

Supplement of

Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe

Carlo Bozzetti et al.

Correspondence to: André S. H. Prévôt (andre.prevot@psi.ch) and Imad El Haddad (imad.el-haddad@psi.ch)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 EC:hopanes ratio

The EC:hopanes ratio was calculated considering the sum of the four most abundant measured hopanes (17a(H),21b(H)-norhopane, 17a(H),21b(H)-hopane, 22S,17a(H),21b(H)homohopane, and 22R,17a(H),21b(H)-homohopane (hopanes_{sum})). These four hopanes were also the most abundant in the TEOA profiles used in this study to determine the TEOA concentration (He et al., 2006; He et al., 2008; El Haddad et al., 2009; and Fraser et al., 1998). The EC:hopanes_{sum} ratio was derived from a multi-parametric fit of EC according to Eq. (S1)

8

$$EC = a \cdot BBOC + b \cdot hopanes \tag{S1}$$

where *a* represents EC:BBOC and *b* represents the EC:hopanes_{sum} ratio. *a* was constrained to 0.39 which is the average EC:BBOC ratio determined from the markers source apportionment.

Figure S1. m/z 28: HR fit of the chopper open minus closed spectrum (Diff). Top plot: nebulization performed in Ar, bottom plot: nebulization performed in synthetic air.

Compounds class (as in table 1)	Measured compounds	Filters measured
Ions	SO_4^{2-} , NO_3^{-} , Cl^- , NH_4^+ , Na^+ , K^+ , Ca^{2+} , Mg^{2+} , oxalate,	All

Table S1: measured compounds.

methane sulfonic acid

	Phenanthrene, anthracene, fluoranthene, pyrene,	
PAHs	benzo[a]anthracene, chrysene, triphenylene, retene,	
	benzo[b,k]fluoranthene, benzo[j]fluoranthene,	67 composite
	benzo-e-pyrene, benzo[a]pyrene, indeno[1,2,3 -	samples
	cd]pyrene, dibenzo[a,h]anthracene,	
	benzo[ghi]perylene, coronene	
	dibenzothiophene, phenanthro(4,5-bcd)thiophene,	
	Benzo(b)naphtho(2,1-d)thiophene,	
S-PAHs	Benzo(b)naphtha(1,2-d)thiophene	
	Benzo(b)naphtho(2,3-d)thiophene, Dinaphtho(2,1-	
	b;1',2'-d)thiophene, Benzo(b)phenantho(2,1-	
	d)thiophene	

	2-methylnaphtalene, 1-methylfluoranthene, 3-				
	methylphenanthrene, 2-methylphenanthrene, 2-				
	methylanthracene, 4/9 methylphenanthrene, 1-				
Me-PAHs	methylphenanthrene, 4-methylpyrene, 1-				
	methylpyrene, 1+3-methylfluoranthene,				
	methylfluoranthene/pyrene, 3-methylchrysene,				
	methylchrysene/benzoanthracene.				
	Trisnorneohopane,				
	17a(H)-trisnorhopane,				
	17a(H),21b(H)-norhopane,				
Honoros	17a(H),21b(H)-hopane,				
Hopanes	22S,17a(H),21b(H)-homohopane,				
	22R,17a(H),21b(H)-homohopane,				
	22S,17a(H),21b(H)-bishomohopane,				
	22R,17a(H),21b(H)-bishomohopane,				

22S,17a(H),21b(H)-trishomohopane,					
22R,17a(H),21b(H)-trishomohopane,					
	vanillin, vanillic acid, acetovanilone, guaiacyl				
Methoxyphenols	acetone, coniferyl aldehyde, homovanilic acid,				
	syringol, 4-methylsyringol, 4-propenylsyringol,				
	acetosyringone, syringyl acetone, sinapyl aldehyde,				
	syringic acid,				
Others	Cholesterol, 6,10,14-trimethyl-2-pentadecanone				
Sugar alcohols	Arabitol, sorbitol, mannitol	All			
Anhydrous sugars	Levoglucosan, mannosan, galactosan	All			
Monosaccharides	Glucose	All			
	Undecane (C11), dodecane (C12), tridecane (C13),				
	tetradecane (C14), pentadecane (C15), exadecane				
	(C16), heptadecane (C17), octadecane (C18),				
	nonadecane (C19), eicosane (C20), heneicosane				
	(C21), docosane (C22), tricosane (C23), tetracosane				
	(C24), pentacosane (C25), hexacosane (C26),				
Alkanes	heptacosane (C27), octacosane (C28), nonacosane				
	(C29), triacontane (C30), untricontane (C31),				
	totriacontane (C32), tritriacontane (C33),				
	tetratriacontane (C34), pentatriacontane (C35),				
	hexatriacontane (C36), heptatriacontane (C37),				
	octatriacontane (C38), nonatriacontane (C39),				
	tetracontane (C40), pristane, phytane				

Figure S2. Offline-AMS source apportionment: water-soluble organic aerosol mass spectra of
the resolved PMF factors for the 3-, 4-, and 5-factor solutions. The BBOA factor is resolved
in the 4-factor solution. Another OOA factor is resolved in the 6-factor solution but could not
be associated to a specific aerosol source/process.

Figure S3. Offline-AMS source apportionment: water-soluble organic aerosol time series of
the resolved PMF factors for the 3-, 4-, and 5-factor solutions. The BBOA factor is resolved
in the 4- and 5- factor solution.

2 Figure S4. Offline-AMS PMF. Q/Q_{exp} represents the ratio between the sum of the squares of 3 the residuals scaled by the uncertainty (Eq. 2) and Q_{exp} , which is and the remaining degrees of 4 freedom of the model solution (Q_{exp}) calculated as i j - (j+i)p (Canonaco et al., 2013). Here, 5 $abs(\Delta(Q/Q_{exp}))$ denotes the absolute difference of Q/Q_{exp} between different solution orders. A 6 strong decrease of the Q/Q_{exp} , passing from lower to higher order solutions indicates a better 7 explanation of the variability by the model. In this study, a large Q/Q_{exp} decrease was 8 observed for Vilnius during summer when passing from 2 to 3 factors, with the separation of the LOA factor. The 4-factor solution enabled resolving BBOA, with a decrease of Q/Q_{exp} 9 10 observed mostly for Vilnius during winter, where the BBOA concentrations were high. 11 Increasing the number of factors provided further small contributions to the explained 12 variability, resulting in a separation of other OOA factors, which couldn't be associated to 13 aerosol sources or processes.

Figure S5. Offline-AMS PMF: WSOM absolute residuals for different number of factors.

4

5 Figure S6. Probability density functions of the OC residuals from R_Z sensitivity analysis (Eq.

Figure S7. Scatterplot of OC residuals from R_Z sensitivity analysis (Eq. 6) vs. LOA concentration from the accepted solutions.

Figure S8. Factor recoveries: probability density functions.

1 Table S2: Z-score table for offline-AMS factor contributions at different stations and seasons.

2 The *z*-score was calculated to determine whether the average factor contribution at one 3 station/season (Z_{avg}) was statistically different from 0.

4

$$z\text{-score} = Z_{ave} / \sigma_z \tag{S1}$$

- 5 where σ_z denotes the uncertainty calculated according to the source apportionment error
- 6 model described in the manuscript ($\sigma_{S.A.}$).
- 7 Z-score values < 3 are highlighted in pink.

Rug	Fall	13.6	1.8	17.7	8.1	6.1
	winter	21.9	1.9	30.3	7.8	21.2
	spring	9.9	1.9	22.3	15.2	4.3
	summer	10.7	1.6	21.1	15.6	5.7
Pre	Fall	20.6	1.9	19.9	14.3	13.6
	winter	21.1	2.3	22.2	8.7	346.7
	spring	20.6	2.3	21.6	16.9	21.9
	summer	11.5	1.7	15.6	17.1	2.8
Vil	Fall	13.4	1.3	5.3	5.5	23.9
	winter	19.6	1.6	10.4	11.6	30.7
	spring	19.3	2.2	9.2	5.6	36.4
	summer	14.8	4.0	8.7	11.9	10.3

BBOA LOA B-OOA S-OOA TEOA

8

Table S3: Z-score table for factor contributions at different stations and seasons (marker
source apportionment). Larger uncertainties in comparison to the offline-AMS source
apportionment could derive from the smaller amount of variables and measurements. *SA =
secondary aerosol. Z-score values < 3 are highlighted in pink.

		SO4 ²⁻ -SA*	MSA-SA*	NO ₃ -SA*	BB	TE	PB	Na ⁺ -rich
Rug	Fall	4.5	0.8	2.6	5.2	1.5	1.1	3.0
	Winter	6.1	1.3	6.8	7.4	2.0	1.9	7.3
	Spring	8.2	1.9	3.7	5.2	1.5	1.4	3.2
	Summer	7.8	1.9	2.0	3.1	1.6	1.7	2.8
Pre	Fall	6.7	1.5	3.6	4.5	1.4	1.8	5.9
	Winter	4.9	1.1	4.5	5.9	1.5	1.4	4.2
	Spring	6.1	3.2	0.9	3.0	1.2	1.4	6.1
	Summer	8.9	3.6	1.5	0.6	1.8	1.9	5.9
Vil	Fall	0.9	1.6	3.9	2.6	0.6	0.7	4.8
	Winter	5.6	0.8	5.6	4.6	1.2	1.2	4.2
	Spring	6.7	1.0	0.7	0.8	0.5	2.1	1.1
	Summer	-	-	-	-	-	-	-

Figure S9. Marker-PMF sensitivity analysis of the applied constraints. Constraints assuming variables to be equal 0 were loosened allowing each of these variables to vary within a certain range of its average relative contribution to measured PM₁. 0% denotes the fully constrained solution, corresponding to the average bootstrap marker-PMF source apportionment.

1

8

9 Figure S10. Marker-PMF sensitivity analysis: comparison between the apportionment of
 10 OM_{res} in BB and TE obtained bootstrapping time points (x-axes) and variables (y-axes).

1 uncertainty can be up to 23% in Rūgšteliškis. These findings suggest that while for Preila and 2 Vilnius the B-OOA vs NH₄⁺ unperfected correlation can be explained by our uncertainty, for 3 Rūgšteliškis the remaining unexplained variability (27%) can be related to a different 4 secondary precursor composition and/or different photochemical aging of the air parcel in 5 comparison to the other stations.

6

7

8 Figure S12. S-OOA temperature dependence and submicron forest organic aerosol mass 9 (SFOM) temperature parameterization by Leaitch et al. (2015). a) Lithuania; b) rural site of 10 Payerne (Switzerland), Bozzetti et al. (2016); c) binned S-OOA concentrations (average and 11 standard deviation).

- 1
- 2 Figure S13. Other-OA_{offline-AMS} and Other-OA_{marker} time series. Results represent the average
- 3 PMF solutions.

5 Figure S14. a) Modelled OM : input OM for the markers-PMF. b) Modelled WSOC :
6 measured WSOC for the offline-AMS PMF

Figure S15. Scatter plot of fCO_2^+ vs. fCO^+ only from water-soluble OOA. The OOA contribution to fCO^+ and fCO_2^+ was estimated by subtracting the non-OOA fCO^+ and fCO_2^+ contributions from the measured fCO^+ and fCO_2^+ . The color code denotes the average daily temperature [°C], diamonds indicate the CO_2^+ :CO⁺ ratio for different PMF factor profiles.

6 **CO⁺** parameterization (3-parameter fit)

We fitted the measured water-soluble CO^+ variability as a function of the measured watersoluble CO_2^+ , $C_2H_4O_2^+$, and $C_2H_3O^+$. The multilinear fit returned 0.56, 1.30 and -0.18 as coefficients for CO_2^+ , $C_2H_4O_2^+$, and $C_2H_3O^+$, respectively. In order to ensure positive contributions from the separated aerosol sources to CO^+ , we parameterized the CO^+ variability as the sum of the CO^+ contributions explained by BBOA and S-OOA and B-OOA, which together represented 97% of the CO^+ explained variability (BBOA 20%, S-OOA 12%, B-OOA 65%):

14

1

$$CO^{+}_{i} = CO^{+}_{S-OOA,i} + CO^{+}_{B-OOA,i} + CO^{+}_{BBOA,i}$$
(S3)

15 The CO^+_i parameterization as a function of the CO^+ fraction explained by the PMF factors 16 ensures positive contributions from all terms.

17 The $\text{CO}^+_{S-OOA,i}$, $\text{CO}^+_{B-OOA,i}$, and $\text{CO}^+_{BBOA,i}$ terms can be written as functions of CO_2^+ , $\text{C}_2\text{H}_3\text{O}^+$, 18 and $\text{C}_2\text{H}_4\text{O}_2^+$, chosen as S-OOA, B-OOA, and BBOA tracers.

19
$$CO^{+}_{S-OOA,i} = (\frac{fCO^{+}}{fC_{2}H_{3}O^{+}})_{S-OOA} \cdot C_{2}H_{3}O^{+}_{S-OOA,i}$$
 (S4)

$$CO^{+}_{B-OOA,i} = (\frac{fCO^{+}}{fCO_{2}^{+}})_{B-OOA} \cdot CO^{+}_{2B-OOA,i}$$
 (S5)

$$CO^{+}_{BBOA,i} = \left(\frac{fCO^{+}}{fC_{2}H_{4}O_{2}^{+}}\right)_{BBOA} \cdot C_{2}H_{4}O^{+}_{2 BBOA,i}$$
(S6)

3 Therefore Eq. (S3) can be expressed as:

1

2

17

19

$$4 \qquad CO^{+}_{i} = (\frac{fc0^{+}}{fc_{2}H_{3}0^{+}})_{S-OOA} \cdot C_{2}H_{3}O^{+}_{S-OOA,i} + CO^{+}_{B-OOA,i} + (\frac{fc0^{+}}{fc0_{2}^{+}})_{B-OOA} \cdot CO^{+}_{2B-OOA,i} + CO^{+}_{BBOA,i} + (\frac{fc0^{+}}{fc_{2}H_{4}0_{2}^{+}})_{BBOA} \cdot C_{2}H_{4}O^{+}_{2BBOA,i}$$
(S7)

Then $C_2H_3O_{S-OOA,i}^+$, $C_2H_4O_2^+_{BBOA,i}$, $CO_2^+_{B-OOA,i}$ can be written as the difference between the 5 6 total fragment concentrations minus the fragment concentrations explained by the other PMF 7 factors:

8
$$C_2 H_3 O^+_{S-OOA,i} = C_2 H_3 O^+_{i} - C_2 H_3 O^+_{BBOA,i} - C_2 H_3 O^+_{B-OOA,i}$$
(S8)

9
$$C_{2}H_{4}O_{2}^{+}{}_{BBOA,i} = C_{2}H_{4}O_{2}^{+}{}_{i} - C_{2}H_{4}O_{2}^{+}{}_{S-OOA,i} - C_{2}H_{4}O_{2}^{+}{}_{B-OOA,i}$$
(S9)

10
$$CO_2^+{}_{B-OOA,i} = CO_2^+{}_i - CO_2^+{}_{S-OOA,i} - CO_2^+{}_{BBOA,i}$$
 (S10)

By substituting Eq. (S9), Eq. (S10), and Eq. (S11) into Eq. (S7) and grouping the CO_2^+ , 11 $C_2H_4O_2^+$, and $C_2H_3O^+$ multiplication coefficients, we can express the CO_i^+ variability as 12 function of the $C_2H_3O^+$, $C_2H_4O_2^+$, and CO_2^+ fragments as: 13

14
$$CO_{i}^{+} = a \cdot CO_{2i}^{+} + b \cdot C_{2}H_{4}O_{2i}^{+} + c \cdot C_{2}H_{3}O_{i}^{+}$$
 (S10)

15 Algebraic expressions for the pre-factors *a*, *b*, and *c* are given in Eq. (S11), (S12) and (S13).

These coefficients were estimated as equal to 0.51, 1.50, and -0.10, respectively. 16

$$=\frac{-\left(\frac{CO^{+}}{C_{2}H_{4}O_{2}^{+}}\right)_{SOGA}\left(\frac{C_{2}H_{4}O_{2}^{+}}{CO_{2}^{+}}\right)_{B-OOA}+\left(\frac{C_{2}H_{4}O_{2}^{+}}{C_{2}H_{4}O_{2}^{+}}\right)_{B-OOA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}-\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{BOOA}\left(\frac{C_{2}H_{4}O_{2}^{+}}{C_{2}H_{3}O^{+}}\right)_{B-OOA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}-\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{SOGA}\left(\frac{CO^{+}}{CO^{+}_{2}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0}O^{+}_{0$$

$$=\frac{\cdot\left(\frac{CO^{+}}{C_{2}H_{3}O^{+}}\right)_{S,OGA}\left(\frac{C_{2}H_{3}O^{+}}{C_{2}H_{4}O_{2}^{+}}\right)_{BBOA}+\left(\frac{CO^{+}}{C_{2}H_{4}O_{2}^{+}}\right)_{BBOA},\left(\frac{CO^{+}}{C_{2}H_{4}O_{2}^{+}}\right)_{BBOA}+\left(\frac{CO^{+}}{C_{4}H_{4}O_{2}^{+}}\right)_{BBOA}+\left(\frac{CO^{+}}{C_{4}H_$$

$$=\frac{\left(\frac{CO^{2}}{C_{2}H_{2}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{4}O^{2}}\right)_{BBOA}\left(\frac{C_{2}H_{4}O^{2}}{C_{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{SOGA}\left(\frac{CO^{2}}{C_{2}H_{3}O^{2}}\right)_{BOOA}\left(\frac{CO^$$

20 Limitations of this parameterization could arise in case of dominating COA contributions, 21 such as in direct emission studies, as the typical AMS fingerprint associated to this source

с

а

(S11)

- 1 shows high $fC_2H_3O^+$ and low fCO_2^+ and $fC_2H_4O_2^+$ contributions, leading to a possible 2 pagetive fCO^+ estimate
- 2 negative fCO^+ estimate.

5 We recalculated the OM:OC ratio for the water soluble collected spectra according to the new 6 parametrization reported by Canagaratna et al. (2015). Consistently with what reported in 7 Canagaratna et al. (2015), the newly calculated OM:OC ratio was on average 9% higher than the OM:OC ratio calculated according to the Aiken method (Aiken et al., 2008). More 8 9 specifically, the OM:OC ratio was on average 9% higher during summer, and 10% during 10 winter. The two methods reported well correlating OM:OC values (R = 0.98 over the whole monitoring period, R = 0.99 during winter, R = 0.97 during summer). In our study, the 11 OM:OC ratios of our water soluble mass spectra were mostly used to determine the total 12 WSOM concentrations. Considering the high correlations between the Aiken and Canagaratna 13 14 OM:OC ratios, we can exclude large effects due to the different parameterizations on the 15 WSOM variability and therefore on the source apportionment. Moreover, the recovery estimates are independent of the choice of Aiken or Canagaratna's OM:OC parameterizations. 16 Indeed the recovery fitting equation (Eq. 6) explicitly contains the PMF factors' OM:OC 17 ratios. However, the water-soluble PMF factor concentrations in Eq. 6 implicitly depend on 18 the bulk OM:OC ratio used to determine the bulk WSOM concentration (WSOM_i = 19

- 1 $WSOC_i OMOC_i$) which was used as input for our PMF model. This leads to canceling 2 corrections making the recovery estimates independent of the choice of the Aiken's or Canagaratna's OM:OC parameterizations. Nevertheless the WSOM estimated concentrations 3 are 10%_{avg} larger, when assuming the Canagaratna OM:OC parametrization. In general Aiken 4 assumed a CO₂⁺:CO⁺ ratio of 1, while Canagaratna stated that such an assumption would 5 underestimate CO^+ . From our dataset, we observed a CO_2^+ : CO^+ of 1.75_{med} suggesting that the 6 7 Aiken OM:OC parametrization would represent more accurately our data although both 8 parametrizations are uncertain for this dataset.
- 9

10 Offline-AMS comparison with IC and WSOC determination by TOC analyzer.

Overall, the comparison between offline-AMS and IC concentrations of NH_4^+ , SO_4^{2-} , and NO₃⁻ reveals a non-linear relation due to the lower IC detection limits. This is most likely related to the low transmission efficiency of the AMS lens for small particles, particularly predominant for diluted filter extracts.

15 Nevertheless, considering internally mixed nebulized particles, the composition of the 16 particles is not supposed to change with the solution concentration, as also confirmed by 17 dilution tests conducted on our filter extracts (Fig. S17).

2 Figure S17. Dilution tests: NR PM composition and comparison of mass spectra registered at

- 3 different dilutions.
- 4

2 Figure S18. Offline-AMS comparison with IC and WSOC measurements by TOC analyzer.

The low particle transmission efficiency observed for diluted solutions results in a large scattering at low concentration. Additional scattering is observed in the relation between offline-AMS and IC for $SO_4^{2^-}$. This is related to the presence of refractory sulfate salts (e.g. Na₂SO₄) which are detectable by IC, but not by the AMS, consistent with lower slope obtained between offline-AMS and IC $SO_4^{2^-}$, compared to the other species. These species are likely formed during nebulization, e.g.

9 $(NH_4)_2SO_4 + CaCl_2 \rightleftharpoons CaSO_4 + 2NH_4Cl$

10 For these reasons we only reported inorganic ion concentrations from IC.