

Supplement of

Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

Linda M. J. Kooijmans et al.

Correspondence to: Huilin Chen (huilin.chen@rug.nl)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Table S1.

 222 Rn exhalation rates (F_{Rn}) in Hyytiälä as obtained from different references. For monthly rates published in Szegvary et al. (2009) and López-Coto et al. (2013) we only show the months that are relevant for this study.

,

Reference	$F_{Rn} (mBq m^{-2} s^{-1})$	Variability
Szegvary et al., 2007 [*]	15.3	61.51 °N, 23.79 °E, 46 km distance
		from Hyytiälä, 24.7 % SWC
Szegvary et al., 2009°	7.4	June
	11.0	July
	11.5	August
	14.7	September
	16.0	October
	13.8	November
	12.4 ± 3.1	Average
Manohar et al., 2013°	7.0	
López-Coto et al., 2013°	7.8	June
	7.7	July
	7.6	August
	7.5	September
	7.5	October
	7.3	November
	$\textbf{7.6} \pm \textbf{0.2}$	Average
Karstens et al., 2015°	4.0	Soil moisture map ERA-Interim
	11.4	Soil moisture map NOAH
Total average	9.6 ± 4.1	

* Measured

° Modelled

Figure S1: A typical 1 h cycle of COS and CO₂ concentrations during nighttime (01:00 hr) on July 20, 2015, showing the switching between cylinder gases, profile heights (shaded), and soil chambers. A gradient between the different profile heights can be distinguished.

Figure S2: A typical 1 h cycle of COS and CO₂ concentrations during daytime (14:00 hr) on July 20, 2015, showing the switching between cylinder gases, profile heights (shaded), and soil chambers. A gradient is hardly detectable due to turbulent mixing of the air.

Figure S3: Overview of (a) meteorological conditions (SWC, T_{air} and RH), (b) VPD, (c) g_{sCOS} , (d) radon-based fluxes F_{COS-Rn} and NEE_{Rn}, (e) EC-based fluxes F_{COS-EC} and NEE_{EC} and (f) F_{Rn} . 5-day running averages are plotted in corresponding colors. For g_{sCOS} , the running average is only plotted up to September 1st as only very few data points are available after that period.

Figure S4: Storage fluxes F_{stor} (green), ecosystem fluxes NEE_{EC} and F_{COS-EC} (red) and soil fluxes F_{soil} (blue) of COS (left) and CO₂ (right) in autumn (September – November) 2015. Thick lines indicate the median values of the data over the whole measurement period, and the shaded areas specify the 25th-75th percentiles. The median values of NEE_{EC} and F_{COS-EC} without storage correction are shown in gray. The ecosystem fluxes are filtered for low u* values with a threshold of 0.3 m s⁻¹.

Figure S5: Correlations of F_{COS-EC} with g_{sCOS} , T_{air} , VPD, and u_* . All data are averages over individual nights (with nighttime defined as sun elevation below -3°). In this plot F_{COS-EC} is not filtered based on u_* as this would leave too few data points to make a correlation.

References

- Karstens, U., Schwingshackl, C., Schmithhüsen, D., and Levin, I.: A process-based 222radon flux map for Europe and its comparison to long-term observations, Atmos. Chem. Phys., 15, 12845–12865, https://doi.org/10.5194/acp-15-12845-2015, 2015.
- López-Coto, J., Mas, J. L., and Bolivar, J. P.: A 40-year retrospective European radon flux inventory including climatological variability, Atmos. Environ., 73, 22–33, https://doi.org/10.1016/j.atmosenv.2013.02.043, 2013.
- Manohar, S. N., Meijer, H. A. J., and Herber, M. A.: Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides, Atmos. Environ., 81, 399–412, https://doi.org/10.1016/j.atmosenv.2013.09.005, 2013.

- Szegvary, T., Leuenberger, M. C., and Conen, F.: Predicting terrestrial 222Rn flux using gamma dose rate as a proxy, Atmos. Chem. Phys., 7, 2789–2795, https://doi.org/10.5194/acp-7-2789-2007, 2007.
- Szegvary, T., Conen, F., and Ciais, P.: European 222Rn inventory for applied atmospheric studies, Atmos. Environ., 43, 1536–1539, https://doi.org/10.1016/j.atmosenv.2008.11.025, 2009.