

Supplement of

Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios

Pierre Sicard et al.

Correspondence to: Pierre Sicard (pierre.sicard@aci-he.fr)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

12 **ACCMIP models and RCP scenarios**

13 All models simulate gaseous tropospheric chemistry, with various degrees of complexity: from 16
14 species in CESM-CAM to 110 species in MOCAGE depending on the degree of representation of
15 non-methane hydrocarbon (NMHCs) chemistry in their chemical scheme. The aerosol indirect
16 effects, including interactions between aerosols and gas-phase chemistry, are represented in GFDL-
17 AM3, GISS-E2-R and MIROC-CHEM (Table 1). For future stratospheric O₃ projections, the
18 models are grouped into 2 categories: the first group includes models with interactive or semi-
19 offline chemistry and the second group includes models with prescribed O₃. Some models (e.g.
20 GFDL-AM3, GISS-E2-R, MIROC-CHEM and MOCAGE) include full stratospheric chemistry
21 schemes, while CESM-CAM is based on a linearized O₃ chemistry (i.e. LINOZ scheme, McLinden
22 et al., 2000) and UM-CAM uses the CMIP5 dataset (Cionni et al., 2011) to prescribe offline O₃ in
23 the stratosphere.

24

25 All models simulate temporal and spatial evolution of anthropogenic and natural emissions at global
26 scale such as black carbon (BC), organic carbon (OC), secondary organic aerosols (SOA), non-
27 methane volatile organic compounds (NMVOC), ammonia (NH₃), nitrogen oxides (NOx) from soils
28 and lightning, and carbon monoxide (CO) from oceans and vegetation (see details in Stevenson et
29 al., 2012). Surface methane (CH₄) concentrations, with spatial variation, are prescribed in all
30 models using data from the database of Coupled Model Intercomparison Project Phase 5 (CMIP5),
31 except for GISS-E2-R, in which interactive wetlands emissions for future are used (Shindell et al.,
32 2012). Methane burdens vary with the time slices in all models (Tables 2). Natural biogenic
33 emissions are those given by MEGAN v2.1 inventory, i.e. Model of Emissions of Gases and
34 Aerosols from Nature (Guenther et al., 2012). Biogenic VOCs (e.g. isoprene) depend on
35 meteorological conditions and may be responsible for near-surface O₃ changes (Guenther et al.,
36 2006; Lin et al., 2008; Sicard et al., 2009). Only GISS-E2-R incorporates climate-driven isoprene
37 emissions, the most abundant and reactive biogenic VOC. The other models prescribe fixed
38 biogenic emissions, e.g. based on constant present-day isoprene emissions for all simulations.
39 GISS-E2-R has interactive isoprene but fixed soil NOx (Lamarque et al., 2013; Young et al., 2013).
40 Possible changes in lightning activity with climate change are recognized to impact the lightning
41 NOx emissions (LNOx), therefore most models use the parameterization by Price and Rind (1992)
42 based on the simulated convective activity (e.g. Fiore et al., 2006; Williams, 2009; Lamarque et al.,
43 2013).

44

45 The three RCPs scenarios are named for their nominal radiative forcing level by 2100 (Thomson et
46 al., 2011; San José et al., 2016). The RCP2.6 and RCP8.5 scenarios provide the boundary
47 conditions in terms of 2100 climate change, i.e. by 2100, global mean surface air temperature at the
48 land and ocean ranges from 1.0 to 4.5°C relative to the mean temperature over the pre-industrial
49 period (Lamarque et al., 2013). The rise in global mean surface temperature by the end of the 21st
50 century is in the ranges 2.6-4.8°C (RCP8.5), 1.1-2.6°C (RCP4.5) and 0.3-1.7°C (RCP2.6) at 68% of
51 confidence interval. The greenhouse gas concentrations for the RCPs and their extensions beyond
52 2100 are deeply described by Meinshausen et al. (2011).

53 **Results**

54 **Detailed description of the surface ozone concentration and AOT40 spatial pattern**

55 Figure 1 shows the mean annual O₃ concentration at the lower model layer (Table 1) while Figure 2
56 shows the AOT40 distribution from the ACCMIP models for the historical and RCPs simulations.

57
58 In **CESM-CAM**, the historical highest surface O₃ mean concentrations (35-55 ppb) and AOT40
59 (>30 ppm.h) are observed in the Northern Hemisphere (NH), in particular over Greenland, Canada,
60 Alaska, Mediterranean basin, East Asia and Tibetan plateau (>50 ppb and 60 ppm.h, respectively).
61 The lowest O₃ mean concentrations (15-30 ppb) and AOT40 (<10 ppm.h) are recorded in particular
62 below latitude 15°N and in the Southern Hemisphere (SH). Under RCP2.6 scenario, the surface O₃
63 mean concentrations decrease worldwide with mean concentrations of 25-30 ppb above latitude
64 15°N, except over the Tibetan plateau (around 40 ppb) and of 10-20 ppb below latitude 15°N. The
65 AOT40 values are lower than 10 ppm.h worldwide (Fig. 2). Under RCP8.5, the O₃ mean
66 concentrations increase up to 50 ppb above latitude 15°N and reach 65 ppb over the Tibetan plateau.
67 The AOT40 values increase from 20 to 60 ppm.h in the latitude band 15-45°N in the Western
68 Hemisphere (WH) and the highest increases occur in Northwestern America, Greenland,
69 Mediterranean basin, Near East and East Asia. The highest AOT40 values (>70 ppm.h) are found
70 over the Tibetan plateau, Greenland and Near East.

71
72 In **GFDL-AM3**, a larger extent of high surface O₃ mean concentrations (>40 ppb) is observed, i.e.
73 covering North and Central America, Europe, Near East, Africa and Asia (Fig. 1). The highest O₃
74 levels (>50 ppb) are simulated in high-elevation areas (Rocky, Appalachian and Himalaya
75 Mountains and Tibetan plateau) and over deserts (Near East, Colorado, Nevada and Gobi). The
76 highest AOT40 values (>70 ppm.h) are observed in the latitude band 15-45°N (e.g. over Greenland
77 and Tibetan plateau, East U.S, Near East). The lowest surface O₃ mean concentrations (<30 ppb)

78 and AOT40 (<10 ppm.h) are observed in South America, Oceania and Indonesia. Under RCP2.6,
79 the global O₃ mean concentration is around 30 ppb, except in West and Equatorial Africa and South
80 Asia (>40 ppb). A slighter decrease is observed in South America, Oceania and Indonesia where
81 low historical O₃ mean levels (<30 ppb) are recorded. The AOT40 values are below 10 ppm.h
82 worldwide, except in West and Equatorial Africa and South Asia (>70 ppm.h). Under RCP4.5, the
83 O₃ mean concentrations range from 30 to 45 ppb, except in Northern South America and Indonesia
84 (<20 ppb) and over the Tibetan plateau (>50 ppb). The AOT40 values exceed 30 ppm.h in Alaska,
85 Greenland, East Asia and exceed 70 ppm.h over the Tibetan plateau and in Africa. The O₃ mean
86 concentrations reach 50-60 ppb worldwide under RCP8.5, except in South America, Oceania and
87 Indonesia (<35 ppb). The highest increases are observed in NH, in particular in Northwestern
88 America, Greenland, Near East and South Asia (>65 ppb). The highest AOT40 values (>70 ppm.h)
89 are found in Northern America, Greenland, in the latitude band 15-45°N in WH, in Equatorial and
90 South Africa. Only South America and Oceania have AOT40 <10 ppm.h.

91
92 In **GISS-E2-R**, the highest historical surface O₃ mean concentrations (>40 ppb) and AOT40 (>70
93 ppm.h) are observed in NH above latitude 30°N (e.g. Greenland, Tibetan plateau, Eastern U.S.,
94 Mediterranean basin) and in the well-industrialized areas, close to Beijing and Los Angeles (>60
95 ppb). The lowest O₃ concentrations (<15 ppb) are recorded in Amazon, African and over
96 Indonesian rainforests as well as in Australian Western plateau (shrubland). AOT40 range from 30
97 to 40 ppm.h in Central Europe and Asia, Siberia and North America while the lowest AOT40 (<10
98 ppm.h) are found in SH (Fig. 2). Under RCP2.6, the strongest decreases in surface O₃ mean
99 concentrations and AOT40 are simulated in NH above latitude 15°N, where high historical O₃
100 concentrations (>40 ppb) and AOT40 (>40 ppm.h) are reported. Under RCP4.5, the lowest surface
101 O₃ mean concentrations (10-20 ppb) and AOT40 (<10 ppm.h) are observed below latitude 15°N.
102 Compared to the historical mean, the O₃ mean concentrations are lower in Western Africa and
103 South Asia. Under RCP8.5, the strongest increases in surface O₃ mean concentrations are observed
104 in NH above latitude 15°N, in particular over Greenland and South Asia (>70 ppb). Above latitude
105 30°N, high AOT40 values (30-60 ppm.h) occur, and exceed 70 ppm.h over Greenland, Near East,
106 South Asia and around the Mediterranean basin. The lowest O₃ levels (<20 ppb) and AOT40 (<10
107 ppm.h) are reported in South America and Oceania. The O₃ burden is higher in NH while no
108 significant change is simulated in SH as compared to historical data.

109

110 In **MIROC-CHEM**, the surface O₃ mean concentrations follow a clear latitudinal gradient, i.e. the
111 highest mean concentrations (40-50 ppb) are observed in the latitude band 15-45°N, the range is 30-

112 40 ppb in the latitude band 45-60°N and <20 ppb above latitude 60°N. The concentrations are <30
113 ppb below latitude 15°N. AOT40 values, exceeding 30 ppm.h, are modelled in Eastern U.S, Central
114 Europe and Africa, Near East and South Asia. Under RCP2.6, a homogeneous decrease is observed
115 worldwide, i.e. above latitude 50°N, the O₃ mean concentrations are <20 ppb, as well as in South
116 America, Oceania and Indonesia, and the AOT40 are <20 ppm.h worldwide. Slight changes are
117 observed between the historical simulation and RCP8.5. The highest O₃ levels are simulated in Near
118 East, Western U.S. and South Asia (45-55 ppb) while O₃ mean concentrations of 20-35 ppb occur
119 worldwide. The mean AOT40 is <10 ppm.h worldwide, except in South Asia, Near East and a few
120 locations in Africa (>65 ppm.h).

121

122 In **MOCAGE**, a heterogeneous spatial distribution of historical surface O₃ concentrations and
123 AOT40 is found with a fine-scale resolution. The highest surface O₃ mean concentrations (>50 ppb)
124 and AOT40 (>70 ppm.h) are observed in particular in the latitude band 15-45°N. Higher O₃ metrics
125 values are simulated over Greenland, deserts (e.g. Gobi, Saudi Arabia), well-industrialized areas of
126 North America and South Asia (e.g. Eastern U.S, Beijing) and at high-elevation sites (e.g. Summit
127 in Greenland, Himalaya, Appalachian Mountains). The lowest concentrations (<20 ppb) are
128 recorded in South America and Oceania while lower AOT40 (<10 ppm.h) are also observed in
129 Northwestern America, Scandinavia, North Asia and along the African coastline. Under RCP2.6,
130 the highest decreases in O₃ mean levels and AOT40 are reported where higher historical O₃ mean
131 concentrations (40-60 ppb) and AOT40 (>70 ppm.h) are simulated, i.e. in the latitude band 15-45°N
132 in WH, in North America and Greenland. Compared to the historical mean, no significant change is
133 observed for the rest of the world. Under RCP4.5, the global O₃ mean levels (30-40 ppb) and
134 AOT40 values (10-20 ppm.h) are lower than historical observations in NH, except in Canada,
135 Greenland and East Asia where deterioration is observed compared to the historical time period. For
136 mean concentrations and AOT40, no significant change is found in SH as compared to the historical
137 simulation. Under RCP8.5, all the HN is strongly impacted by the increase in O₃ mean levels and
138 AOT40. The highest O₃ mean concentrations (55-65 ppb) and AOT40 (>70 ppm.h) are observed in
139 Greenland, Near East and across Asia.

140

141 In **UM-CAM**, the highest ground-level O₃ mean concentrations are simulated over deserts and
142 remote areas (i.e. Greenland, Rocky Mountains, Sahara, Near East and Gobi), in particular in the
143 latitude band 15-45°N with O₃ concentrations ranging from 40 to 60 ppb. The lowest O₃
144 concentrations (<15 ppb) are simulated over Amazon. Lower AOT40 values (<20 ppm.h) are found
145 worldwide, except over Greenland and in latitude band 15-45°N in the Eastern Hemisphere (>30

146 ppm.h). The highest AOT40 values (>70 ppm.h) are observed in Near East and over the Tibetan
147 plateau. Similarly to MOCAGE under RCP2.6, the highest decreases in O₃ mean levels and AOT40
148 are reported where higher historical O₃ mean concentrations (40-60 ppb) and AOT40 (>70 ppm.h)
149 are simulated, i.e. in the latitude band 15-45°N in WH, in North America and Greenland. Under
150 RCP4.5, the decreases in O₃ mean levels and AOT40 occur, in particular, in the latitude band 15-
151 45°N in WH and in Northwestern America. The Tibetan plateau is an O₃ hot-spot (>50 ppb). Under
152 RCP8.5, as compared to historical data, the highest increase in O₃ mean levels (40-55 ppb) and
153 AOT40 (>70 ppm.h) is reported in Northwestern America, Greenland and in the latitude band 15-
154 45°N in WH, reaching 70 ppb over the Tibetan plateau. Compared to the historical mean, no
155 significant change is observed below latitude 15°N (<30 ppb).

156

157 In summary, the highest hemispheric O₃ mean concentrations (30.6 ppb in SH, 42.9 ppb in NH) are
158 observed in GFDL-AM3 while the lowest (20.4 ppb in SH, 31.4 ppb in NH) are found in MIROC-
159 CHEM for historical simulations (Table 3a) and across all RCPs (Table 3b). Averaged over the
160 domain, the hemispheric AOT40 means range from 0.2 ppm.h (CESM-CAM) to 4.7 ppm.h (GISS-
161 E2-R) in SH, while higher hemispheric AOT40 means, from 9.8 ppm.h (MIROC-CHEM) to 36.8
162 ppm.h (GISS-E2-R), are simulated in NH (Tables 3a).

163

164 **Model-to-model changes in ozone burden related to emission changes**

165

166 For RCP2.6, compared to historical simulations, annual total emissions of CO, NOx, VOCs and
167 global CH₄ burden decrease by 40%, 44%, 5% and 27%, respectively and LNOx increase by 7%
168 (Table 2b). The highest reduction in overall O₃ concentration (-29%) is recorded in CESM-CAM
169 (Table 3b) and related to stronger changes in total NOx (-53%) and no change in VOCs emissions.
170 Lower reduction in O₃ concentrations (-13%) in MIROC-CHEM is related to a slight decrease in
171 VOCs emissions (-7%) and to the lowest decrease in total NOx emissions (-36%).

172

173 For RCP4.5, for which data from fewer models are available, there is generally a tendency for O₃
174 precursor emissions to decrease (Table 2b). The exception is the GISS-E2-R model, where we
175 observe an opposite tendency for CH₄ burden (+5%) and VOCs emissions (+7%) for RCP4.5 and a
176 slight increase (+0.5%) in VOCs for RCP2.6.

177

178 For RCP8.5, the global O₃ mean concentration increases by 23% in MOCAGE and 22% in CESM-
179 CAM and by 4% in MIROC-CHEM (Table 3b). For RCP8.5, total emissions of CO and NOx are
180 lower by respectively 32% and 20% compared to 2000, while CH₄ burden has strongly increased by

181 120% on average and LNOx emissions by 33%. For RCP8.5, VOCs emissions decreased by 1.3%
182 on average, except for GISS-E2-R. The GISS-E2-R model shows a greater degree of variation than
183 other models, with a stronger increase in CH₄ burden (+153%) and in VOCs emissions (+20%) for
184 RCP8.5. In CESM-CAM, the strongest reduction in total NOx is found (-33%) while CH₄ (+112%)
185 and LNOx (+30%) emissions strongly increased, and no change in VOCs emissions are observed
186 over time (Table 2b). In MOCAGE, the strongest increase (+24%) in O₃ inputs is found (Table 3b).
187 In MIROC-CHEM, VOCs (-3%) and NOx (-7%) emissions slightly decrease while an upward trend
188 in CH₄ emissions (+116%) is simulated between 2100 and the early 2000s (Table 2b).

189

190 The decreases in AOT40, averaged over the whole domain, range from -97% in CESM-CAM to -
191 54% in MOCAGE under RCP2.6 (Table 3c). Noting that MOCAGE and UM-CAM simulate an
192 increase in AOT40 values in SH under RCP2.6 (+69 % and +92%) and RCP4.5 (+203% and +8%)
193 scenarios. Under RCP8.5, an increase in averaged AOT40 is simulated in all models for both
194 hemispheres (Table 3c), from +20% (MIROC-CHEM) to +138% (CESM-CAM).

195

196 **Potential ozone impact on photosynthetic carbon assimilation under RCPs**

197 Figure 3 shows the percentage of variation of IO3, i.e. the change in the potential impact of O₃ on
198 vegetation for the ACCMIP models computed comparing the RCPs simulations with historical runs.

199

200 In **CESM-CAM**, compared to the historical mean, IO3 is homogenous worldwide under RCP2.6
201 with a strong decrease (more than -80%) above latitude 15°N and no significant change in
202 Southeastern U.S., Central Asia and regions where AOT40 and O₃ mean concentrations are the
203 lowest, i.e. South America, Africa and Australia in SH. Under RCP8.5, a strong increase in IO3
204 (more than +80 %) is simulated worldwide, except over Australia where no change is observed.

205

206 In **GFDL-AM3**, IO3 strongly decreases (more than -80%) in NH, except in South Asia (between -10
207 and -50%) under RCP2.6.Under RCP4.5, IO3 ranges from -15 to +15% above latitude 50°N, in
208 South and Northeastern Asia, over Amazon and South Africa. The strongest percentages of change
209 are observed in Equatorial Africa. IO3 is lower than -80% in the rest of the world (U.S., Europe,
210 Central and Southeastern Asia). A larger extent of high IO3 percentage (>+60 %) is found under
211 RCP8.5worldwide. However, lower increases (around +15%) are simulated in Southern Europe,
212 Southeastern Asia and Central Africa while slight decreases (around -15 %) are observed over
213 Amazon rainforests and in Eastern U.S. and China.

214

215 In **GISS-E2-R**, IO3 strongly decreases (more than -80%) in NH, except in South Asia (between -10
216 and -50%) under RCP2.6. Under RCP4.5, IO3 exceeds -80% in NH except in South Asia. No
217 change occurs in South America and Australia while an increase in IO3 (>30%) is observed in
218 Equatorial Africa. Under RCP8.5, the highest increase in IO3 (>+60%) is simulated across Africa,
219 in Southeastern Asia and in Southwestern U.S. close to Los Angeles where O₃ mean concentrations
220 exceeding 60 ppb are recorded. Lower increases (around +15 %) are simulated over Northwestern
221 U.S. and in central and Northeastern Asia while a reduction in GPP is observed in Europe, East
222 China and Eastern U.S (up to -70 %).

223

224 In **MIROC-CHEM**, no change in IO3 is observed worldwide except in South Asia and Equatorial
225 Africa under RCP2.6. A strong decrease in IO3 is found under RCP4.5 in Eastern U.S, Central
226 Europe and Southeastern China, close to Beijing surroundings. An increase of IO3 is simulated in
227 Northern U.S., in South America, Asia and Africa.

228

229 In **MOCAGE**, the strongest decrease (more than -80%) under RCP2.6 occurs in Europe, East Asia
230 and U.S., while a slight decrease or increase (between -15 and +15%) is found in Northern
231 America, Southern and Northern Asia. Under RCP4.5, IO3 strongly increases (>+60%) above
232 latitude 50°N. Across Africa, IO3 ranges from -15% to +60% over the rainforests. Slight decreases
233 in IO3 (around -15%) are observed in Europe and South America (no change) while the strongest
234 decrease (more than -60%) are found in Southern U.S., Southeastern Asia, South America. Under
235 RCP8.5, the increase in IO3 is high worldwide, exceeding +80% above latitude 45°N, except in
236 Central Europe where a slight decrease in IO3 (-15 %) is simulated. A reduction in IO3 (around -60
237 %) is found in Eastern U.S., Southeastern China and over the Amazon rainforests.

238

239 In **UM-CAM**, the strongest decrease in IO3 occurs in the latitude band 15-50°N in WH and
240 Northwestern America under RCP2.6. No change in IO3 is found over latitude 50°N and in South
241 America, Southeastern U.S. and Australia. Under RCP4.5, decreases in IO3 or no change (e.g.
242 South America, Australia) occur worldwide, except in Africa where a few hot-spots (>+60%) are
243 simulated. Slight increase in IO3 (around +15 %) is simulated in Europe and Central Asia under
244 RCP8.5 and the increase in IO3 is high, exceeding +80%, above latitude 45°N, except in Central
245 Europe where a slight decrease in IO3 (-15 %) is simulated.

246

247 In summary, averaged over the Globe, the highest decrease in the potential O₃ impact for
248 vegetation, or risk factor IO3, is observed in CESM-CAM (-97%) while the lowest (-41%) is found

249 in MIROC-CHEM under RCP2.6 (Tables 3d). For RCP8.5, strong increases in IO3 are found for all
250 models and both hemispheres, from +21% (GISS-E2-R) to +130% (CESM-CAM). For all models,
251 generally a reduction in IO3 is simulated over Amazon rainforests (except in CESM-CAM), Central
252 Africa, Europe and East Asia, in particular under RCP8.5.

253 **Bibliographic references**

- 254 **Cionni I.**, Eyring V., Lamarque J.F., Randel W.J., Stevenson D.S., et al., 2011, "Ozone database in
255 support of CMIP5 simulations: results and corresponding radiative forcing". *Atmos. Chem. Phys.* 11: 11267-11292.
- 256 **Fiore A.M.**, Horowitz L.W., Dlugokencky E.J., West J.J., 2006, "Impact of meteorology and
257 emissions on methane trends, 1990-2004". *Geophys. Res. Lett.* 33: L12809.
- 258 **Guenther A.B.**, Jiang X., Heald C.L., Sakulyanontvittaya T., Duhl T., et al., 2012, "The Model of
259 Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1): an extended and updated
260 framework for modeling biogenic emissions". *Geoscientific Model Development* 5: 1471-1492.
- 261 **Guenther A.B.**, Karl T., Harley P., Wiedinmyer C., Palmer P.I., Geron C., 2006, "Estimates of
262 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols
263 from Nature)". *Atmos. Chem. Phys.* 6: 3181-3210.
- 264 **Lamarque J.F.**, Shindell D.T., Josse B., Young P.J., Cionni I., et al., 2013, "The Atmospheric
265 Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of
266 models, simulations and climate diagnostics". *Geosci. Model Dev.* 6: 179-206.
- 267 **Lin W.**, Xu X., Zhang X., Tang J., 2008, "Contributions of pollutants from North China Plain to
268 surface ozone at the Shangdianzi GAW Station". *Atmos. Chem. Phys.* 8: 5889-5898.
- 269 **McLinden C.A.**, Olsen S., Hannegan B., Wild O., Prather M.J., et al., 2000, "Stratospheric ozone
270 in 3-D models: A simple chemistry and the cross-tropopause flux". *J. Geophys. Res.* 105: 14653-
271 14665.
- 272 **Meinshausen M.**, Smith S.J., Calvin K., Daniel J.S., Kainuma M.L.T., 2011, "The RCP greenhouse
273 gas concentrations and their extension from 1765 to 2300". *Climatic Change*: 109, 213-241.
- 274 **San José R.**, Pérez J.L., González R.M., Pecci J., Garzón A., Palacios M., 2016, "Impacts of the 4.5
275 and 8.5 RCP global climate scenarios on urban meteorology and air quality: Application to Madrid,
276 Antwerp, Milan, Helsinki and London". *Journal of Computational and Applied Mathematics* 293:
277 192-207.
- 278 **Shindell D.T.**, Lamarque J.F., Schulz M., Flanner M., Jiao C., et al., 2012, "Radiative forcing in the
279 ACCMIP historical and future climate simulations". *Atmos. Chem. Phys. Discuss.* 12: 21105-21210.
- 280 **Sicard P.**, Coddeville P., Galloo J.C., 2009, "Near-surface ozone levels and trends at rural stations
281 in France over the 1995-2003 period". *Environ. Monit. Assess.* 156: 141-157.
- 282 **Stevenson D.S.**, Young P.J., Naik V., Lamarque J.F., Shindell D.T., et al., 2012, "Tropospheric
283 ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and
284 Climate Model Inter-comparison Project (ACCMIP)". *Atmos. Chem. Phys. Discuss.* 12: 26047-
285 26097.
- 286 **Thomson A.M.**, Calvin K.V., Smith S.J., Kyle G.P., Volke A., et al., 2011, "RCP4.5: A pathway
287 for stabilization of radiative forcing by 2100". *Clim. Change* 109: 77-94.
- 288 **Williams E.R.**, 2009, "The global electrical circuit: A review". *Atmos. Res.*, 91: 140-152.
- 289 **Young P.J.**, Archibald A.T., Bowman K.W., Lamarque J.F., Naik V., et al., 2013, "Preindustrial to
290 end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate
291 Model Intercomparison Project (ACCMIP)". *Atmos. Chem. Phys.* 13: 2063-2090.
- 292
- 293