most of GOZCARDS prior to 1989 by being
outside the 99 % credible interval.

Another example, at the higher pressure of 10 hPa, is given
in Fig. 6c and d. Here, we see that the BASIC approach has
accounted for (i) the SBUV-MER problem following the Mt.
Pinatubo eruption, during which SBUV-MOD measurements
are not provided, (ii) rapid steps in the SBUV composites
between 1995 and 2001, and (iii) some of the drifts in the
SBUV composites during the same period. What is clear
here, especially in the period after 2002, is that while the
BASIC composite reproduces most of the variance, it cannot
determine whether the higher amplitude variance of the QBO
signal in the SAGE composites is more likely to be correct
than the SBUV composites, though we know the reason is
due to the lower vertical resolution of the SBUV-type instru-
ments and that the QBO represented by the SAGE compos-
ites is more likely to be correct (see Sect. 4.3). We do not
currently have a solution for this particular issue, though the
errors do inflate naturally to accommodate this uncertainty,
and so typically within the uncertainties this issue is captured
by the BASIC approach.

Finally, to show how the BASIC approach operates in
a completely different regime to that near the Equator, in
Fig. 6e and f we give an example at 6.8 hPa and 50–40◦ S.
Here, ozone lacks a semi-annual component of variability.
Except for between 1993 and 2001, all four composites show
broadly similar variability. The SAGE composites again ap-
pear to show spikes that are not present in the SBUV com-
posites, and indeed on many occasions do not occur in both
SAGE composites. Therefore, many of these are rejected by
the BASIC composite. We cannot discount that some of these
artefacts are a result of the better resolution in the SAGE
composites and may be real, for example, unexplained arte-
facts after 2008, but these are generally found to remain at
or within the 99 % credible interval. Following the instru-
ment change in SBUV-MER in 1994, and until 2001, we
see anomalous behaviour in SBUV-MER that is rejected by
the BASIC composite at the 99 % level throughout this pe-
riod; between 1995 and 1997, SBUV-MOD also displays be-
haviour quite different to the other composites, and this is
also generally rejected.

4.3 Further examples of problems resolved by the
BASIC approach

In Sect. 2.2.1 and 2.2.2, we showed examples of differences
between composites based upon the same, or similar, instru-
ment data. It is not always clear by looking at the pairs of

composites, however, which is more likely to be correct:
drifts and rapid changes occurring over a few months cannot
be immediately attributed to a specific composite. However,
as we will now demonstrate, additional information from the
literature, knowledge of when instruments are added or re-
moved within the composites, and looking at the differences
of all four composites at the same time, helps to build confi-
dence in attributing the source and reason for the deviation,
and then correcting it – these are encoded in the uncertainties
of each composite as discussed in Sect. 3.1. We also show the
effectiveness of the BASIC approach in accounting for most
of these artefacts. The final BASIC ozone composite prod-
uct that integrates information from all four composites is
denoted “BASIC”. However, it is also possible to only use
information from either the SBUV pair (“BASIC(SBUV)”)
or SAGE pair (“BASIC(SAGE)”) of composites (with SVD
uncertainties and transition priors constructed using only the
respective pairs of data), which elucidates how the prior in-
formation applied in the BASIC algorithm is able to perform
if information is missing from the other pair of composites.
In other words, a correction of artefacts (e.g. drifts in SBUV
composites) that do not appear in differences of just one com-
posite pair strengthens our claim that the BASIC approach is
correctly accounting for artefacts in the composites. For clar-
ity in the figures introduced here, we do not provide uncer-
tainties on the BASIC results presented.

In Fig. 7, we show two examples of the four
ozone composites at 0–10◦ N, at 2.2 hPa (Fig. 7a–g) and
4.6 hPa (Fig. 7h–n). Below the absolute time series (Fig. 7a
and h) are six plots (Fig. 7b–g and i–n), which are the dif-
ferences between each pairing of composites (black); the
absolute BASIC composite ozone is shown with a dotted
line, and differences of the BASIC, BASIC(SAGE), and BA-
SIC(SBUV) compared to the composites are given in red,
blue, and orange, respectively. Once again, the early drift
(e.g. Fig. 7b SWOOSH – GOZCARDS) and the steps (e.g.
Fig. 7n SBUV-MER–SBUV-MOD) are clearer in these re-
stricted latitude bands than in the broader equatorial band
presented in Figs. 2c and 3c. However, considering these
different pressures and latitudes, and the SBUV–SAGE dif-
ferences (Fig. 7c–f), additional anomalous behaviour is re-
vealed, which we list and discuss in the following.

1. The most significant problem in creating a unified cal-
ibration for all SBUV instruments is the orbital drift
(McPeters et al., 2013). Ideally, the local time at Equa-
tor crossings should be the same each orbit, and the or-
bit should be near polar to attain near-global coverage.
However, NOAA satellites slowly drifted over time,
changing from near 14:00 LT (local time) (10:00 LT,
NOAA-17) Equator crossings to late afternoon (early
morning, NOAA-17) Equator crossings. NOAA-9, -11,
-14, and -16 drifted through the terminator and be-
gan making early morning measurements. The Equator-
crossing time for each of the SBUV satellites is shown
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2.2 hPa/0–10° N

10 hPa/0–10° N

6.8 hPa/50–40° S

Δ
Δ

Δ

Figure 6. Ozone time series at three stratospheric locations from 1985 to 2012, all bias shifted to the mean of SWOOSH after August 2005.
(a) Absolute ozone at 2.2 hPa over 0–10◦ N from SWOOSH (light blue), GOZCARDS (blue), SBUV-MER (yellow), and SBUV-MOD (red).
The BASIC composite mean estimation (black) is plotted with shading representing 68 % (dark grey), 95 % (grey), and 99 % (light grey)
credible intervals (CIs); these CIs are not Gaussian, so 2 times the standard deviation is also plotted with thin dotted lines. Panel (b) is the
same as (a), but now for the difference relative to the BASIC composite. Panels (c) and (d) are as the same as (a) and (b) at 10 hPa and
0–10◦ N, and (e) and (f) are the same as (a) and (b) at 6.8 hPa and 50–40◦ S. Vertical dashed and solid lines in panels (b), (d), and (f) identify
changes in the instruments used in the composites.

in Fig. 1 between the SBUV-MOD and -MER com-
posite information. Any instrument or calibration errors
may be significantly enhanced for observations taken as
the orbit approaches the terminator, such that the or-
bit drift can lead to an apparent time-dependent trend
in ozone that could be misinterpreted as real; McPeters
et al. (2013), DeLand et al. (2012), and Bhartia et al.
(2013) do not recommend the use of near-terminator
data for this reason. Accordingly, SBUV-MOD, with
the exception of NOAA-11, does not include any ob-
servations taken outside the 08:00–16:00 LT equatorial
crossing time range (marked as dotted horizontal lines
in Fig. 1) and similarly SBUV-MER prioritizes mea-
surements made while instruments are in their optimum
orbits. The clearest example of this drift-related trend
can be seen in Fig. 7k, m, and n in all differences with

respect to SBUV-MOD between 1995 and 1998 (until
2000 with respect to SBUV-MER in Fig. 7n); there is
then a reversed drift until after 2000. The differences
with the SAGE composites indicate that a 1994–1995
drift is likely in SBUV-MER from the exclusive use
of NOAA-9; for 1995–1997, the drift is probably in
both but more prominent in SBUV-MER differences;
the 1997–2000/2001 drift is more likely in SBUV-
MER with the exclusive use of NOAA-11 (SBUV-MOD
merges NOAA-11 with NOAA-14). Other smaller drifts
between the SBUV composites are visible in Fig. 7, e.g.
in 2001 and 2002. While BASIC(SBUV) and BASIC
were able to account for the large discontinuity present
in Fig. 7n, BASIC(SBUV) is unable to account for the
1997–2000 drift in SBUV-MOD. We do inform the BA-
SIC approach that the uncertainties should be increased
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2.2 hPa/0–10° N

4.6 hPa/0–10° N

Δ
Δ

Figure 7. Ozone time series at two stratospheric locations from 1984 to 2014, all bias shifted to the mean of SWOOSH after June 2005.
(a) Absolute ozone at 2.2 hPa over 0–10◦ N from SWOOSH (light blue), GOZCARDS (blue), SBUV-MER (yellow), and SBUV-MOD (red).
(b–g) The difference between each pairing of the four composites and with the BASIC composite (see legends). Panels (h–n) are the same
as (a–g) but at 4.6 hPa and 0–10◦ N. Solid and dashed vertical lines represent months with a change in the instrument used to construct the
composite (colours are with respect to the composite colour in panels a and h).

in the SBUV composites during the drift period 1995–
2000 (from 1994 in SBUV-MER), so uncertainties are
equal for this period in BASIC(SBUV). Nevertheless,
with the inclusion of the SAGE composites this drift
can be accounted for (red line in Fig. 7j–n), which fur-
ther reinforces the need for information from all com-
posites to resolve problems. Confirmation of drift prob-
lems during the periods mentioned (DeLand et al., 2012;
McPeters et al., 2013; Kramarova et al., 2013b; Frith
et al., 2014) justifies using it as prior information to
down-weight these data for this time (see Sect. A1 for
more information).

2. The apparent high scatter at 2.2 hPa in all differences
involving SAGE composites (i.e. Fig. 7b–f) during the
periods of 1985–1991 and 1997–2004 coincides with
periods when only occultation instruments were ac-
tive (SAGE-II, UARS/HALOE, and ACE-FTS). Toohey
et al. (2013) and Sofieva et al. (2014) convincingly
demonstrated that insufficient and/or inhomogeneous
sampling can result in inaccurate monthly estimates
and even induce spurious spikes in ozone time series;

coarse-sampling occultation-type instruments such as
GOMOS and ACE-FTS can lead to differences of up
to 20 %. This can especially affect seasonal cycle repre-
sentation, especially at high altitudes where ozone un-
dergoes rapid variations with latitude and time of day.
This is why spurious variability from occultation in-
struments is clearly evident in Fig. 7 during the afore-
mentioned periods. Even though satellite measurements
from limb viewers have a lower vertical resolution
than occultation, these are still sufficient to reduce the
monthly zonal-mean scatter in the SAGE-based com-
posites when overlaps with occultation instruments oc-
cur (e.g. 1992–1997 in GOZCARDS). The BASIC–
GOZCARDS difference in Fig. 7e agrees closely with
the month-to-month artefacts that are highlighted in the
SBUV-MER–GOZCARDS difference. This is not be-
cause of the information provided in the SBUV compos-
ites, which do not display this behaviour, but because
the deviation from the natural seasonal cycle is so high
that the month-to-month seasonal variability is more
informative. This is confirmed by the high agreement
between BASIC–GOZCARDS with BASIC(SAGE)–
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GOZCARDS on these short timescales in Fig. 7b, the
latter of which contains no knowledge from the SBUV
composites.

3. The drift between the SAGE composites prior to 1991
(Fig. 7b and i; see Sect. 2.2.2) is largely absent in
the SWOOSH composite compared to SBUV com-
posites (Fig. 7c and d), confirming it as a feature of
GOZCARDS only. It is clear from Fig. 7e that the
artificial trend in GOZCARDS prior to 1991 is fully
accounted for by BASIC, and once again the agree-
ment of BASIC–GOZCARDS with BASIC(SAGE)–
GOZCARDS in Fig. 7b shows that the information in
the SAGE composites alone is sufficient to eliminate
most, though not all, of this problem. No prior informa-
tion about the drift being in GOZCARDS is provided
to the BASIC approach – the ability for the BASIC ap-
proach to account for the drift is most likely because
SWOOSH agrees with the prior information from the
seasonal variability (in the transition prior) much better
than GOZCARDS.

4. A small downward step in the SAGE composite differ-
ence in Fig. 7b and i in 2004 occurs around the time
both SAGE composites have an instrument change. This
feature is more evident in the differences between GOZ-
CARDS and the SBUV composites than for SWOOSH,
at both altitudes. At the lower altitude of 4.6 hPa in
Fig. 7i, it appears that BASIC(SAGE) could not ac-
count for the jump in GOZCARDS and ends up slightly
offset from the black difference line. The BASIC ap-
proach performs better with the additional information
provided by the SBUV composites and fully accounts
for this jump.

5. A prominent feature in Fig. 7j–m is the approximately
2- to 3-year oscillation. This is the result of lower ver-
tical resolution in the SBUV observations, which leads
to a damping of the quasi-biennial oscillation (QBO)
signal in SBUV relative to the higher resolution instru-
ments of the SAGE-based composites; at 3 hPa SBUV
has a vertical resolution of approximately 6–7 km, while
the SAGE-based instruments are usually better than
3.5 km – the vertical resolution only gets larger for
SBUV with lower altitude, reaching a maximum of
∼ 15 km below the tropopause (Bhartia et al., 2013).
After 2003, the resolution effect is more clearly vis-
ible in Fig. 7h, since many of the other instrument-
data/composite artefacts are absent. Kramarova et al.
(2013a) showed that by applying the SBUV resolution
kernel to higher vertical-resolution Aura/MLS data led
to good agreement with SBUV data. Focusing on the
period after 2005 in Fig. 7h–n, it is evident that BASIC
is unable to distinguish between the QBO represented
in the SAGE and SBUV composites; this is because un-
certainties are similar during this period and composite

issues are generally absent. We discuss this further in
Sect. A5.2.

6. Following the eruption of Mt. Pinatubo in June 1991,
there is a large drop in SBUV-MER at 10 and 16 hPa due
to interference in viewing from volcanic aerosols (not
shown here, but see Fig. 6c and d), which is absent in the
SAGE composites; SBUV-MOD does not include data
during this period. Ozone is usually depleted by sulfate
aerosols following a volcanic eruption but at lower alti-
tudes. Due to the rapid departure of SBUV-MER from
the SAGE composites, the BASIC composite predicts
that the SAGE composites are more likely to be correct
during this period. To be clear, the BASIC approach can
adapt to rapid, unexpected changes in ozone: if all the
datasets had shown a sudden and similarly large change
that was significantly different from the prior expecta-
tion for that month, it would tend towards a tighter clus-
ter of observations as more likely than the broader prior
estimate. We discuss this period further in Sect. A5.2.

7. For completeness, steps in the SBUV composites in
Fig. 7k, m, and n, discussed in Sect. 2.2.1, occur in 1995
and in 2003, 2004, and 2007 in Fig. 7n; though these
are not the only times that steps occur; prominence of
steps depends on altitude and latitude. The BASIC ap-
proach accounts for these discontinuities, which is most
clear for the large jump in the SBUV–MOD compos-
ite in Fig. 7k, m, and n; absence of a jump in Fig. 7i
confirms the success of the BASIC approach. For the
BASIC(SBUV)–SBUV-MOD case in Fig. 7n (orange),
which relies exclusively on the SBUV composites, the
large step in 1994/1995, and drift that follows, is mostly
accounted for.

5 Results

Now that we have established the validity of the BASIC
approach and constructed an ozone composite from GOZ-
CARDS, SWOOSH, SBUV-MOD, and SBUV-MER, we
turn to analysing trends and modes of variability. This is of-
ten performed using MLR (WMO/UNEP, 1994; Soukharev
and Hood, 2006; Chiodo et al., 2014; Kuchar et al., 2015;
Harris et al., 2015). However, the use of DLM, first applied to
ozone data by Laine et al. (2014), appears to be more robust
at estimating the background trend, especially if it is non-
linear. Laine et al. (2014) noted this when comparing their
DLM results with the MLR results of Kyrölä et al. (2013)
where linear trends were sometimes found to be inverse to
those estimated using DLM. We performed tests upon the ar-
tificial time series used to evaluate the performance of both
methods with the BASIC approach (Sects. 4.2 and A5.1). We
briefly introduce both methods below. We compare their per-
formance on the artificial time series and the BASIC correc-
tion, introduced in Sect. A5.1, in Sect. A6. We found that in
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every test case the DLM did equally well, or better, at esti-
mating the true background “trend” than the linear estimate
from MLR (see Figs. A9 and A10) both for non-linear back-
ground trends and for time series with large artefacts.

5.1 MLR analysis

We perform MLR analysis on deseasonalized time series (i.e.
by subtracting monthly means) using five regressors: the F30
radio flux (solar), which is superior to the F10.7 cm radio flux
for representing solar UV variability (Dudok de Wit et al.,
2014); the stratospheric aerosol optical depth (SAOD; Sato
et al., 1993, for volcanic eruptions); the El Niño–Southern
Oscillation (ENSO); and two orthogonal modes of the dy-
namical quasi-biennial oscillation (QBO). These regressors
are displayed in the upper part of Fig. 1. When we anal-
yse decadal trends between 1985–1997 and 1998–2012, we
use a linear trend to estimate the long-term trend. We use
prewhitening and a first-order autoregressive process (AR1)
to account for autocorrelation in the residuals (Tiao et al.,
1990). Statistical significance of the regression coefficients
was evaluated with a Student’s t test.

5.2 DLM analysis

We perform a DLM analysis following very closely the
model and formalism of Laine et al. (2014). We use the same
five regression components as in the MLR. We allow for two
modes of seasonal variability in the fit (with 6- and 12-month
periods), where additional (Gaussian-process) variability of
the sinusoidal seasonal modes is also allowed for (follow-
ing Laine et al., 2014), and variance of the (Gaussian) sea-
sonal model variability σ 2

seas is kept as a free parameter in the
fit. We include an AR1 process, where the variance σ 2

AR and
correlation coefficient ρAR of the AR process are also kept as
free parameters in the fitting process. In contrast to MLR, the
DLM approach allows for a fully non-linear “trend”, where
the degree of non-linearity σtrend is also kept as a free param-
eter in the fit (see Laine et al., 2014 for details). In further
contrast to MLR, the Bayesian DLM approach jointly fits for
the non-linear time-varying trend, the regression coefficients
of the five proxies and seasonal modes, as well as the nui-
sance parameters σseas, σAR, ρAR, and σtrend; uncertainties in
the nuisance parameters and regression coefficients are for-
mally marginalized over when stating inference of the trend,
leading to a principled propagation of uncertainties. Simi-
larly, uncertainties in the nuisance parameters and trend can
be marginalized over when we are interested in the regression
coefficients.

Our DLM analysis follows Laine et al. (2014) except for
some small differences in the prior choices. For σtrend, we use
a positive half-Gaussian prior with zero mean and dispersion
0.0005. For σseas and σAR, we take positive uniform priors
over

[
0,∞

]
, and for the correlation coefficient of the AR

process we take a uniform prior over
[
0,1

]
, assuming that

negative correlations are unphysical in this context. We also
do not impose an external prior on the initial value of the AR
process, as is done in Laine et al. (2014), but draw the initial
value of the AR process from its stationary distribution, i.e.

N
(
0,σAR/

√
(1− ρ2

AR)
)
. Recovery of the DLM parameters

{σtrend, σseas, σAR, ρAR} under the chosen priors is shown
in a set of figures in Sect. A4. As in Laine et al. (2014), we
use MCMC to sample the joint posterior of the DLM param-
eters, regression coefficients of the proxies, seasonal cycle,
and non-linear trend.

5.3 Multi-decadal changes in ozone

Here, we present estimates of changes in ozone between
1985 and 1997, and between 1998 and 2012 (Fig. 8). This is
the first time that DLM has been applied to these composite
datasets, including recently updated SWOOSH and SBUV-
MER. While we focus on the DLM results, we also refer to
results using MLR given in Fig. A11.

Typically, ozone trends are reported as linear decadal per-
centage changes in three latitude bands in the Southern
Hemisphere (60–35◦ S), over the Equator (20◦ N–20◦ S), and
in the Northern Hemisphere (35–60◦ N) with sub-periods
ending and starting in December 1997 and January 1998, re-
spectively, as shown in Fig. 8 (Fig. A11 for MLR) (WMO,
2014; Tummon et al., 2015; Harris et al., 2015). These
integrated latitude bands were formed by averaging the
area/latitude-weighted 10◦, with the 30–40◦ band receiving
half the weight of the equivalent full band; the resultant time
series were then analysed.

It does not make sense to provide a linear trend estimate
for the non-linear DLM background trend. Instead, in Fig. 8
we give the percentage change of ozone between the first and
last months of the sub-periods, i.e. between January 1985 and
December 1997 (top row), and January 1998 and Decem-
ber 2012 (lower panels). Uncertainties represent the 95 %
credible intervals of the change for all 100 000 samples es-
timated with the DLM algorithm (shading for BASIC, bars
for all others). Since we do not show decadal trends for the
DLM (but do for MLR in the Appendix), we also show as
dashed black lines in Fig. 8 the mean MLR-BASIC linear
trend profiles from Fig. A11, scaled from decadal changes to
the longer 13- and 15-year sub-periods.

In the earlier period (1985–1997), the DLM and MLR pro-
files agree well (within the DLM uncertainty). The DLM-
BASIC typically displays better agreement with the GOZ-
CARDS profiles than the others in the northern and south-
ern midlatitudes, but the mean profile is generally closer to
that of SBUV-MOD over the Equator. Indeed, above 4 hPa,
SWOOSH is typically at or outside the BASIC composite
95 % credible interval in northern and equatorial bands (this
is also the case with MLR). Interestingly, the SBUV com-
posites are often outside the MLR-BASIC uncertainty range
above 7 hPa at midlatitudes in both hemispheres; DLM un-
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60–35° S
20° N–20° S
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35–60° N
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Figure 8. The percentage change in ozone from DLM between 1985 and 1997 (a–c), and 1998 and 2012 (d–f), over 60–35◦ S (a, d), 20◦ S–
20◦ N, and 35–60◦ N (c, f). GOZCARDS, SWOOSH, SBUV-MER, and SBUV-MOD are shown with error bars representing 95 % credible
intervals; for the BASIC composite (black), shading represents uncertainties. The mean linear trend estimate from MLR for the BASIC
composite is given as a black dashed line (no uncertainties) and is the scaled version of the MLR-BASIC decadal trend shown in Fig. A11.

certainties are larger and the four composites are in closer
agreement when trends are analysed using DLM. This might
hint that MLR is being biased by residual variance and/or un-
derestimating error bars, in contrast to DLM, as was observed
in the test cases (see Sect. A6). Overall, the 1985–1997 DLM
results are consistent with previous studies and MLR, with a
significant decline in ozone above 7 hPa at all latitudes, espe-
cially at midlatitudes, and negative but usually insignificant
trend at lower altitudes.

The results for the latter period, 1998–2012, show a signif-
icant positive trend in the upper stratosphere above 7 hPa, as
expected to occur following the implementation of the Mon-
treal Protocol. The result is significant in every dataset anal-
ysed with DLM in both the northern and southern midlat-
itudes for at least one pressure level; for the BASIC com-
posite, the result is clear at multiple altitudes. We note that
the MLR results are only statistically significant at northern
midlatitudes for both SBUV composites and for all compos-
ites in the southern midlatitudes at 3.2 and 4.6 hPa. There
are also statistically significant differences between the mean
MLR-BASIC and the DLM-BASIC profiles over the Equator
and at northern midlatitudes; in the southern region, DLM
profiles for composites are less consistent than when using
MLR, but the DLM-BASIC results are in good agreement.

The DLM profile shapes in the Northern Hemisphere are
consistent with each other, with a negative trend in the lower
stratosphere, though usually insignificant at the 95 % level,
and a positive response in the upper stratosphere, confirm-
ing the result of Harris et al. (2015). Interestingly, with the
exception of SBUV-MOD, the large and significant negative
MLR equatorial trends seen in most of composites at 7 hPa
disappear when using DLM, except in GOZCARDS. This
anomaly was found in an integrated set of seven composites
by Harris et al. (2015), though not in the multi-model mean
of the same composites in Tummon et al. (2015). These re-
sults suggest that it may be an artefact of the analysis ap-
proach rather than a real feature and further investigation is
required.

In Fig. 9, we plot the DLM moving trends as a percentage
change in ozone relative to 1998; only the BASIC composite
uncertainty is presented3, and the MLR-BASIC linear trends
pre-1998 and post-1997 are given as dashed lines; as a guide
the MLR uncertainties are typically smaller than the DLM
(see Fig. A11). From Fig. 9, significant disagreement at 5–

3The uncertainties presented in Fig. 9 include an uncertainty on
the absolute level in addition to that of the trend, while those pre-
sented in Fig. 8 contain only the uncertainty in the change.
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60–35° S 20° S–20° N 35–60° N(a) (b) (c)

Figure 9. The percentage change in ozone (left axis) relative to 1998 (vertical dashed line; horizontal zero line) for the integrated latitude
bands 60–35◦ S (a), 20◦ S–20◦ N (b), and 35–60◦ N (c) and pressure levels from 1 hPa (top; right axis) to 46 hPa (bottom). Only the mean
trend lines are shown for GOZCARDS, SWOOSH, SBUV-MER, and SBUV-MOD; the BASIC composite is shown in black with shading
representing the 95 % credible interval. The MLR trend estimates for the period before and after January 1998 are given as dashed black
lines.

10 hPa at the Equator and 15–22 hPa in the Southern Hemi-
sphere is very much apparent at the altitudes where DLM
and MLR trend estimates disagree on the sign of the trend;
this instability of MLR was also noted by Laine et al. (2014)
and requires investigation in a future publication to under-
stand. Figure 9 also allows us to observe how the background

evolves with time; from this we can see that, while SBUV-
MER often displays large deviations from the group (e.g. es-
pecially at 5 and 7 hPa in all latitude bands), the BASIC com-
posite results are almost always smoothly varying and gen-
erally monotonic to/from the years 1998–2002, meaning that
a comparison between MLR trends and a change between
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fixed dates from the DLM are indeed valid (the exception
possibly being at 1.5 and 1 hPa over the Equator where all
datasets display relatively rapid variations in the sign of the
DLM gradient, though we note this is where data are more
sparse, and temporal sampling can easily be biased by the
large diurnal variability; even so, this altitude region appears
to be where MLR and DLM are most consistent).

Figure 9 is entirely consistent with, and explains why, Har-
ris et al. (2015) was able to show that the choice of pivot
date from the piecewise linear trend using MLR on GOZ-
CARDS led to larger positive trends the later the date of pivot
was chosen, i.e. from 1998 to 2002, most prominently above
10 hPa in both midlatitude bands (see Fig. 7 of Harris et al.,
2015). We see from the DLM trends in Fig. 9 that at many
locations above 10 hPa the gradient is typically zero in 2002,
not 1998, especially at 3, 2, and 1.5 hPa, the exact region
where the biggest increase in the trend was found by Har-
ris et al. (2015); northern midlatitude ozone at 1.5 hPa actu-
ally appears to start increasing a little later, perhaps in 2004.
These results are consistent between all the composites anal-
ysed, including the BASIC composite.

It is interesting to note that the two 1998–2012 midlatitude
BASIC composite profiles in Fig. 8, while determined inde-
pendently of each other, display remarkably similar shapes
in the DLM analysis, suggesting a symmetry in the strato-
spheric driving of ozone changes over this period and, in-
deed, a similar hemispheric recovery following the Montreal
Protocol. In contrast, the lower stratospheric mean-profile
changes from MLR (dashed black lines in Fig. 8) are not sim-
ilar, with a generally (and sometimes statistically significant)
positive trend in the Southern Hemisphere and (an almost
significant) negative trend in the northern midlatitudes.

We propose that the profiles determined by DLM-BASIC
are likely to be a better representation of the change in strato-
spheric ozone than previous estimates. We base this conclu-
sion upon the knowledge that (i) the BASIC approach was
successful in identifying and correcting most known artefacts
in the ozone composites, (ii) the DLM performed better than
the MLR in the artificial ozone time series test cases, and
(iii) the DLM-BASIC outperformed both MLR-BASIC and
DLM of all the “artefact-damaged” artificial time series. The
consistency of independent northern and southern midlati-
tude DLM profiles for both periods would suggest that addi-
tional explanation for why the different hemispheres should
evolve in different ways is not required (WMO, 2014). How-
ever, this also means that further investigation into why
MLR and DLM trend estimates can differ so substantially
is needed.

6 Conclusions

We have presented a novel approach to identify and ac-
count for data artefacts that remain in multiple ozone com-
posites of satellite observations. These artefacts are one of

largest remaining causes of disagreement between decadal
trend estimates made from the many composites available.
Our approach includes estimates of uncertainties using sin-
gular value decomposition, a Gaussian-mixture outlier model
for the likelihood, and prior information in the form of ex-
pected monthly transitions and knowledge of problems in
ozone observations; these are combined via Bayesian infer-
ence. The main output of this process we term the BAyeSian
Integrated and Consolidated (BASIC) composite, which has
been designed to account for differences in ozone compos-
ites that are constructed in different ways and with observa-
tions from different sources. The need for better approaches
to combine ozone composites has been raised in recent years
as an issue needing resolution (e.g. Tummon et al., 2015;
Harris et al., 2015). Harris et al. (2015) stated that it is not
currently possible to make definite assumptions about the
best way to combine data and in what way, especially when
considering multiple composites that use similar, or identi-
cal, underlying datasets. Hassler et al. (2014) noted that the
key to good estimates of long-term trends is the combination
of high-quality measurements and multiple instruments. Our
method both requires and benefits from the availability of
both. Hassler et al. (2014) further state that the consideration
of uncertainties and artefacts is essential, especially when
the trends are small compared to the large natural variabil-
ity (e.g. seasonal cycle), so detailed information is needed
about measurement uncertainties, data jumps due to instru-
ment changes, and drifts. Again, our method is specifically
designed to address these concerns.

The presence of data gaps, biases between instruments,
and issues with sampling, noise, and differences in reso-
lution also enhance uncertainties in trend estimates, which
might lead to artificial trends being extracted in multiple lin-
ear regression (MLR) analysis. To avoid this, we employed,
with refinements, dynamical linear modelling (DLM) (Laine
et al., 2014) and found it to be more accurate than MLR when
considering test cases where all variance is understood. The
combination of the BASIC approach with DLM shows that
the problems listed above can indeed be resolved to improve
estimates of ozone changes on decadal timescales.

The results presented here are a step forward, but we do
not consider the composite a definitive and final product;
there are still issues to resolve, which we extensively dis-
cuss (Sect. A5.2). These caveats include the concern of us-
ing the same instrument dataset more than once, even though
it may be used in separate composites with different prepro-
cessing (Harris et al., 2015). Our recommendation to resolve
this problem, and as the natural next step forward, is to ap-
ply the posterior sampling approach as a method to combine
as many independent datasets as possible, integrating all the
known caveats and uncertainties. This will require an addi-
tional step to the methodology outlined here in order to ac-
count for absolute bias between the datasets, but we do not
consider that this will cause significant difficulties.
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From the DLM analysis, the estimated changes in ozone
between 1985 and 1997, and then between 1998 and 2012,
show good agreement with the shape of the ozone profiles
presented by Harris et al. (2015), where seven composite
datasets were combined with various approaches to estimate
errors. The BASIC composite results using DLM (and MLR)
show remarkably similar profile shapes and magnitudes for
the earlier period. The implication for the latter period, then,
is that ozone is indeed clearly and significantly recovering
in the upper stratosphere as a result of the Montreal Proto-
col, which has not previously been demonstrated universally
with significance from observations, though Shepherd et al.
(2014) demonstrated that the recovery was indeed underway
by removing dynamics that interfere with calculating trends
using a model with specified dynamics. The largest uncer-
tainty in the estimates of Harris et al. (2015) came from con-
sidering instrument drift. Since the BASIC composite has ac-
counted for much of this uncertainty, we can be confident that
our smaller uncertainties represent an improvement. Further,
the BASIC composite typically rejects outliers inconsistent
with other composites, or otherwise inflates uncertainty esti-
mates, leading to our assertion that the estimated uncertain-
ties are probably a reasonable reflection of the uncertainty in
the observations. Uncertainties on the decadal trends can be
further reduced with additional regressors, in addition to a
new composite based upon independent instrument datasets
rather than the four composites we considered here.

We will make the BASIC composite available and
provide supporting documentation should the composite
be updated. The composite is available for public use
at https://data.mendeley.com/datasets/2mgx2xzzpk/1 (Als-
ing and Ball, 2017). In future work, we will extend the
latitude and altitude range and time period covered, which
should lead to more robust results and an improved assess-
ment of ozone trends in the stratosphere.

Data availability. The BASIC composite is available at https://
data.mendeley.com/datasets/2mgx2xzzpk/1; please cite this publi-
cation and the citation for the data page, Alsing and Ball (2017),
when using the data.
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Appendix A

A1 Additional information on SBUV composites

In the construction of SBUV-MER, ozone was considered in
5◦ daily zonal means and was used in regressions over pe-
riods of instrument overlap to account for different variabil-
ity and combine datasets into the composite; this was also
used to identify and account for biases. Specific caveats of
the SBUV-MER composite include (see also Fig. 1) (i) the
NOAA-11-16 overlap is very short, so only a bias offset was
applied; (ii) to avoid a propagation of non-physical NOAA-9
trends to the earlier Nimbus-7/NOAA-11 periods, Nimbus-7
and NOAA-11 are not adjusted – this is the major difference
between the dataset in Tummon et al. (2015) and the revised
dataset used here – only NOAA-9 is adjusted between the
two parts of NOAA-11, and NOAA-14 is used as a bridge to
the descending part of NOAA-11, but does not appear in the
final dataset; (iii) there are large differences in the slope and
intercept between 20 and 3 hPa, especially with respect to
the adjustment of NOAA-14 to NOAA-11 during the 1997–
2000 overlap; (iv) while NOAA-16 and -17 are consistent
with respect to SAGE-II instrument observations, the correc-
tion approach is not as effective for NOAA-16 and -17 at
higher pressures (lower altitudes) at latitudes away from the
Equator.

In the construction of SBUV-MOD, Frith et al. (2014)
looked at offsets in the total column ozone and showed
that instruments typically agreed within the stated uncer-
tainty estimates from Monte Carlo simulations, so no ad-
ditional offsets were applied to further correct them. Kra-
marova et al. (2013b) and Labow et al. (2013) had also previ-
ously shown that the SBUV total ozone agrees to within 1 %
with the ground-based Brewer–Dobson instrument network,
lidar, and ozonesondes, and was consistent with SAGE-II
and Aura/MLS satellite observations to within 5 %. McPeters
et al. (2013) also state that instrument overlaps agree to
within ∼ 1 % in the globally integrated (60◦ N–60◦ S) to-
tal ozone column (TCO), although vertical profiles from
NOAA-9, -11, and -14 had the biggest non-random differ-
ences of around 2.3 % between instruments at 2 hPa, related
to orbit drift, data gaps, and residual uncertainties, while
NOAA-16 and -18 showed differences with standard devia-
tions of ∼ 1.3 %. However, despite all of this, it is clear from
Fig. 7 of Frith et al. (2014) that they were able to identify
offsets in the TCO – these offsets mimic the structure of the
offsets between the SBUV composites we show in Fig. 2c,
indicating that while small in total column, they are on the
order of 5 % in the vertical profile, vary in magnitude and
sign throughout the atmosphere, and potentially mask offsets
in the integrated column.

Kramarova et al. (2013b) and DeLand et al. (2012) also
have shown that the 1994–2000 period is of worse quality
than earlier and later periods (Frith et al., 2014); DeLand
et al. (2012) recommend that NOAA-9 should not be used,

which is why NOAA-14 is used for this period in SBUV-
MOD, although NOAA-11 drifts from 16:00 to 18:00 LT dur-
ing the 1994–1995 period, for which NOAA-9 is alterna-
tively used in SBUV-MER. A quality “tier” for the satellites
was provided in Frith et al. (2014), which is useful in the
compilation of the SBUV TCO Merged Ozone Dataset, with
drifts tending to cancel in NOAA-11 and -14 overlaps from
1997 to 2000 in TCO, but this does not reveal the profile
uncertainties and drifts. The use of the priors for the BA-
SIC composite was necessary to identify and account for the
drifts.

A2 Additional information on the SAGE composites

Due to the low temporal sampling of SAGE-II (15 sun-
rise/sunset events per day), as opposed to the ∼ 3500 limb
emission profiles per day from Aura/MLS, binning of data in
GOZCARDS is done into 10◦ latitude averages, and datasets
are connected by accounting for biases between dataset over-
laps. It should be noted that biases always exist between in-
struments due to calibration, spatial and temporal sampling,
profile resolution, signal variability, or retrieval errors. For
example, Toohey et al. (2013) showed that occultation sam-
pling errors with respect to emission measurements could
reach 10–15 % at high latitudes when atmospheric variabil-
ity was large. The processing procedure, which occurs before
data are binned into latitudes, attempts to remove outliers and
impacts from clouds or aerosols and they do not disregard
data arbitrarily or attempt to fill in spatial or temporal gaps.
The impact of using SAGE II v6.2 instead of v7.0 is dis-
cussed by the GOZCARDS team (Froidevaux et al., 2015),
which shows very little systematic differences in number
density, but leads to large differences when converted to vol-
ume mixing ratio (vmr) with temperature from either NCEP
or MERRA (as confirmed by Maycock et al., 2016; McLin-
den et al., 2009). We note that small drifts of ∼ 0.5 % yr−1

do exist between HALOE, SAGE II, and Aura/MLS (Nair
et al., 2012; Kirgis et al., 2013), and Nazaryan and Mc-
Cormick (2005) and Hubert et al. (2016) suggest that most
of the datasets used in GOZCARDS have good stability.

In SWOOSH, basic data prescreening is based on pub-
lished recommendations from satellite instrument teams.
SAGE-II ozone screening follows the recommendations of
Wang et al. (2002) to remove aerosol contamination and poor
quality retrievals; any profile containing more than 10 % un-
certainties between 30 and 50 km are removed. SWOOSH
also applies additional screening for profiles before Novem-
ber 1992 affected by the Mt. Pinatubo eruption, using infor-
mation from the NO observing channel. Offsets applied to
the non-reference instrument data vary only by pressure and
latitude but not time, such that if drifts exist they may not be
accounted for in SWOOSH and GOZCARDS.

We briefly note (and indicate in Fig. 1) technical de-
tails in the construction of the SAGE-based composites:
(i) for GOZCARDS, there are no months where SAGE-II
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°	S

Figure A1. Visual summary of the ozone composites used here. From top to bottom: the latitudinal grid (dots represent the grid centre;
lines represent the boundaries); the vertical grid; the percentage of months between 1985 and 2012 where data are available as a function
of latitude and pressure level; the data availability as a function of latitude and time at 46 hPa; the data availability as a function of pressure
level and time at 55◦ S. Apart from the third panel, colours are related to each of the composites: GOZCARDS (blue), SWOOSH (light blue),
SBUV-MER (yellow), and SBUV-MOD (red).

and ACE-FTS overlap in the NH-tropics due to ACE-FTS
coverage being poor; (ii) McLinden et al. (2009) noted that
UARS/HALOE and MERRA confirm that there were arte-

facts in SAGE-II after 30 June 2000, so these data are not
used at altitudes above 3.2 hPa; and (iii) problems with the
SAGE-II azimuth gimbal in mid-2000, and corrected by
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Figure A2. The square root of the latitude-weighted number of observations at 1 hPa between 20◦ S and 20◦ N in each of the composites:
GOZCARDS (blue), SWOOSH (light blue), SBUV-MER (yellow), and SBUV-MOD (red).

November, meant there was only a 50 % duty cycle during
that period, when it already took about a month to collect
data to fully cover latitudes 80◦ S to 80◦ N.

A3 Additional information, results, and discussion on
the BASIC approach

A3.1 Effect of the Box–Tiao equation

In Fig. A3, we show 25 plots for five values of γ combined
with five values of β. In this plot, we imagine an idealized
scenario of four composites in 1 month with mean values at
−1.5, −1, +1, and +1.5, all with an uncertainty of σ = 0.2.

It is clear that for either low values of γ , and/or low val-
ues of β, we get the expected result assuming all data are
independent (which is the dotted line in all plots), but this is
inadequate as such a probability density function (pdf) (dot-
ted line/black thick line) does not represent any of the data
and is in a region of low probability. For large values of β
and γ (top right), we end up with belief in any of the data
points being low (i.e. we enhance σ 2 by a factor of γ 2) with
any affect from the second (separation) term beginning with
(1−β) killed off by β ∼ 1; clearly this scenario is not what
we are looking for. As the aim is to essentially enhance re-
gions where data agree and reduce belief in outliers, the pre-
ferred region of interest is for intermediate values of β (0.1–
0.9) and γ > 10. From this, we choose β = 0.1 and γ = 100
as this appears to reflect well the desired separation into a
multi-modal pdf that represents two independent sets of data
(e.g. blue and red/yellow groups).

In terms of its effect on the BASIC composite time series,
when combined with a prior expectation, this can lead to the
expected time series following one pair (in the example given
in Fig. A3) after it has become clear that a jump/offset has
occurred, whereas low γ or low β leads to getting an average
of all the composites with a bias introduced by the prior.

A4 Additional information on DLM parameter
estimation

In Figs. A4–A7, we show the recovered poste-
rior distributions for the DLM nuisance parameters
{σtrend, σseas, σAR, ρAR} resulting from the DLM analysis
of the BASIC composites performed in Sect. 5. In the case
of σtrend (Fig. A4), the posteriors (red) are shown against the
applied half-Gaussian priors (blue). In this case, the choice
of prior is particularly subjective – in the case where σtrend is
allowed to attain large values, the DLM can collapse into a
case where the “trend” has so much freedom it can follow
the data exactly and capture all variability. Therefore, it is
necessary to choose a sensible upper limit on σtrend, i.e. on
the maximum allowed variability of the smooth background
trend. In this study, we chose for the prior on σtrend a half
Gaussian, centred on zero, with dispersion 0.0005. All other
parameters are given uniform priors.

A5 Success of BASIC approach in accounting for
artefacts between composite versions

BASIC composite results in the main article uses SWOOSH
data version 2.6. We originally used version 2.5 (version 2.1
was used by Tummon et al., 2015 and Harris et al., 2015),
which was updated to account for an error which led to
Aura/MLS being offset in absolute terms by one vertical
level. This artefact was clear in our original analysis, and we
present an example here to show that the BASIC composite
constructed with four composites is relatively unaffected by
these types of artefacts.

In Fig. A8, we show the same results for the BASIC com-
posite (black) and SWOOSH version 2.6 (light blue) as in
Fig. 6a and b at 2.2 hPa and 0–10◦ N. In addition, we also
show SWOOSH v2.5 (purple) and in red the BASIC com-
posite based on the same input data, but with SWOOSH
v2.5 instead of v2.6 (“BASIC(SWv2.5)”). Prior to 2004, the
SWOOSH v2.5 line is offset by ∼+0.3 ppm from the zero
line (i.e. relative to BASIC) and SWOOSH v2.6 in Fig. A8b.

www.atmos-chem-phys.net/17/12269/2017/ Atmos. Chem. Phys., 17, 12269–12302, 2017
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Figure A3. Example of Box–Tiao effect on idealized data with a mean of −1.5, −1.0, 1.0, and 1.5 (arbitrary units), with blue, cyan, yellow,
and red, respectively, all with the same uncertainty σ = 0.2. Dotted lines in all plots represent the pdf resulting from multiplying all data
treating them as independent. The solid black line represents the pdf following the Box–Tiao equation. Values of γ and β used in the
Box–Tiao equation in each plot are shown along the upper and right axes.

While there are small variations in the BASIC(SWv2.5) (red
line), it also sits close to the zero line, typically with an offset
of ∼+0.05 ppm and ranges between zero and ∼+0.1 ppm.
We find that the BASIC composite is similarly unaffected by
offsets in the previous version of SWOOSH at other loca-
tions.

This example gives us further confidence that when mul-
tiple composites are available, the BASIC approach does a
good job of accounting for artefacts that exist in only one
dataset.

A5.1 Test of BASIC approach using artificial time
series

Given that we do not have any certain measurements against
which to test our approach, we need to demonstrate how the
BASIC approach operates in ideal, known conditions by us-
ing artificial test cases where all the variance is understood.
With that in mind, we designed three sets of tests; we present
one here and consider DLM and MLR analysis on the other
two in Sect. A6.

To create test cases, we took a real ozone time series
and from that estimated the regression coefficients of solar,

Atmos. Chem. Phys., 17, 12269–12302, 2017 www.atmos-chem-phys.net/17/12269/2017/
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Figure A4. Recovered posteriors on σtrend (red) and the chosen half-Gaussian prior with dispersion 0.0005 (blue) from the DLM analysis
performed in Sect. 5.

ENSO, volcanic aerosols, and two QBO terms using MLR
(as in Sect. 5.1), and then reconstructed the ozone time se-
ries with these known regressor coefficients, in addition to
a realistic seasonal cycle based upon similar variability in
the observations. We add a Gaussian noise term but drop un-
known residual variance. To represent instrument artefacts
and drifts similar to the situation we have here with the SAGE
and SBUV composite pairs, we produce artefact time series
that are different between pairs, with some other differences
within the pairs – these are shown in Fig. A9b as the straight
lines. We add these, with different realizations of Gaussian
noise for each “instrument”, to the artificial time series to
produce the “damaged” ozone time series shown in light
blue, blue, red, and yellow in Fig. A9a. We then proceed by
applying the BASIC approach to the four “damaged” time
series exactly as with the real ozone time series/composites;
the result is shown in black with the 95 % credible interval
in Fig. A9a. The difference of the four artificial time series,
relative to the undamaged ozone time series (not shown), are
shown in Fig. A9b.

We specifically built the artefact time series to provide dif-
ficulties for the BASIC approach. For example, in Fig. A9b
at around month 50, all the damaged time series disagree
with the undamaged, target ozone time series in the same
direction to show that the BASIC algorithm is unable to re-

produce the undamaged ozone time series if none of the ob-
servations/composites correctly represent ozone during this
period. Thus, if all observations are wrong, there is nothing
that can be done to resolve the issue other than modelling
using, e.g. a chemistry climate model. After month 250, all
the datasets are the same (i.e. there are no artefacts except
the Gaussian noise that simulates instrument noise and pre-
processing differences) and the BASIC approach naturally
matches the artificial time series during this period. Prior to
month 170, only one pair is either drifting or has a jump, but
not both at the same time, though they are all typically offset
from the target: during this period, except when all four are
different from the target (∼month 50), the BASIC result gen-
erally matches the expected ozone within the 95 % credible
interval. The period between months 170 and 210 was de-
signed to be complex, with drifts and jumps occurring within
and between pairs in rapid succession. The BASIC result,
unsurprisingly, does not perform so well during this period
though it does not generally deviate too far from the target;
between 200 and 250, it is closer to one pair, but sits between
all four since there is roughly equal information and uncer-
tainty in each of them. Throughout, when the artificial time
series are far apart, the BASIC result uncertainties typically
increase to accommodate the higher uncertainty.
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Figure A5. Recovered posteriors on σseas from the DLM analysis performed in Sect. 5.

A5.2 Caveats on using the BASIC approach

So far, we have discussed several drawbacks with the current
version of the BASIC approach presented here. Here, we col-
late and list these, and briefly discuss potential solutions for
the future, where available.

1. Vertical resolution: This is a problem related to the dif-
ferent averaging kernels of the various instruments used
to construct the composites – the SAGE composites use
instruments that all have higher resolution than those in
the SBUV composites. This difference in vertical reso-
lution becomes more important at lower altitudes, and
it is clear in the case of the QBO signal being dif-
ferent (Bhartia et al., 2013). Kramarova et al. (2013a)
recommends only using the integrated column from
SBUV data below 25 hPa (16 hPa between ±20◦), be-
cause although SBUV is sensitive to ozone in the tropo-
sphere and lower stratosphere, the vertical distribution
of that ozone is determined by a priori constraints. Al-
ternatively, when making direct comparisons between
SBUV and other high vertical resolution instruments
(e.g. Aura/MLS), Bhartia et al. (2013) advise using the
SBUV kernels to degrade the resolution of the instru-
ment to match the vertical resolution of SBUV before
comparing. However, given that some issues with res-
olution are already evident at 10 hPa (Fig. 6) and that

there is still some useful information in the ozone ob-
servations below 25 hPa, we still consider the data rel-
evant in this study. This issue should not represent a
significant problem when MLR or DLM analyses are
performed since the two QBO regressor terms should
capture much of the QBO variability. However, if one
is interested in the QBO itself, then we would also
recommend using the SAGE-based composites and/or
datasets used to construct them (see also Kramarova
et al., 2013a). We would not endorse a solution based
on de-weighting a composite relative to its vertical res-
olution, because then SBUV will always be at a lower
weight than the SAGE composites and the BASIC ap-
proach will always favour the latter.

2. Double counting: The use of only two pairs of com-
posites, each built using the same underlying instru-
ment data, resolves one of the concerns of Harris et al.
(2015) about biasing our result towards the composites
with the most common instrument data (e.g. five of the
seven composites combined by Harris et al., 2015 used
SAGE-II as a major component). However, this leads to
the problem that for periods when two of the composites
are identical (i.e. not offset and with similar artefacts),
the likelihood estimate may be biased in favour of that
pair, which are being treated as independent datasets
when indeed they are not. An example can be seen in

Atmos. Chem. Phys., 17, 12269–12302, 2017 www.atmos-chem-phys.net/17/12269/2017/
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Figure A6. Recovered posteriors on σAR from the DLM analysis performed in Sect. 5.
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Figure A7. Recovered posteriors on ρAR from the DLM analysis performed in Sect. 5.
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2.2 hPa/0–10° N

Δ

Figure A8. Ozone time series from 1985 to 2012, all bias shifted to the mean of SWOOSH v2.6 after August 2005. (a) Absolute ozone
at 2.2 hPa over 0–10◦ N from SWOOSH v2.6 (light blue), SWOOSH v2.5 (purple), BASIC using SWOOSH v2.5 (red), and the BASIC
composite using SWOOSH v2.6 (black, with shading representing 68 % (dark grey), 95 % (grey), and 99 % (light grey) credible intervals
(CIs), and 2 standard deviations (dotted lines)). Panel (b) is the same as (a) but for the difference relative to BASIC (SWOOSHv2.6).

Δ
Δ

Figure A9. A test case to evaluate the performance of the BASIC approach. Damaged time series are plotted in panel (a) relative to the
mean of months after 250 in light blue, blue, yellow, and red, and the BASIC result in black. Differences of time series in panel (a) relative
to the undamaged (test) time series is shown in panel (b); the straight coloured lines in panel (b) represent the artefacts applied to the
undamaged time series to produce the damaged ones in panel (a); grey and shading in panels (a) and (b) represent the 95 % credible intervals
of the BASIC result. In panel (c), we show the estimated trends over the full period from multiple linear regression (MLR; dashed) and the
dynamical linear model in solid lines. The true trend during this period is zero (dotted line).

Fig. 6b prior to 1991, where the SAGE composites are
offset from each other, but the SBUV composites are at
almost identical levels. It is fortuitous that the level of
SBUV is in close agreement with SWOOSH before and
after 1991, but this may not be the case in other loca-
tions. In reality, we should not treat the SBUV data as

independent during this early period, but this adds fur-
ther complications in making decisions about when they
should be considered independent or not. We choose not
to make this decision as this removes much of the objec-
tivity that the BASIC approach provides. To account for
this in the future, we recommend that the approaches put

Atmos. Chem. Phys., 17, 12269–12302, 2017 www.atmos-chem-phys.net/17/12269/2017/
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Figure A10. Similar to Fig. A9c: two additional tests cases where the only change is that the background trend in panel (a) is linear and in
panel (b) non-linear, as shown with the thick, dotted black line.

60–35° S
20° N–20° S

20° N–20° S60–35° S

35–60° N

35–60° N

O3

 

trend,

 

%

 

dec.–1 O3 trend, % dec.–1 O3 trend, % dec.–1

Figure A11. The decadal trend in ozone from multiple linear regression (MLR) between 1985 and 1997 (a–c) and 1998 and 2012 (d–f), over
60–35◦ S (a, d), 20◦ S–20◦ N (b, e), and 35–60◦ N (c, f). GOZCARDS, SWOOSH, SBUV-MER, and SBUV-MOD are shown with 95 %
credible intervals; the BASIC composite is shown in black with shading representing 95 % credible intervals.

forward here should be applied to the original datasets
underlying the composites, each considered indepen-
dently but with prior information, to construct a com-
posite. This would require an additional step to estimate

the offset between datasets, and to assign one dataset as
a reference, but this would be a relatively straightfor-
ward addition to the procedure.
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3. Restricted altitude range: We currently only consider
the pressure range 47–1 hPa (∼ 20–48 km) as we are
restricted to those covered by all the composites. The
GOZCARDS and SBUV composites go higher, but ob-
servations in this region are subject to rapid diurnal
changes that require good geolocation and temporal
sampling, and the local time of the observations must
be taken into account. MLR trend analysis (Fig. A11)
shows that the composites can display significant, dif-
ferent long-term behaviour at 1.5 and 1 hPa, even be-
tween pairs of composites (though this is less the case
using DLM in Fig. 8); this is also where diurnal vari-
ability is a serious issue, as mentioned by all groups
in either publications or user documentation (e.g. see
McPeters et al., 2013; Davis et al., 2016 and references
therein). This is an issue that is still being investigated
by the community, and we do not address it here. How-
ever, in addition to prescreened data, it may be some-
thing that is possible to resolve with accurate transition
priors, and additional prior information, in addition to
the ones we already suggest using here. Observations
are also available down to 316 hPa, but there are large
gradients in ozone at these levels, so even the relatively
high resolution of the instruments in the SAGE compos-
ites can struggle to accurately resolve variability at in-
dividual layers this low down. However, many observa-
tions do exist, and so when integrating the original data
using the BASIC approach (see previous point), these
layers could be included, and additional prior informa-
tion could also be used to account for the large ozone
gradients.

4. Restricted latitude range: While the composites extend
to higher latitudes than 60◦, at these latitudes the need
for direct or scattered sunlight leads to several months
of the year where data are missing, with increasing peri-
ods of the year without observations closer to the poles.
We do not attempt to fill these data without observations
available. In the future, we could use night-viewing in-
struments such as GOMOS (Kyrölä et al., 2013) to ex-
tend into higher latitudes when these data are available
(i.e. after 2002), but it is not possible to do it prior to
the GOMOS measurements, except potentially through
ground-based observations, though they are usually lim-
ited to lower altitudes than the satellite observations can
consider. In the future, we could also consider extend-
ing the BASIC approach to better estimate ozone during
at least the summer seasons.

5. Mt. Pinatubo: The example given at 10 hPa, and checks
at other locations, clearly indicates that the BASIC ap-
proach is able to avoid the artificial decrease in the
SBUV-MER data between June 1991 and 1992. Frith
et al. (2014) advise caution when using data in the 6–
9 months following the eruption, especially for 15◦ S–
30◦ N. Thus, for this altitude, when using MLR to anal-

yse trends, we also advise caution during this period be-
cause the SAGE pair dominate during this period, and if
Pinatubo-eruption-related artefacts remain in these data,
they will influence the BASIC composite during this
time. One idea to consider would be to increase the prior
de-weighting factor over this period, but this would be
an additional subjective decision, so we prefer to flag
this information instead and find a more elegant solu-
tion in the future. However, such a problem may not be
possible to resolve if the eruption inherently affects ob-
servations which cannot be removed prior to applying
the BASIC algorithm.

Some of these caveats may be resolved with additional in-
formation from the ozone community and by using the BA-
SIC approach to construct a composite from the original, in-
dividual instrument time series. Nevertheless, for the work
involving composites here, we conclude that despite these is-
sues, overall the BASIC approach performs well in estimat-
ing ozone variability. This conclusion is based upon the arti-
ficial test case target time series being well estimated, the re-
sults of the example real ozone time series presented in Fig. 6
that account for known issues, and the success in the case of
the SWOOSH version changes where the BASIC approach
accounts for the problems in SWOOSH in v2.5 in advance
of the v2.6 release (Sect. A5).

A6 Comparison of multiple linear regression and
dynamical linear modelling in estimating long-term
trends

To test the ability of MLR and DLM to estimate the back-
ground trend, we use the artificial test cases presented in
Sect. A5.1 and Fig. A9a, in addition to two more with the
same regressor coefficients and noise, but with linear and
non-linear time-varying background trends (Fig. A10). The
first set has a background, linear, zero trend (Fig. A9c), the
second a linear downward trend (Fig. A10a), and the third a
downward-linear trend plus a non-linear curve that reaches a
minimum in the latter half of the full period before increas-
ing again (Fig. A10b); the true “target” trends are shown in
Figs. A9c and A10a and b as thick, dotted black lines. In
each case, we apply the BASIC approach to the four sets of
artefact-damaged time series, as in Fig. A9. Therefore, we
have 15 test time series, all fully understood. This does not
represent the situation for the real ozone time series since
in many of those cases the MLR residuals (unaccounted for
variability) can typically account for ∼ 50 % of the variance.
However, these tests with artificial ozone time series are in-
dicative of the performance with real time series.

One major advantage of DLM over MLR for estimating
long-term trends is that MLR requires the trend to be pre-
scribed in advance as linear, or piecewise linear trends (e.g.
Kyrölä et al., 2013), or is expected to follow the equivalent
stratospheric chlorine (EESC) curve; (Newman et al., 2001).
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The shape of the EESC, which follows CFC stratospheric
loading that peaked in the mid-to-late 1990s, impacts more
on the sensitivity of the MLR analysis than the period length
does when calculating decadal trends (WMO, 2011). The
main problem in assuming an EESC shape is that the timing
of chlorine minimum is location dependent with, e.g. higher
latitudes lagging those closer to the Equator since it takes
time for chlorine changes to reach different regions. There-
fore, fixing the decline date may lead to misleading estimates
(Harris et al., 2015). The use of the DLM allows this issue to
be circumvented to some degree by not fixing the background
trend or an inversion date (Laine et al., 2014) and allowing it
to vary with time, though this still does not necessarily sep-
arate EESC from dynamical changes related to, e.g. changes
in the BDC (Polvani et al., 2011; Harris et al., 2015).

In Fig. A9c, we plot the MLR (dashed) and DLM (solid)
trend results4. In this example, the true long-term trend is
zero (dotted black line). The only result that is able to stay
within 2 standard deviations of the “truth” is the DLM of the
BASIC result, and usually it is within 1 standard deviation.
The MLR of the BASIC result shows a significant down-
ward trend, and naturally one would not expect the MLR of
the damaged time series to estimate an accurate result. What
is interesting to observe is that the DLM accurately extracts
the drifts in the damaged background trends as well, which
might be useful in future studies to further assess anomalous
behaviour in the composites by interpreting the behaviour of
the DLM results from each composite. The two tests with the
linear and non-linear background trends (Fig. A10) can lead
to essentially the same conclusions, with the non-linear trend
being fitted almost exactly, while MLR is significantly off
from the “truth”. A more thorough assessment of the DLM
with respect to MLR will be made in a forthcoming publica-
tion.

In summary, our tests suggest that when estimating the
long-term trend, the use of the BASIC approach to correct
data, together with the DLM, is more successful and accu-
rate than using MLR or DLM on uncorrected time series.
Therefore, we would recommend using the BASIC approach
combined together with the DLM for the analysis of long-
term trends in ozone, as outlined in this study.

4Note that in these test cases for our DLM inference we assume
a half-Gaussian prior on σtrend with dispersion 0.001 rather than
0.0005. This is for illustrative purposes, to emphasize the impact of
“damaging” the time series on the recovered trend, and we note that
the choice of prior on σtrend is in any case subjective (see Sect. A4).
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